Microsoft Research

Each year Microsoft Research hosts hundreds of influential speakers from around the world including leading scientists, renowned experts in technology, book authors, and leading academics, and makes videos of these lectures freely available. 2016 © Microsoft Corporation. All rights reserved.
Dashboard Mechanisms for Online Markets

Jason Hartline – Northwestern University
(w. Aleck Johnsen, Denis Nekipelov, Zihe Wang, Onno Zoeter)

March 28, 2018
A Grand Challenge: understand and guide computation in the wild

- computational primitive: local/individual/strategic optimization.
- objective: good global outcomes
- a key application area: “online markets”
 - uber, airbnb, twitter, wikipedia, tinder, mechanical turk, ...

Observation: most environments do not allow “truthful mechanisms”; need theory for non-truthful mechanism design.
Assumptions for Online Markets

Basic Assumptions: cf. online advertising.

- longlived agents with persistent values: \(v = (v_1, \ldots, v_n) \).
- good algorithm \(x(v) = (x_1(v), \ldots, x_n(v)) \) exists for selecting allocation from agent values; \(x \) is monotone.
- environment is stochastic (\(x(\cdot) \) is continuous and differentiable.)
- required standard non-truthful payment rule, e.g., winner-pays-bid.

Basic Question: is there a winner-pays-bid mechanism \(\hat{x} \) that implements algorithm \(x \) in equilibrium* for all \(v \).
(for what \(x \) does such a mechanism exist?)
Context and Results

Context: “price of anarchy” for winner-pays-bid auctions:

- substitutes: constant [e.g. Lucier, Borodin ’10; Syrgkanis, Tardos ’13]
- complements: linear [e.g. Lucier, Borodin ’10; Dütting, Kesselheim ’15]

Results:

1. general frameworks for winner-pays-bid mechanisms, c.f., VCG.

2. Nash implementation:
 - multi-unit: can implement $x \in$ proportional weights.
 - substitutes: open question
 - complements: cannot implement proportional weights.

3. persuadable agents: can implement any monotone continuous x.
Basic Question: is there a winner-pays-bid mechanism \tilde{x} that implements algorithm x in Nash equilibrium for all v. (for what x does such a mechanism exist)

Definitions:

- agents have values: $v = (v_1, \ldots, v_n)$
- winner-pays-bid mechanism \tilde{x} on bids $b = (b_1, \ldots, b_n)$.
 - allocation to i: $\tilde{x}_i(b)$
 - payment from i: $b_i \tilde{x}_i(b)$
 - utility of i: $(v_i - b_i) \tilde{x}_i(b)$
- bid function: β gives Nash equilibrium for all v:
 $$\beta_i(v_i) \in \arg\max_b (v_i - b) \tilde{x}_i(b, \beta_{-i}(v_{-i}))$$
- \tilde{x} implements x if $x(v) = \tilde{x}(\beta(v))$.

Example Algorithm: proportional weights: map values to weights, selects winner w.p. proportional to weight; e.g., exponential weights.
Main Idea

Main Idea: combine inference with implementation.

Example: two-agent proportional-bid mechanism

- allocation rule: $\tilde{x}_1(b) = b_1 / (b_1 + b_2)$.
- For equilibrium bids b, agent’s first-order condition identifies value:
 - Agent 1 with value: v_1 chooses $b_1 = \arg\max_b (v_1 - b) \tilde{x}_1(b, b_2)$
 - equilibrium bid satisfies first-order condition: $v_1 = b_1 + \tilde{x}_1(b_1) / \tilde{x}_1'(b_1) = 2b_1 + b_1^2 / b_2$.
 - E.g., for $b_1 = 1, b_2 = 2$ obtain: $v_1 = 5/2$.

Consequence: in hindsight mechanism know agents’ values exactly!

Goal: use this idea to implement any algorithmic outcome x.
Thm: [Myerson '81] a mechanism \(\tilde{x} \) and bid function \(\beta \) is in BNE iff
\[
x(v) = \tilde{x}(\beta(v))
\]
satisfies:

1. **monotonicity (M):** \(x_i(v) \) is monotone in \(v_i \).
2. **payment identity (PI):**
 \[
 p_i(v) = v_i x_i(v) - \int_0^{v_i} x_i(z, v_{-i}) \, dz + p_i(0, v_{-i})
 \]
 and usually \(p_i(0, v_{-i}) = 0 \).
Main Idea: combine inference with implementation.

