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Quantum computing exploits quantum phenomena such as superposition and entanglement to re-
alize a form of parallelism that is not available to traditional computing. It offers the potential of
significant computational speed-ups in quantum chemistry, materials science, cryptography, and ma-
chine learning. The dominant approach to programming quantum computers is to provide an existing
high-level language with libraries that allow for the expression of quantum programs. This approach
can permit computations that are meaningless in a quantum context; prohibits succinct expression of
interaction between classical and quantum logic; and does not provide important constructs that are
required for quantum programming. We present Q#, a quantum-focused domain-specific language
explicitly designed to correctly, clearly and completely express quantum algorithms. Q# provides a
type system, a tightly constrained environment to safely interleave classical and quantum computa-
tions, specialized syntax, symbolic code manipulation to automatically generate correct transforma-
tions of quantum operations, and powerful functional constructs which aid composition.

I. INTRODUCTION

While classical computing models a binary system and employs boolean logic for computation, quantum informa-
tion is stored in quantum states of matter, and computation is effected by operations based on quantum interference.
Just as individual binary values are stored in bits, quantum states are stored in qubits. A quantum operation operates
on one or more qubits and is called a gate. A sequence of gates operating on a set of qubits is traditionally called a cir-
cuit. Most quantum programming languages are effectively circuit descriptions. Quantum algorithms may employ
patterns and constructs that are not readily expressible in circuits. Constructs such as classical control predicated on
the result of a quantum measurement are difficult to express as circuits, while recursion and unbounded iteration are
often impossible. Further, the physics and engineering of quantum computing devices currently requires that many
low-level concerns such as error-correction, noise and timings need to be explicitly addressed. However, a soft-
ware developer requires these details to be abstracted away so that focus is maintained on expressing a higher-level
quantum algorithm.

To address the need for expressivity and abstraction, we developed a special language which provides a clean
separation between the code to be executed in the quantum context from the driver code that can be programmed in a
traditional high-level language. Additionally, since only some hard computational parts of a “program” are quantum
mechanical in nature, it is helpful to consider a quantum computer not as a full-fledged computation device in its
own right (replete with mechanisms for storage, network communication, user interaction and so on), but rather as
an external, adjunct, co-processor to a classical machine. In such a model, the quantum computation happens on
the co-processor in a cleanly separated domain, and indeed, becomes the domain for which we design a domain-
specific language (DSL) such as Q#. Finally, since many quantum operations are, in fact, unitary transformations,
it is quite a common problem in quantum computing to require the adjoint (formally, the conjugate transpose) of a
given transformation.

Without symbolic computing, the only way to produce the adjoint of a transformation is to explicitly write it as
part of the code-base. However, Q# is able to employ powerful, and type-safe, symbolic computation on the body
of the given operation to automatically generate the adjoint if it is logically possible to do so. This is, in effect, an
algebra over the set of operations, and different variants can be automatically generated and combined for each
given operation. A host program calling into a Q# component can be executed against a simulator (which provides
an implementation for each of the primitive quantum gates), or translated to primitive physical operations which
then run against appropriate hardware.

Q#is part of Microsoft’s Quantum Development Kit, available at http://www.microsoft.com/quantum. Detailed
documentation for Q#, including the standard library reference, is available at http://docs.microsoft.com/quantum.

II. RELATED WORK

A handful of quantum programming languages have been proposed in recent years, ranging from imperative to
functional and low-level to high-level [1]. Languages such as Quipper [2], ScaffCC/Scaffold [3, 4], LIQUi|〉[5], QWire
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[6], Quil [7], and ProjectQ [8] enable programming of quantum computations and are intended as circuit definition
languages. Quipper is a strongly-typed, functional quantum programming language embedded in Haskell; Scaf-
fCC/Scaffold is embedded in C/C++, leveraging the LLVM infrastructure; QWire is embedded in the proof system
Coq; LIQUi|〉is embedded in F#; and ProjectQ and Quil are embedded in Python. Each of these examples offers pow-
erful and extensible facilities for quantum circuit description and manipulation, including gate decomposition and
circuit optimization; classical components such as measurements and classically-controlled gates; circuits at multiple
levels of abstraction; exporting of quantum circuits for rendering or resource costing; and all systems are modular
and user-extensible.

