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ABSTRACT

Over the last decade, there has been a tremendous growth in data-
intensive applications and services in the cloud. Data is created on
a variety of edge sources, e.g., devices, browsers, and servers, and
processed by cloud applications to gain insights or take decisions.
Applications and services either work on collected data, or monitor
and process data in real time. These applications are typically update
intensive and involve a large amount of state beyond what can fit in
main memory. However, they display significant temporal locality
in their access pattern. This paper presents FASTER, a new key-
value store for point read, blind update, and read-modify-write
operations. FASTER combines a highly cache-optimized concurrent
hash index with a hybrid log: a concurrent log-structured record
store that spans main memory and storage, while supporting fast
in-place updates of the hot set in memory. Experiments show that
FASTER achieves orders-of-magnitude better throughput - up to
160M operations per second on a single machine - than alternative
systems deployed widely today, and exceeds the performance of
pure in-memory data structures when the workload fits in memory.
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1 INTRODUCTION

There has recently been a tremendous growth in data-intensive
applications and services in the cloud. Data created on a variety
of edge sources such as Internet-of-Things devices, browsers, and
servers is processed by applications in the cloud to gain insights.
Applications, platforms, and services may work offline on collected
data (e.g., in Hadoop [13] or Spark [42]), monitor and process data in
real time as it arrives (e.g., in streaming dataflows [12, 42] and actor-
based application frameworks [2]), or accept a mix of record inserts,
updates, and reads (e.g., in object stores [30] and web caches [36]).
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1.1 Challenges and Existing Solutions

State management is an important problem for all these applications

and services. It exhibits several unique characteristics:

e Large State: The amount of state accessed by some applications
can be very large, far exceeding the capacity of main memory. For
example, a targeted search ads provider may maintain per-user,
per-ad and clickthrough-rate statistics for billions of users. Also,
it is often cheaper to retain state that is infrequently accessed on
secondary storage [18], even when it fits in memory.

Update Intensity: While reads and inserts are common, there
are applications with significant update traffic. For example, a
monitoring application receiving millions of CPU readings every
second from sensors and devices may need to update a per-device
aggregate for each reading.

Locality: Even though billions of state objects maybe alive at
any given point, only a small fraction is typically “hot” and ac-
cessed or updated frequently with a strong temporal locality. For
instance, a search engine that tracks per-user statistics (averaged
over one week) may have a billion users “alive” in the system,
but only have a million users actively surfing at a given instant.
Further, the hot set may drift over time; in our example, as users
start and stop browsing sessions.

Point Operations: Given that state consists of a large number
of independent objects that are inserted, updated, and queried, a
system tuned for (hash-based) point operations is often sufficient.
If range queries are infrequent, they can be served with simple
workarounds such as indexing histograms of key ranges.

o Analytics Readiness: Updates to state should be readily avail-
able for subsequent offline analytics; for e.g., to compute average
ad clickthrough-rate drift over time.

A simple solution adopted by many systems is to partition the
state across multiple machines, and use pure in-memory data struc-
tures such as the Intel TBB Hash Map [5], that are optimized for
concurrency and support in-place updates — where data is modi-
fied at its current memory location without creating a new copy
elsewhere — to achieve high performance. However, the overall so-
lution is expensive and often severely under-utilizes the resources
on each machine. For example, the ad serving platform of a search
engine may partition its state across the main memory of hun-
dreds of machines, resulting in a low per-machine request rate and
poorly utilized compute resources. Further, pure in-memory data
structures make recovery from failures complicated.

Key-value stores are a popular alternative for state management.
A key-value store is designed to handle larger-than-memory [28]
data, and supports failure recovery by storing data on secondary
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storage. Many such key-value stores [25, 34, 40] have been proposed
in the past. However, these systems are usually optimized for blind
updates, reads, and range scans, rather than point operations and
read-modify-writes (e.g., for updating aggregates). Hence, these sys-
tems do not scale to more than a few million updates per second [8],
even when the hot-set fits entirely in main memory. Caching sys-
tems such as Redis [36] and Memcached [30] are optimized for point
operations, but are slow and depend on an external system such as
a database or key-value store for storage and/or failure recovery.
The combination of concurrency, in-place updates (in memory),
and ability to handle data larger than memory is important in our
target applications; but these features are not simultaneously met
by existing systems. We discuss related work in detail in Sec. 8.