Example: two-agent proportional-bid mechanism

- allocation rule: $\tilde{x}_1(b) = b_1/(b_1 + b_2)$.

- For equilibrium bids b, agent’s first-order condition identifies value:
 - Agent 1 with value: v_1 chooses
 $b_1 = \arg\max_b(v_1 - b) \tilde{x}_1(b, b_2)$
 - equilibrium bid satisfies first-order condition:
 $v_1 = b_1 + \tilde{x}_1(b_1)/\tilde{x}'_1(b_1) = 2b_1 + b_1^2/b_2$.
 - E.g., for $b_1 = 1$, $b_2 = 2$ obtain:
 $v_1 = 5/2$.

Consequence: in hindsight mechanism know agents’ values exactly!

Goal: use this idea to implement any algorithmic outcome x.
Thm: [Myerson ’81] a mechanism \tilde{x} and bid function β is in BNE iff $x(v) = \tilde{x}(\beta(v))$ satisfies:

1. monotonicity (M): $x_i(v)$ is monotone in v_i.
2. payment identity (PI): $p_i(v) = v_i x_i(v) - \int_0^{v_i} x_i(z, v_{-i}) \, dz + p_i(0, v_{-i})$.
 and usually $p_i(0, v_{-i}) = 0$.
Thm: [Myerson '81] a mechanism \tilde{x} and bid function β is in BNE iff $x(v) = \tilde{x}(\beta(v))$ satisfies:

1. monotonicity (M): $x_i(v)$ is monotone in v_i.
2. payment identity (PI): $p_i(v) = v_i x_i(v) - \int_{0}^{v_i} x_i(z, v_{-i}) \, dz + p_i(0, v_{-i})$.

and usually $p_i(0, v_{-i}) = 0$.

\[x_i(v_i) \]

\[0 \]
Thm: [Myerson '81] a mechanism \tilde{x} and bid function β is in BNE iff $x(v) = \tilde{x}(\beta(v))$ satisfies:

1. monotonicity (M): $x_i(v)$ is monotone in v_i.
2. payment identity (PI): $p_i(v) = v_i x_i(v) - \int_0^{v_i} x_i(z, v_{-i}) \, dz + p_i(0, v_{-i})$.

and usually $p_i(0, v_{-i}) = 0$.

Consequence: two equations for payments: (a) payment-identity and (b) winner-pays bid $p_i(v) = \beta_i(v) x_i(v)$. Solve for $\beta_i(v) = p_i(v) / x_i(v)$.
Nash implementation

Basic Idea: \(\tilde{x}(b) = x(\beta^{-1}(b)) \)

Issues:
1. bid function \(\beta : \mathbb{R}^n \rightarrow \mathbb{R}^n \) may not be one-to-one.
2. image of \(\beta \) may not be product space. [see paper]

Prop: \(\exists \) winner-pays-bid \(\tilde{x} \) for \(x \iff \beta \) for \(x \) is one-to-one.
Thm: [Myerson '81] a mechanism \(\tilde{x} \) and bid function \(\beta \) is in BNE iff

\[x(v) = \tilde{x}(\beta(v)) \]

satisfies:

1. **monotonicity (M):** \(x_i(v) \) is monotone in \(v_i \).
2. **payment identity (PI):** \(p_i(v) = v_i x_i(v) - \int_{0}^{v_i} x_i(z, v_{-i}) \, dz + p_i(0, v_{-i}) \)
 and usually \(p_i(0, v_{-i}) = 0 \).

Consequence: two equations for payments: (a) payment-identity and (b) winner-pays bid
\[p_i(v) = \beta_i(v) x_i(v) \]. Solve for \(\beta_i(v) = p_i(v)/x_i(v) \).
Nash implementation

Basic Idea: $\tilde{x}(b) = x(\beta^{-1}(b))$

Issues:
1. bid function $\beta : \mathbb{R}^n \to \mathbb{R}^n$ may not be one-to-one.
2. image of β may not be product space. [see paper]

Prop: \exists winner-pays-bid \tilde{x} for $x \leftrightarrow \beta$ for x is one-to-one.