The abstractions and core features, however, focus on creating and manipulating quantum circuits. While several
languages, such as Quipper, LIQUi|〉, and ProjectQ, support higher-level functions, they are implemented as circuit
transformations: functions that take an input circuit(s) and produce an output circuit(s). This prevents these DSLs
from modeling, for example, repeat-until-success algorithms and other algorithms with non-trivial branching. This
limitation can be partially mitigated by including some kinds of classical feedback as circuit elements, as is done at
a high-level by LIQUi|〉or ProjectQ and at a low-level by OpenQASM 2.0 [9]. Including classical feedback directly
in circuit representations is impractical for interacting robust classical algorithms with quantum processing, limiting
the utility for adaptive characterization or for hybrid quantum–classical computations.

In contrast, Q# is an algorithm definition language, and as such naturally represents the composition of classical
and quantum algorithms alike. There is no notion of a circuit in Q#, and there are Q# statements, e.g., repeat-until-
success, that cannot be represented as a circuit without introducing new and specialized gates and are rather most
easily treated as hybrid quantum–classical constructs. For instance, Q# makes it easy to express phase estimation
[10–12] and quantum chemistry [13] algorithms, both of which require rich quantum–classical interactions.

Another difference between Q# and the other mentioned DSLs embedded in classical languages such as C++ [14]
or Python [8], Q# uses a type model designed from the ground up, emphasizing classical determinism, first-class
callables, and opacity of qubit types. In contrast to the embedded quantum DSLs, Q# is a bone fide stand-alone
language. This means that functions provided by a large host language are not available; however, it has the key
advantage that limitations of the host language do not apply to Q# itself.

III. QUANTUM COMPUTING

A quantum computer is a machine that stores and processes quantum information [15]. The basic unit of quantum
information is the quantum bit, also called qubit for short. The state of a qubit is a normalized vector in a two-

dimensional Hilbert space: |ψ〉 = α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1. A note on terminology: the
components α, β are called amplitudes and a state of the above form is called a superposition of the basis states |0〉
and |1〉, provided that α 6= 0 6= β. The states corresponding to {0, 1} are often called computational basis states.

Their vector representation is given by |0〉 = [1 0]
T

, and |1〉 = [0 1]
T

, respectively. Alternatively, a qubit can be

viewed as a point on the surface of the so-called Bloch sphere, where |ψ〉 = cos θ
2 |0〉+ eiφ sin θ

2 |1〉, with 0 ≤ θ ≤ π
and 0 ≤ φ < 2π. This geometric representation represents a state by means of spherical coordinates with θ as the
colatitude with respect to the Z-axis and φ as the longitude with respect to the Y axis. One advantage of the Bloch

sphere representation is that each state is represented by a point on the unit sphere in R3 with X, Y, Z axes.
To extract classical information, measurements can be performed. To measure for instance the quantum state |ψ〉 in

the computational basis, either state |0〉 or |1〉 is observed with probability |α|2 or |β|2, respectively. Measurements
can be made along an arbitrary axis of the Bloch sphere, not just in the computational basis (the Z-axis).

More generally, the state vector of n qubits lives in a 2n-dimensional Hilbert space and is represented by a complex

vector |ψ〉 = ∑
2n−1
i=0 αi |i〉 where ∑i |αi|2 = 1 and i is an n-bit integer. As an example, the four-qubit state |0000〉 is

equivalent to the 4-way tensor product: |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 = |0〉⊗4 = [ 1 0 0 ... 0 ]T , which as a state vector consists
of a 1, followed by 15 consecutive 0s. This is often also written as |0, 0, 0, 0〉 or |0〉 |0〉 |0〉 |0〉.

Superpositions can extend over exponentially many states, while the underlying hardware scales only with a linear
number of qubits. This is an essential ingredient of a quantum algorithm, providing an innate massive parallelism
within the quantum computer.

Finally, we note that computation evolves unitarily, such that quantum operations must be reversible, with state
measurement as the exception as it collapses the quantum state to an observed value, erasing knowledge of ampli-
tudes αi. If a quantum algorithm acts on n qubits and if it does not involve intermediate measurements it can be

modeled by a 2n × 2n unitary matrix U that acts on an n-qubit quantum state. Being unitary means that UU† = I,
where † represents the adjoint operation (the complex conjugate transpose). We introduce some special gates next
that are important building blocks in quantum computing and therefore are part of the primitive Q# library. First,
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there is the so-called Hadamard operation H which maps: |0〉 → 1√
2
(|0〉+ |1〉), and |1〉 → 1√

2
(|0〉 − |1〉). Next, there

are the Pauli X operation, which acts like a classical NOT gate in that it maps: |0〉 → |1〉, and |1〉 → |0〉. Next, there
are the Pauli Z gate which maps |1〉 → − |1〉 and the identity gate which is represented by I. Finally, there is the
T operation rotates a qubit around the Z-axis by angle π/8. We also need a two-qubit operation for which the so-
called controlled-NOT operation CNOT is a convenient choice. It maps |x, y〉 → |x, x ⊕ y〉. The corresponding unitary
matrices are as follows:

H =
1√
2

[

1 1
1 -1

]

, X =
[

0 1
1 0

]

, Z =
[

1 0
0 -1

]

, I =
[

1 0
0 1

]

, T =
[

1 0
0 eiπ/4

]

, and CNOT =

[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

.