1.2 Introducing FASTER

This paper describes a new concurrent key-value store called FASTER,
designed to serve applications that involve update-intensive state
management. The FASTER interface (Sec. 2.2 and Appendix E) sup-
ports, in addition to reads, two types of state updates seen in prac-
tice: blind updates, where an old value is replaced by a new value
blindly; and read-modify-writes (RMWs), where the value is atomi-
cally updated based on the current value and an input (optional).
RMW updates, in particular, enable us to support partial updates
(e.g., updating a single field in the value) as well as mergeable aggre-
gates [39] (e.g., sum, count). Being a point-operations store, FASTER
achieves an in-memory throughput of 100s of million operations
per second. Retaining such high performance while supporting data
larger than memory required a careful design and architecture. We
make the following contributions:

o (Sec. 2) Towards a scalable threading model, we augment stan-
dard epoch-based synchronization into a generic framework that
facilitates lazy propagation of global changes to all threads via
trigger actions. This framework provides FASTER threads with
unrestricted access to memory under the safety of epoch protec-
tion. Throughout the paper, we highlight instances where this
generalization helped simplify our scalable concurrent design.

o (Sec. 3 and 4) We present the design of a concurrent latch-free
resizable cache-friendly hash index for FAsTER. When coupled
with a standard in-memory record allocator, it serves as an in-
memory key-value store, which we found to be more performant
and scalable than popular pure in-memory data structures.

(Sec. 5 and 6) Log-structuring [24, 38] is a well-known technique
for handling data larger than memory and supporting easy fail-
ure recovery. It is based on the read-copy-update strategy, in
which updates to a record are made on a new copy on the log.
We find that such a design could limit throughput and scalability
in FASTER. As noted earlier, in-place updates are critical for per-
formance. In this respect, we propose HybridLog: a new hybrid
log that seamlessly combines in-place updates with a traditional
append-only log. The HybridLog organization allows FASTER to
perform in-place updates of “hot” records and use read-copy-
updates for colder records. Further, it acts as an efficient cache by
shaping what resides in memory without any per-record or per-
page statistics. Doing so concurrently required us to solve novel
technical challenges. Sec. 6.5 sketches the consistency guarantees
of FAsTER in the presence of failures.
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Figure 1: Overall FASTER architecture.

o (Sec. 7) We perform a detailed evaluation using the YCSB [4]
benchmark, evaluate the “up to orders-of-magnitude” better per-
formance and near-linear scalability of FASTER with HybridLog.
Further, we use simulations to better understand the natural
caching behavior of HybridlLog in comparison to more expen-
sive, state-of-the-art caching techniques.

FasTeR follows the design philosophy of making the common case
fast. By carefully (1) providing fast point-access to records using a
cache-efficient concurrent latch-free hash index; (2) choosing when
and how, expensive or uncommon activities (such as index resizing,
checkpointing, and evicting data from memory) are performed; and
(3) allowing threads to perform in-place updates most of the time,
FASTER exceeds the throughput of pure in-memory systems for
in-memory workloads, while supporting data larger than memory
and adapting to a changing hot set.

Implemented as a high-level-language component using dynamic
code generation, FASTER blurs the line between traditional key-
value stores and update-only “state stores” used in streaming sys-
tems (e.g., Spark State Store [14] and Flink [12]). Further, HybridLog
is record-oriented and approximately time-ordered, and can be fed
into scan-based log analytics systems (cf. Appendix F).

The main result shown in this paper with the help of FASTER
and HybridLog is that it is possible to have it all: high update rates,
low cost by limiting the memory footprint, support for larger-than-
memory data, and performance that exceeds pure in-memory data
structures when the working-set fits in memory.