Thm: β is one-to-one if Jacobian of β is positive definite. [Gale, Nikaido ’65]

Thm: If x is proportional weights for multi-unit environment then
(a) Jacobian of β is positive definite and
(b) can compute $\beta^{-1}(b)$ in polynomial time.

Thm: If x is proportional weights for environment w. complements then β is not one-to-one.
Challenges for Nash Implementation:

- agents need to find the Nash equilibrium.
- cannot Nash implement general algorithms x.

Solution: publish a bidding dashboard, cf. Google, Booking.com, etc.

Definition: persuadable agents will follow dashboard if following dashboard converges to best response.

Definition: a dashboard mechanism is (\tilde{y}, \tilde{x}) with:

1. dashboard \tilde{y}: estimated bid-allocation rule $\tilde{y}_i : \mathbb{R} \rightarrow [0, 1]$ for i.
2. mechanism \tilde{x}: bid-allocation rule $\tilde{x} : \mathbb{R}^n \rightarrow [0, 1]^n$.
Historical-Values Dashboard

Definition: the *historical-values dashboard mechanism* is:

1. publish bidding dashboard with bid-allocation rule for historical estimated values.
2. solicit bids: b
3. estimate values from bids assuming best response to dashboard: \tilde{v}
4. output outcome of algorithm on estimated values: $x(\tilde{v})$
5. charge winners their bids.

Theorem: For monotone, continuous x, following dashboard converges to best response in two rounds.

Corollary: Any monotone, continuous x can be implemented for persuadable agents by a dashboard mechanism.
Connections to Literature

Implementation Theory: [survey: Jackson '01]
- characterize α where exist mechanism with unique equilibrium
- any monotone α is implementable in Nash equilibrium.
- sequential mechanisms, cross reporting, not practical.
- **our suggestion:** need to restrict to simple, practical mechanisms.

Information Design: [Kamenica, Gentzkow '11; Dughmi, Xu '16]
- agent with prior to make decision.
- informed principal signals agent.
- agent updates prior
- agent acts on posterior
- **our suggestion:** relax assumptions \Rightarrow allows principal to learn
Context and Results

Context: “price of anarchy” for winner-pays-bid auctions:

- substitutes: constant [e.g. Lucier, Borodin ’10; Syrgkanis, Tardos ’13]
- complements: linear [e.g. Lucier, Borodin ’10; Dütting, Kesselheim ’15]

Results:

1. general frameworks for winner-pays-bid mechanisms, c.f., VCG.

2. Nash implementation:
 - multi-unit: can implement $x \in$ proportional weights.
 - substitutes: open question
 - complements: cannot implement proportional weights.

3. persuadable agents: can implement any monotone continuous x.
Connections to Literature

Implementation Theory: [survey: Jackson '01]
- characterize \(x \) where exist mechanism with unique equilibrium
- any monotone \(x \) is implementable in Nash equilibrium.
- sequential mechanisms, cross reporting, not practical.
- **our suggestion:** need to restrict to simple, practical mechanisms.

Information Design: [Kamenica, Gentzkow '11; Dughmi, Xu '16]
- agent with prior to make decision.
- informed principal signals agent.
- agent updates prior
- agent acts on posterior
- **our suggestion:** relax assumptions \(\Rightarrow \) allows principal to learn
Context and Results

Context: “price of anarchy” for winner-pays-bid auctions:
- substitutes: constant [e.g. Lucier, Borodin ’10; Syrgkanis, Tardos ’13]
- complements: linear [e.g. Lucier, Borodin ’10; Dütting, Kesselheim ’15]

Results:
1. general frameworks for winner-pays-bid mechanisms, c.f., VCG.
2. Nash implementation:
 - multi-unit: can implement $x \in$ proportional weights.
 - substitutes: open question
 - complements: cannot implement proportional weights.
3. persuadable agents: can implement any monotone continuous x.