The unitary matrices for multiple qubit versions of the above can be computed by appropriate tensor products with
the identity operator I =

[

1 0
0 1

]

. There are also operations on more than 2 qubits that are important. Among these
is the so-called Toffoli gate, a controlled-controlled-NOT operator denoted CCNOT that maps |x, y, z〉 → |x, y, xy ⊕ z〉.
Together H, T, and CNOT, commonly called the Clifford + T set, represent a universal set in that they can be used to ex-
press any quantum algorithm, along with measurement, to arbitrary accuracy (see, e.g., Refs. [16–18] and references
therein).

A. Quantum Model of Computation

A natural model for quantum computation is to treat the quantum computer as a coprocessor, similar to GPUs,
FPGAs, and other adjunct processors. The primary control logic runs classical code on a classical “host” computer.
When appropriate and necessary, the host program can invoke a sub-program that runs on the adjunct quantum
processor. When the sub-program completes, the host program gets access to the sub-program’s results.

In this model, there are three levels of computation:

• Classical computation that reads input data, sets up the quantum computation, triggers the quantum compu-
tation, processes the results of the computation, and presents the results to the user.

• Quantum computation that happens directly in the quantum device and implements a quantum algorithm.

• Classical computation that is required by the quantum algorithm during its execution.

There is no intrinsic requirement that these three levels all be written in the same language. Indeed, quantum
computation has somewhat different control structures and resource management needs than classical computation,
so using a custom programming language allows common patterns in quantum algorithms to be expressed more
naturally. At the same time, many quantum algorithms require intermediate classical computations during the
execution of the algorithm, so we have ensured that Q# has the ability to express such classical computations as well.

Alternatively, an embedded language brings with it all of the functionality of the host language. While this has
some clear advantages it also has disadvantages when attempting to automatically perform meta operations, such
as reversing a quantum circuit or conditioning the execution. By developing Q# from the ground up, we ensure it
is designed explicitly for easy expression, compilation, and optimization of quantum algorithms working in concert
with classical computation.

B. Quantum Algorithm Design

Quantum algorithm design is both challenging and rewarding, with many quantum algorithms achieving
speedups over their classical counterparts [19]. At the start of a quantum algorithm, the qubit states are each
initialized to |0〉. A series of quantum operations are applied to evolve the quantum state. Additional qubits, called
ancilla, may be used as ”scratch space”. Clean ancilla are initialized to |0〉 states and must be reset to |0〉 to allow
later reuse. Q# also allows to borrow qubits in an unknown state to serve as ancilla, provided they are returned to
the same unknown state after use.

Common quantum subroutines to achieve speedups include amplitude amplification for increasing the amplitude of
a desired state in a quantum superposition, quantum phase estimation for estimating eigenvalues of a unitary operator,
and the quantum Fourier transform for performing a change of basis analogous to the classical discrete Fourier trans-
form. The efficiency of the quantum Fourier transform (QFT) far surpasses what is possible on a classical machine
making it one of the tools of choice when designing a quantum algorithm. Q# provides extensive built-in libraries
containing implementations of these and other common subroutines, including the approximate quantum Fourier
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transform [20, 21], and a general version of oblivious amplitude amplification [22], making complex algorithm de-
velopment simple and accessible.

Quantum algorithms may also require implementation of a quantum oracle for function evaluation. Reading and
storing classical input data requires time linear in the amount of data and is often done through an oracle. If a quan-
tum algorithm achieves a quadratic computational speedup over its classical counterpart, the speedup may be lost
once the oracle implementation is accounted for due to the required linear input time, thus the oracle implementa-
tion and optimization is especially important. Classically, an oracle is a boolean function mapping an n-dimensional
boolean input to an m-dimensional boolean output. A classical boolean oracle can be converted into a quantum
oracle by increasing the input and output spaces from n and m bits respectively to n + m qubits each, enabling rep-
resentation as a unitary matrix. Example oracles include arithmetic functions, graph functions, and lookup tables.
Q# supports the definition of quantum oracles and provides a type-safe implementation of common oracles in its
standard library. Oracles are modeled in Q# by operations that accept qubit arrays as a part of their input.