2 SYSTEM OVERVIEW

FASTER is a concurrent latch-free key-value store that is designed
for high performance and scalability across threads. We use latch-
free atomic operations such as compare-and-swap, fetch-and-add,
and fetch-and-increment (cf. Appendix A) extensively in our design,
and heavily leverage an extended epoch-based synchronization
framework (Sec. 2.3) to help us support in-place updates.

2.1 FASTER Architecture

Fig. 1 shows the overall architecture of FASTER. It consists of a
hash index that holds pointers to key-value records and a record
allocator that allocates and manages individual records. The index
(Sec. 3) provides very efficient hash-based access to hash buckets.
The hash bucket is a cache-line sized array of hash bucket entries.
Each entry includes some metadata and an address (either logical
or physical) provided by a record allocator. The record allocator



stores and manages individual records. Hash collisions that are
not resolved at the index level are handled by organizing records
as a linked-list. Each record consists of a record header, key, and
value. Keys and values may be fixed or variable-sized. The header
contains some metadata and a pointer to the previous record in the
linked-list. Note that keys are not part of the FASTER hash index,
unlike many traditional designs, which provides two benefits:

o It reduces the in-memory footprint of the hash index, allowing
us to retain it entirely in memory.

o It separates user data and index metadata, which allows us to
mix and match the hash index with different record allocators.
We describe three allocators in this paper (the table in Fig. 1

summarizes their capabilities): an in-memory allocator (Sec. 4) that
enables latch-free access and in-place updates to records; an append-
only log-structured allocator (Sec. 5) that provides latch-free access
and can handle data larger than main-memory, but without in-
place updates; and finally a novel hybrid-log allocator (Sec. 6) that
combines latch-free concurrent access with in-place updates and
the ability to handle larger-than-memory data.

2.2 User Interface

FASTER supports reads, advanced user-defined updates, and deletes.
We use dynamic code generation to integrate the update logic pro-
vided as user-defined delegates during compile time into the store,
resulting in a highly efficient store with native support for advanced
updates. We cover code generation in Appendix E. The generated

FASTER runtime interface consists of the following operations:

e Read: Read the value corresponding to a key.

e Upsert: Replace the value corresponding to a key with a new
value blindly (i.e. regardless of the existing value). Insert as new,
if the key does not exist.

o RMW: Update the value of a key based on the existing value and
an input (optional) using the update logic provided by the user
during compile-time. We call this a Read-Modify-Write (RMW)
operation. The user also provides an initial value for the update,
which is used when a key does not exist in the store. Additionally,
users can indicate that an RMW operation is mergeable, also called
a CRDT [39] (for conflict-free replicated datatype) during compile
time. Such a data type can be computed as partial values that
can later be merged to obtain the final value. For example, a
summation-based update can be computed as partial sums and
these can be summed up for the final value.

e Delete: Delete a key from the store.

Further, some operations may go pending in FASTER due to several

reasons covered in this paper. FASTER returns a PENDING status in

such cases; threads issue a CompletePending request periodically
to process outstanding pending operations related to that thread.

2.3 Epoch Protection Framework

FASTER is based on a key design principle aimed at scalability: avoid
expensive coordination between threads in the common fast access
path. FASTER threads perform operations independently with no
synchronization most of the time. At the same time, they need to
agree on a common mechanism to synchronize on shared system
state. To achieve these goals, we extend the idea of multi-threaded

epoch protection [23] into a framework enabling lazy synchroniza-
tion over arbitrary global actions. While systems like Silo [41],
Masstree [29] and Bw-Tree [25] have used epochs for specific pur-
poses, we extend it to a generic framework that can serve as a
building block for FASTER and other parallel systems. We describe
epoch protection next, and depict its use as a framework in Sec. 2.4.

Epoch Basics. The system maintains a shared atomic counter E,
called the current epoch, that can be incremented by any thread.
Every thread T has a thread-local version of E, denoted by Er.
Threads refresh their local epoch values periodically. All thread-
local epoch values ET are stored in a shared epoch table, with one
cache-line per thread. An epoch c is said to be safe, if all threads
have a strictly higher thread-local value thanc,ie,V T : ET > c.
Note that if epoch c is safe, all epochs less than c are safe as well. We
additionally maintain a global counter Eg, which tracks the current
maximal safe epoch. Es is computed by scanning all entries in the
epoch table and is updated whenever a thread refreshes its epoch.
The system maintains the following invariant: V T : Eg < ET <E.

Trigger Actions. We augment the basic epoch framework with the
ability to execute arbitrary global actions when an epoch becomes
safe using trigger actions. When incrementing the current epoch, say
from c to ¢ + 1, threads can additionally associate an action that will
be triggered by the system at a future instant of time when epoch ¢
is safe. This is enabled using the drain-list, a list of (epoch, action)
pairs, where action is the callback code fragment that must be
invoked after epoch is safe. It is implemented using a small array
that is scanned for actions ready to be triggered whenever Eg is
updated. We use atomic compare-and-swap on the array to ensure
an action is executed exactly once. We recompute Eg and scan
through the drain-list only when there is a change in current epoch,
to enhance scalability.

2.4 Using the Epoch Framework

We expose the epoch protection framework using the following
four operations that can be invoked by any thread T:
e Acquire: Reserve an entry for T and set ET to E
e Refresh: Update ET to E, Eg to current maximal safe epoch and
trigger any ready actions in the drain-list
e BumpEpoch(Action): Increment counter E from current value ¢
to (¢ + 1) and add (c,Action) to drain-list
o Release: Remove entry for T from epoch table
Epochs with trigger actions can be used to simplify lazy synchro-
nization in parallel systems. Consider a canonical example, where
a function active-now must be invoked when a shared variable
status is updated to active. A thread updates status to active
atomically and bumps the epoch with active-now as the trigger
action. Not all threads will observe this change in status imme-
diately. However, all of them are guaranteed to have observed it
when they refresh their epochs (due to sequential memory consis-
tency using memory fences). Thus, active-now will be invoked
only after all threads see the status to be active and hence is safe.
We use the epoch framework in FASTER to coordinate system
operations such as memory-safe garbage collection (Sec. 4), index
resizing (Appendix B), circular buffer maintenance and page flush-
ing (Sec. 5), shared log page boundary maintenance (Sec. 6.2), and
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Figure 2: Detailed FASTER index and record format.

checkpointing (Sec. 6.5), while at the same time providing FASTER
threads unrestricted latch-free access to shared memory locations
in short bursts for user operations such as reads and updates.

2.5 Lifecycle of a FASTER Thread

As our running example in the paper, we use FASTER to implement
a count store, in which a set of FASTER user threads increment
the counter associated with incoming key requests. A thread calls
Acquire to register itself with the epoch mechanism. Next, it issues
a sequence of user operations, along with periodic invocations of
Refresh (e.g., every 256 operations) to move the thread to current
epoch, and CompletePending (e.g., every 64K operations) to handle
any prior pending operations. Finally, the thread calls Release to
deregister itself from using FASTER.

3 THE FASTER HASH INDEX

A key building block of FASTER is the hash index, a concurrent,
latch-free, scalable, and resizable hash-based index. As described in
Sec. 2, the index works with a record allocator that returns logical
or physical memory pointers. For ease of exposition, we assume a
64-bit machine with 64-byte cache lines. On larger architectures, we
expect to have larger atomic operations [19], allowing our design
to scale. In Sec. 4, 5, and 6, we will pair this index with different
allocators to create key-value stores with increasing capabilities.

3.1 Index Organization

The FAsTER index is a cache-aligned array of 2k hash buckets, where
each bucket has the size and alignment of a cache line (Fig. 2). Thus,
a 64-byte bucket consists of seven 8-byte hash bucket entries and one
8-byte entry to serve as an overflow bucket pointer. Each overflow
bucket has the size and alignment of a cache line as well, and is
allocated on demand using an in-memory allocator.