To read the algorithm output, the final quantum state is measured. Measurement presents an opportunity to
extract information from the quantum computer. At the same time it presents a challenge since measurement is
probabilistic and returns only n bits of information upon measurement of the 2n states in the n-qubit quantum state;
measurement selects one output state at random among the 2n states. Evolving under a carefully constructed oper-
ation, such as the quantum Fourier transform or amplitude amplification, enables quantum interference to modify
the states’ amplitudes and in turn the probability distribution from which one draws the measurement output since
Born’s rule [23] provides that the absolute value of the amplitude squared maps to probability space.

To achieve dramatic quantum speedups, quantum algorithm designers should: (1) find problems requiring only
a small amount of classical input; (2) seek an exponential speedup over the best-known classical algorithm; (3)
leverage interference or amplitude amplification to sample from a target output distribution; and (4) use an efficient
classical algorithm to post-process data.

IV. A TASTE OF Q#

In Listing 1, we present a snippet of Q# code from one of the published samples that are part of the Q# software de-
velopment kit. This particular snippet defines a top-level operation that applies the Approximate Quantum Fourier
Transform (AQFT) to a quantum register, see also [20, 21] for more background on this operation.

namespace Microsoft.Quantum.Canon {

open Microsoft.Quantum.Primitive;

operation ApproximateQFT ( a: Int , qs: BigEndian) : () {

5 body {

let nQubits = Length(qs);

for (i in 0 .. (nQubits - 1) ) {

for (j in 0..(i-1)) {

10 if ( (i-j) < a ) {

(Controlled R1Frac)( [qs[i]], (1, i - j, qs[j]) );

}

}

H(qs[i]);

15 }

// Apply the bit reversal permutation

// to the quantum register

SwapReverseRegister(qs);

20 }

adjoint auto

controlled auto

controlled adjoint auto

25 }

}

Listing 1. A Q# implementation of the approximate quantum Fourier transform.
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As you can see, Q# is structurally very similar to familiar languages such as C# and Java in its use of semicolons to
end statements, curly brackets to group statements, and double-slash to introduce comments. Q# also uses names-
paces to group definitions together, and allows references to elements from other namespaces.

The basic unit in Q# is an operation, which is essentially a function that can affect the state of the quantum device.
An operation can mix both classical and quantum computation. Line 4 defines a new operation, ApproximateQFT,
that takes a pair of parameters and that has no return value. When compiled, ApproximateQFT can be called from a
classical host in a similar fashion to how a program might call a compiled GPU kernel.

The body element on line 5 specifies the implementation of the operation. Q# operations may also specify imple-
mentations for variants, or derived operations, that are common in quantum computing. For instance lines 22, 23
and 24 indicate the parser this operation has an adjoint (inverse), a controlled and controlled adjoint variants
that the parser should auto-calculate based on the body of the operation.

Operations can invoke other operations, like in lines 14 and 19 where the H and SwapReverseRegister operations
are invoked; or their variants, like in line 11 where the controlled variant of the R1Frac operation is called.

Q# offers classical flow and control constructs like in lines 8 and 9 in which the code iterates through a range
of integers using for, or if–elif–else to control execution like in line 10. The control flow from the classical host
through these control flow constructs and calls to other Q# operations can be examined by the use of a debugger.

The let statements on line 6 create new immutable variable bindings. Q# has a functional flavor: variables are
immutable by default, and the compiler performs type inference for all local variables. Mutability is supported
to help users more familiar with imparative languages, but is always isolated to the scope in which a variable is
defined, as there are no explicit reference types in Q#. Also, operations and functions can be used as return value or
arguments to other operations, for example:

function OperationPow <`T>(oracle:(`T => ()), power : Int) : (`T => ())

{

return OperationPowImpl(oracle , power , _);

}

This example also shows other unusual Q# features: functions, type-parameters and partial application.
Functions are similar to operations, except they can only perform classical computation so they can’t do or call any

operations that will affect the state of a Qubit nor they can have any variants. Thus, a classical host program calling
into Q# will typical begin by calling a Q# operation.

The definition of an operation or a function may specify one or more type parameters, and then use those as the
types of the operation or function input or output parameters, like in line 1 in which OperationPow takes the type
parameter `T.