The choice of 8-byte entries is critical, as it allows us to operate
latch-free on the entries using 64-bit atomic compare-and-swap
operations. On a 64-bit machine, physical addresses typically take
up fewer than 64 bits; e.g., Intel machines use 48-bit pointers. Thus,
we can steal the additional bits for index operations (at least one
bit is required for FASTER). We use 48-bit pointers in the rest of the
paper, but note that we can support pointers up to 63 bits long.

Each hash bucket entry (Fig. 2) consists of three parts: a tag (15
bits), a tentative bit, and the address (48 bits). An entry with value
0 (zero) indicates an empty slot. In an index with 2k hash buckets,
the tag is used to increase the effective hashing resolution of the
index from k bits to k + 15 bits, which improves performance by
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reducing hash collisions. The hash bucket for a key with hash value
h is first identified using the first k bits of h, called the offset of
h. The next 15 bits of h are called the tag of h. Tags only serve to
increase the hashing resolution and may be smaller, or removed
entirely, depending on the size of the address. The tentative bit is
necessary for insert, and will be covered shortly.

3.2 Index Operations

The FAsTER index is based on the invariant that each (offset, tag)
has a unique index entry, which points to the set of records whose
keys hash to the same offset and tag. Ensuring this invariant while
supporting concurrent latch-free reads, inserts and deletes of index
entries is challenging.

Finding and Deleting an Entry. Locating the entry corresponding
to a key is straightforward: we identify the hash-bucket using k
hash bits, scan through the bucket to find an entry that matches the
tag. Deleting an entry from the index is also easy: we use compare-
and-swap to replace the matching entry (if any) with zero.

Inserting an Entry. Consider the case where a tag does not exist
in the bucket, and a new entry has to be inserted. A naive approach
is to look for an empty entry and insert the tag using a compare-and-
swap. However, two threads could concurrently insert the same tag
at two different empty slots in the bucket, breaking our invariant.
As a workaround, consider a solution where every thread scans
the bucket from left to right, and deterministically chooses the first
empty entry as the target. They will compete for the insert using
compare-and-swap and only one will succeed. Even this approach
violates the invariant in presence of deletes, as shown in Fig. 3a.
A thread T; scans the bucket from left to right and chooses slot 5
for inserting tag gs. Another thread T, deletes tag g3 from slot 3
in the same bucket, and then tries to insert a key with the same
tag gs. Scanning left to right will cause thread Ty to choose the
first empty entry 3 for this tag. It can be shown that this problem
exists with any algorithm that independently chooses a slot and
inserts directly: to see why, note that just before thread T; does a
compare-and-swap, it may get swapped out and the database state
may change arbitrarily, including another slot with the same tag.

While locking the bucket is a possible (but heavy) solution,
FASTER uses a latch-free two-phase insert algorithm that lever-
ages the tentative bit entry. A thread finds an empty slot and inserts
the record with the tentative bit set. Entries with a set tentative
bit are deemed invisible to concurrent reads and updates. We then
re-scan the bucket (note that it already exists in our cache) to check



if there is another tentative entry for the same tag; if yes, we back
off and retry. Otherwise, we reset the tentative bit to finalize the
insert. Since every thread follows this two-phase approach, we are
guaranteed to maintain our index invariant. To see why, Fig. 3b
shows the ordering of operations by two threads: there exists no
interleaving that could result in duplicate non-tentative tags.

3.3 Resizing and Checkpointing the Index

For applications where the number of keys may vary significantly
over time, we support resizing the index on-the-fly. We leverage
epoch protection and a state machine of phases to perform resizing
at low overhead (cf. Appendix B). Interestingly, the use of latch-free
operations always maintains the index in a consistent state even in
the presence of concurrent operations. This allows us to perform
an asynchronous fuzzy checkpoint of the index without obtaining
read locks, greatly simplifying recovery (cf. Sec. 6.5).

4 AN IN-MEMORY KEY-VALUE STORE

We now build a complete in-memory key-value store using the
FAsTER hash index from Sec. 3, along with a simple in-memory
allocator such as jemalloc [1]. Records with the same (offset, tag)
value are organized as a reverse singly-linked-list. The hash bucket
entry points to the tail (most recent record) in the list, which in turn
points to the previous record, and so on (see Fig. 1). Each record may
be fixed- or variable-sized, and consists of a 64-bit record header,
the key, and the value. The record header is shown in Fig. 2. Apart
from the previous pointer, we use a few bits (invalid and tombstone)
to keep track of information that is necessary for log-structured
allocators (cf. Sec. 5 and 6). These bits are stored as part of the
address word, but may be stored separately as well, if necessary.

Operations with In-Memory Allocator

In FASTER, user threads read and modify record values in the safety
of epoch protection, with record-level concurrency handled by the
user’s read or update logic. For example, one could use fetch-and-
add for counters, take a record-level lock, or leverage application-
level knowledge of partitioning for latch-free updates. Operations
on the store are described next.

Reads. We find the matching tag entry from the index as de-
scribed in Sec. 3.2, and then traverse the linked-list for that entry
to find a record with the matching key.

Updates and Inserts. Both blind updates (upserts) and RMW up-
dates begin by finding the hash bucket entry for the key. If the
entry does not exist, we use the two-phase algorithm described in
Sec. 3.2 to insert the tag along with the address of the new record,
into an empty slot in the hash bucket. If the entry exists, we scan
the linked-list to find a record with a matching key. If such a record
exists, we perform the operation in-place. A thread has guaran-
teed access to the memory location of a record, as long as it does
not refresh its epoch. This property allows threads to update a
value in-place without worrying about memory safety. If such a
record does not exist, we splice in the new record into the tail of
the list using a compare-and-swap. In our count store example,
we increment the counter value for an existing key, using either
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a fetch-and-increment or a normal in-place increment (if keys are
partitioned). The initial value for the insert of a new key is set to 0.

Deletes. We delete a record by atomically splicing it out of the
linked-list using a compare-and-swap on either a record header or
hash bucket entry (for the first record). When deleting the record
from a singleton linked-list, the entry is set to 0, making it avail-
able for future inserts. A deleted record cannot be immediately
returned to the memory allocator because of concurrent updates
at the same location. We use our epoch protection framework to
solve this problem: each thread maintains a thread-local (to avoid a
concurrency bottleneck) free-list of (epoch, address) pairs. When
the epochs become safe, we can safely return them to the allocator.

5 HANDLING LARGER DATA IN FASTER

As a strawman solution, we transform our in-memory FASTER from
Sec. 4 into a full-fledged key-value store that can handle data larger
than memory by building a log-structured record allocator. Log
structuring is a well researched area [24, 25, 34], and our approach
is a straightforward adaptation of existing techniques, augmented
with epoch protection for lower synchronization overhead. Being
append-only, such a system does not perform well; we will show in
Sec. 7.4.1 that it achieves a throughput of no more than 20 million
operations per second, and does not scale with the number of
threads. However, this design is useful as a building block to help
explain our main contribution in Sec. 6, where we will get back
scalable performance using a novel hybrid log allocator.

5.1 Logical Address Space

We start by defining a global logical address space that spans main
memory and secondary storage. The record allocator allocates and
returns 48-bit logical addresses corresponding to locations in this
address space. Unlike our pure in-memory version, the FASTER
hash index now stores the logical address of a record instead of its
physical address. The logical address space is maintained using a
tail offset, which points to the next free address at the tail of the log.
An additional offset, called the head offset, tracks the lowest logical
address that is available in memory. The head offset is maintained
at an approximately constant lag from the tail offset, equal to the
memory available for the log. In order to minimize overhead, we
update it only when the tail offset crosses page boundaries.