In Q#, you can create a new operation (or function) from an existing operation by providing a subset of the opera-
tion’s parameters, like in line 3, in which the return value is a partial application of OperationPowImpl. This is similar
to currying in other functional languages, but Q# allows any subset of the parameters to be left unspecified, not just
a final sequence.

V. THE Q# TYPE SYSTEM

Q#’s type system starts with a familiar set of primitives, but provides some unusual ways to put them together to
make new types. In this section we’ll walk through the primitive types and the mechanisms Q# provides for creating
more complex structures.

A. Classical Primitives

Q# provides the standard classical data types Int, Double, Boolean, and String. Int, Double, and Boolean all
support the common operators on these types, such as arithmetic on numerics and logical operations on Booleans.
Q# includes support for bit-wise operations on Ints since they are commonly used in quantum algorithms.
Strings in Q# are used only for logging, and so minimal functionality is provided, reflecting that Q# is intended

to express computation running on an adjunt quantum processor. Rather than providing a full string manipulation
library, Q# allows for debugging information to be passed back to a host program using C#-style string interpolation;
e.g. Message($"{measResult}").

Q# also provides a Range type that represents an arithmetic sequence of integers. For instance, the Range 1..4 is
the sequence 1, 2, 3, 4, and the Range 4..-1..1 is the sequence 4, 3, 2, 1. Ranges are first-class values that can be
passed as parameters and as function or operation return values.
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B. Quantum Primitives

Q# provides three types that are useful in quantum computation: Pauli, Result and Qubit.
Values of the Pauli type specify a single-qubit Pauli operator; the possibilities are PauliI, PauliX, PauliY, and

PauliZ. Pauli values are used primarily to specify the basis for a measurement.
The Result type specifies the result of a quantum measurement. Q# mirrors most quantum hardware by providing

measurements in products of single-qubit Pauli operators; a Result of Zero indicates that the +1 eigenvalue was
measured, and a Result of One indicates that the −1 eigenvalue was measured. That is, Q# represents eigenvalues

by the power to which −1 is raised, using that +1 = (−1)0 and −1 = (−1)1. This convention is more common in
the quantum algorithms community, as it maps more closely to classical bits.

1. Qubits

Q# treats qubits as opaque items that can be passed to both functions and operations, but that can only be inter-
acted with by passing them to primitive (built-in) operations. In particular, there is no type or construct in Q# that
represents the quantum state. Instead, a qubit represents the smallest addressable physical unit in a quantum com-
puter. As such, a qubit is a long-lived item, so Q# has no need for linear types.

Importantly, we do not explicitly refer to the state within Q#, but rather describe how the state is transformed by
the program. Similar to how a graphics shader program accumulates a description of transformations to each vertex,
a quantum program in Q# accumulates transformations to quantum states, represented as entirely opaque reference
to the internal structure of a target machine.

A Q# program has no ability to introspect into the state of a qubit, and thus is entirely agnostic about what a
quantum state is or on how it is realized. Rather, a program can call operations such as Measure to learn information
from a qubit, and operations such as X and H to act on the state of a qubit. Although Q# defines a standard set of such
primitve operations, these operations have no intrinsic definition within the language, and are made concrete only
by the target machine used to run a particular Q# program. A Q# program combines these operations as defined by
a target machine to create new, higher-level operations to express quantum computation. In this way, Q# makes it
very easy to express the logic underlying quantum and hybrid quantum–classical algorithms, while also being very
general with respect to the structure of a target machine and its realization of quantum state. That functions cannot
modify the state of qubits passed as input arguments is then enforced by the restriction that functions can only call
other functions, and cannot call operations.

2. Ancilla management and dirty qubits

In Q#, an algorithm always starts with no qubits and allocates and releases as it goes. In this regard, Q# models
the quantum computer as a qubit heap. Rather than supporting separate allocate and free statements or functions,
Q# has a using statement that allocates an array of qubits, executes a block of statements, and releases the qubits
at the end. The using statement ensures that qubits don’t get allocated and never freed or get released twice, thus
avoiding a large class of bugs common in manual memory management languages without the overhead of qubit
garbage collection.

Some quantum algorithms are capable of using “dirty ancillas;” that is, they require extra qubits temporarily, but
they can ensure that those qubits are returned exactly to their original state by the end of the operation. This means
that, if there are qubits that are in use but not touched during the execution of a sub-algorithm, those qubits can be
borrowed for use as dirty ancillas instead of having to allocate new, clean ancillas. Borrowing instead of allocating
can significantly reduce the overall qubit requirements of an algorithm, and is expressed in Q# by the borrowing

statement.

C. Collections

Q# offers two ways to collect multiple values into one entity: arrays and tuples. Both tuples and arrays support
elements of any Q# type, including primitives, arrays, tuples, and operations.

An array is an ordered sequence of elements that all have the same type, similar to arrays in other languages. As
usual, array elements are accessed by index, and fetching an element by index is a constant-time operation. Q# does
not support multi-dimensional arrays, but it does support arrays of arrays (i.e., jagged arrays).
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Q# arrays have two features that are more common for list types: concatenation and slicing. Array concatenation
forms a new array from two existing arrays by effectively gluing them together. Array slicing forms a new array
from an existing array and a range by using the elements of the range as indices into the array. Among other uses,
array slicing allows easy order inversion of an array by slicing with the range that counts from the last index to zero
by negative one.

A tuple is an ordered collection of elements that can have different types. In Q#, tuples once created may not
be modified. Tuples may have any number of elements, including zero and one, corresponding to the empty and
singleton tuples, respectively.

Tuple elements may not be accessed by index; rather, tuple elements are accessed using a deconstructing let state-
ment. For instance, the statement:

let (a, b, (c, d), e) = (1, One , (1..3 , PauliX), ("hello", [1; 5; 3]));

results in binding a to 1, b to One, c to 1..3, d to PauliX, and e to ("hello", [1; 5; 3]).
In Q#, a tuple value with one element is considered identical to the “unwrapped” element, with the same holding

for types. For instance, the types Int and (Int) are treated as identical by Q#, as are the values 5, (5) and (((5))).
This is known as singleton tuple equivalence, and allows us to simplify many areas of Q#. Since all types in Q# are
resolvable at compile-time (there is no dynamic dispatch or reflection), singleton tuple equivalence can be readily
implemented during compilation. In particular, singleton tuple equivalence allows us to specify that all operations
and functions in Q# both accept and return tuples.

D. Operations and Functions

Q# supports two types of callables: operations and functions. Operations, as we’ve seen above, are routines that
can affect the quantum state. Functions are routines that are guaranteed not to affect the quantum state and that will
always return the same result, given the same inputs. For instance, a function may perform a classical computation
that is required by the quantum algorithm.

All operations and functions take a tuple as input and produce a tuple as output. Those that produce no result
return the empty tuple, (). Because of singleton tuple equivalence, a function or operation that returns a singleton
tuple may be treated as returning a single unwrapped value.

Operations and functions are first-class types in Q#. They can be passed in as parameters to other operations and
functions, and may be returned as the result of an operation or function. Functions and operations may be included
in tuples, and you can have arrays of operations or functions.

1. Variants and Functors

In quantum computing, most operations are unitary, which is to say they have an inverse that is mathematically
equal to their complex conjugate transpose, or adjoint. The adjoint of an operator exactly undoes the quantum state
change performed by the original operation. Many quantum algorithms require both an operation and its adjoint in
order to perform a computation. Similarly, many operations may be controlled on the state of a quantum register.
The controlled variant of an operation takes one or more additional qubits, and either performs the operation on the
remaining inputs if all of the control qubits are in the One state, or does nothing if the control qubits are in any other
combination of states. The controlled variant is more than just wrapping the operation in an if statement, since it
does this coherently: if the control qubits are in a superposition of states, then the result is a superposition of both
applying and not applying the operation.

Q# allows an operation definition to specify whether it has either an adjoint or a controlled variant, or both.
Operations that have an adjoint may specify that they are their own inverse (that is, they are “self-adjoint”), may
provide the implementation of their adjoint, or may request the compiler to generate an adjoint for them. This last
option is not available for all operations, but many operations that appear in common algorithms allow automatic
adjoint generation. Similarly, operations that have a controlled variant may either provide the implementation of
their controlled variant or may request the compiler to generate the variant.

Operations that have both a controlled variant and an adjoint must also specify the result of applying both varia-
tions; that is, they must define their controlled adjoint variant by either providing an implementation or requesting
one to be generated.

The following is an example of of the CCNOT operation in Q# which is self-adjoint and has a controlled variant that
will be auto-generated by the compiler based on the body definition:



8

operation CCNOT (control1 : Qubit , control2 : Qubit , target : Qubit) : ()

{

body

{

5 ( Controlled X)([ control1; control2],target);

}

adjoint self

controlled auto

adjoint controlled auto

10 }

In use, if op is an operation that has an adjoint, (Adjoint op) is the operation that is the adjoint of op, and (

Controlled op) is the controlled version of op. In these constructs, Adjoint and Controlled are functors: factories
that define a new operation from another operation. Functors in Q# have access to the implementation of the base
operation when defining the implementation of the new operation. Thus, functors can perform more complex func-
tions than traditional higher-level functions.

2. Partial Application

As mentioned above, new operations and functions may be created at run-time by supplying some but not all
of the parameters of the operation or function. The missing parameters are designated by an underscore, _. The
resulting value is an operation or function that takes only the missing parameters. If the base operation has an
adjoint or controlled variant, then the result does as well.

Because partial application of an operation does not actually evaluate the operation, it has no impact on the quan-
tum state. This means that building a new operation from existing operations and computed data may be done in a
function; this is useful in many adaptive quantum algorithms and in defining new flow control constructs.

Q# allows very general partial application for operations and functions that take complex tuples as input. For
instance, given an operation Op whose input is the tuple type (Int, (Double, Qubit), Int), Op(1, (1.0, _), _) is
a partial application whose result is an operation that takes a ((Qubit), Int) input. By singleton tuple equivalence,
this is the same as taking a (Qubit, Int) input.

3. Generics

Q# supports type-parameterized operations and functions, which are commonly referred to as generics. The
definition of an operation or function may specify one or more type parameters, and then use those as the types of
the operation or function’s input or output parameters. A type parameter may appear multiple times in the input
and output types of an operation or function.

For example, the Map function from the standard library has two type parameters, `T and `U. It takes as arguments
a function from `T to `U and an array of elements of type `T, and returns the array of elements of type `U generated
by applying the function to each of the elements in the input array in turn.

The type parameters of a generic operation or function are inferred when the operation or function is called. It
is possible to call the same generic operation or function with completely different arguments, even within a single
expression. It is also possible to pass a generic operation or function as a parameter to another operation or function.

When combined with partial application, generic operations and functions work as one would expect: all of the
type parameters that can be inferred from the provided parameters are set in the resulting operation, and any left
free remain free.

The Q# standard library makes heavy use of generics to provide a host of useful abstractions, including functions
like Map and Fold that are familiar from functional languages.

E. User-Defined Types

# allows a new named type to be defined as equal to a type expression. For instance, a user-defined type or UDT
may be defined based on a tuple type or an operation signature.
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In some respects, UDTs act as aliases for their base types, but have a bit more meaning than a simple alias. A UDT
is treated as a strict subtype of its base type, so that a value of a UDT type can be used where a value of the base
type is expected, but not vice versa. If two UDTs share the same base type, a value of one UDT type may not be used
where a value of the other UDT type is expected.

The standard Q# library uses UDTs to specialize various base types. For instance, the library includes quan-
tum arithmetic operations for both big-endian and little-endian integers. It defines two UDTs, BigEndian and
LittleEndian, both of which are based on Qubit[]. This allows operations to specify whether they are written for
big-endian or little-endian representations, and leverages the type system to ensure at compile-time that mismatched
operands aren’t allowed.

VI. Q# STATEMENTS

Most Q# statements are familiar from languages such as C# and Java. Some statements, such as the let and mutable

binding statements, are more similar to F# and other functional languages, while others such as repeat–until and
borrowing are unique to Q#.

A. Binding and Assignment

Q# has three statements that deal with variables:

• let is used to create an immutable binding.

• mutable is used to create a mutable binding.

• set is used to change the value of a mutable binding.

In all cases, variables types are inferred from the type of the right-hand side of the binding. It is illegal to change
the type of a variable in a set statement.

For array variables, both the array itself and the item contents are either immutable or mutable, depending on
whether the variable was bound with let or mutable. That is, to create an array whose elements will be updated
later, the array must be mutably bound.

Function and operation arguments are always immutably bound; there are no “out” arguments in Q#. In par-
ticular, since the states of Qubit values are not defined or observable from within Q#, this does not preclude the
accumulation of quantum side effects through calls to primitive operations.

B. Flow Control

Q# has a very standard if–elif–else statement. The if clause, and any elif clauses, take a Boolean test value;
the body of the first clause whose test value is true is executed. If no test value is true, then the body of the else

clause is executed, if there is one.
The for statement in Q# allows iteration through a Range value, with an integer loop variable.
A construct that is special for quantum computation is the repeat–until–fixup loop. This loop executes the repeat

body and then evaluates the until test value. If the test is true, then the statement is complete. Otherwise, the fixup

body is executed, and the loop starts over. This statement supports the “repeat-until-success” pattern in quantum
computing.

The return statement exits from the current operation or function with a specified return value, and can be used
anywhere other than in a scope which allocates qubits (that is, not from within a using or borrowing block). An
operation or function that has no result value by convention returns the empty tuple, ().

C. Qubit Management

As mentioned above in the Qubit section, Q# provides the using and borrowing statements for qubit management.
Both of these statements gather an array of qubits and bind it to a variable specified in the statement, and then
execute a block of statements. At the end of the block, the qubits are given back.
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For the using statement, the qubits are allocated from the quantum computer’s free qubit heap, and then returned
to the heap. For the borrowing statement, the qubits are allocated from in-use qubits that are guaranteed not to
be used during the body of the statement, and left in their original state at the end. If there aren’t enough qubits
available to borrow, then qubits will be allocated from and returned to the heap.

VII. DEBUGGING AND TESTING Q# PROGRAMS

Debugging quantum programs is challenging due to the nature of quantum computation, probabilistic measure-
ments on quantum hardware, and the exponential size of the quantum state space. In contrast to other quantum
programming languages, Q# provides robust functionality to enable detailed debugging of quantum programs.

Since Q# functions are deterministic, a function whose output type is the empty tuple () cannot ever be observed
from within a Q# program. That is, a target machine can choose not to execute any function which returns ()}with
the guarantee that this omission will not modify the behavior of any following Q# code. This consequence makes
functions a useful tool for embedding debugging and testing logic.

In particular, functions of this form can be used to represent diagnostic side effects. Consider a simple example:

function AssertPositive(value : Double) : () {

if (value <= 0) {

fail " Expected␣a␣positive␣number.";

}

5 }

The keyword fail indicates the computation should halt, raising an exception in the target machine running the
Q# program. By definition, a failure of this kind cannot be observed from within Q#, as no further Q# code is run
after a fail statement is reached. Thus, if we proceed past a call to AssertPositive, we can be assured by the
anthropic principle that its input was positive, even though we did not directly observe this fact.

Similarly, the primitive function Message has type String -> (), and allows emitting diagnostic messages. That
a target machine observes the contents of the input to Message has no consequences observable from within Q#. A
target machine may thus elide calls to Message by the same logic.

Building on these ideas, Q# offers two especially useful assertions, both modeled as functions onto ()}:Assert

and AssertProb. Assert asserts that measuring the given quantum register in the given Pauli basis will always
produce the given result. AssertProb asserts that such a measurement will produce the given result with the given
probability. On target machines which work by simulation we are not bound by the no-cloning theorem, which
states that an arbitrary quantum state cannot be copied, and can perform such measurements without disturbing
the register passed to such assertions. A simulator can then, similar to the AssertPositive function above, abort
computation if the hypothetical outcome would not be observed in practice:

using (register = Qubit[1]) {

H(register [0]);

Assert([ PauliX], register , Zero);

// PauliX measures in (|+>, |->) basis

5 // We know state is |+> w/o accessing it.

}

On actual hardware, where we are constrained by physics, we of course cannot perform such assertions without
measurements and thus (potentially) disturbing the state. There the Assert and AssertProb functions simply return
() with no other effect.

VIII. CONCLUSIONS

We present Q#, a scalable, high-level, domain-specific language for quantum programming. Unlike previous
quantum programming languages, Q# is a stand-alone language offering a high level of abstraction, informative
error reporting, a strongly-typed design that offers guarantees on type safety, and an extensive list of quantum
libraries, including modular arithmetic, Shor’s algorithm for factoring and elliptic curve dlogs, and Hamiltonian
simulation. It also exhibits innovative language features such as general partial application and the ability to treat
unresolved generics as first class.
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Q# empowers developers with distinct capabilities in quantum computing, including quantum control-flow con-
structs such as repeat–until, extensive standard libraries with common quantum functions and subroutines, sup-
port of functors such as adding control to a circuit and computing the adjoint of a circuit, guarantees on type safety,
rich compilation and error reporting, and state-of-the-art target machines for simulation and resource estimation.
Further, Q#’s memory management enables both clean and dirty ancilla usage for resource optimization in quantum
algorithms.

Future extensions include new Q# target machines: a Toffoli simulator (e.g., to debug and test arithmetic circuits)
and a Clifford operation simulator (e.g., for use in error correction), additional high-level algorithmic subroutines
in the Q# standard libraries, and enhanced debugging of quantum programs through quantum state visualization
methods and more comprehensive code profiling.
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