The contiguous address space between the current head and tail
offsets (i.e., the tail portion of the log) is present in a bounded in-
memory circular buffer, as shown in Fig. 4. The circular buffer is a
linear array of fixed-size page frames, each of size 2F bytes, that are
each allocated sector-aligned with the underlying storage device,
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in order to allow unbuffered reads and writes without additional
memory copies. A logical address L greater than the head address
resides in main memory at offset equal to the last F bits of L, in the
page frame with position equal to L > F in the circular array.

New record allocation always happens at the tail. We maintain
the tail offset as two values in one word — a page number and an
offset. For efficiency, a thread allocates memory using a fetch-and-
add on the offset; if the offset corresponds to an allocation that
would not fit on the current page, it increments the page number
and resets the offset. Other threads that see a new offset greater
than page size wait for the offset to become valid, and retry.

5.2 Circular Buffer Maintenance

We need to manage the off-loading of log records to secondary
storage in a latch-free manner, as threads perform unrestricted
memory accesses between epoch boundaries. To achieve this, we
maintain two status arrays: a flush-status array tracks if the current
page has been flushed to secondary storage, and a closed-status
array determines if a page frame can be evicted for reuse. Since
we always append to the log, a record is immutable once created.
When the tail enters a new page p + 1, we bump the epoch with
a flush trigger action that issues an asynchronous I/O request to
flush page p to secondary storage. This action is invoked only
when the epoch becomes safe — because threads refresh epochs at
operation boundaries, we are guaranteed that all threads would
have completed writing to addresses in page p, and the flush is safe.
When the asynchronous flush operation completes, the flush-status
of the page is set to flushed.

As the tail grows, an existing page frame may need to be evicted
from memory, but we first need to ensure that no thread is accessing
the page. Traditional databases use a latch to pin pages in the buffer
pool before every access so that it is not evicted when in use. For
high performance, however, we leverage epochs to manage eviction.
Recall that the head offset determines if a record is available in
memory. To evict pages from memory, we increment the head
offset and bump the current epoch with a trigger action to set the
closed-status array entry for the older page frame. When this epoch
is safe, we know that all threads would have seen the updated
head offset value and hence would not be accessing those memory
addresses. Note that we must ensure that the to-be-evicted page is
completely flushed before updating the head offset, so that threads
that need those records can retrieve it from storage.

5.3 Operations with Append-Only Allocator

Blind updates simply append a new record to the tail of the log
and update the hash index using a compare-and-swap as before. If
the operation fails, we simply mark the log record as invalid (using
a header bit) and retry the operation. Deletes insert a tombstone
record (again, using a header bit), and require log garbage collection

Logical Address
Invalid

Action

Make a new record at tail-end

< HeadOffset Issue Async IO Request
< ReadOnlyOffset | Make a mutable copy at tail-end
<00 Update in-place

Table 1: Update scheme with Read-Only Marker

(cf. Appendix C). Read and RMW operations are similar to their
in-memory counterparts described in Sec. 4. However, updates are
always appended to the tail of the log, and linked to the previous
record. Further, logical addresses are handled differently. For a
retrieved logical address, we first check if the address is more than
the current head offset. If yes, the record is in memory and we can
proceed as before. If not, we issue an asynchronous read request
for the record to storage. Being a record log, we retrieve only the
record and not the entire logical page. In our count store example,
every counter increment results in appending the new counter to
the tail of the log (reading the older value from storage if necessary),
followed by a compare-and-swap to update the index entry.

Every user operation is associated with a context that is used
to continue the operation when the I/O completes. Each FASTER
thread has a thread-local pending queue of contexts of all com-
pleted asynchronous requests issued by that thread. Periodically,
the thread invokes a CompletePending function to dequeue these
contexts and process the continuations. Note that the continuation
may need to issue further I/O operations, e.g., for a previous logical
address in the linked-list of records.

6 ENABLING IN-PLACE UPDATES IN FASTER

The log allocator design presented in the previous section, in ad-
dition to handling data larger than memory, enables a latch-free
access path for updates due to its append-only nature. But this
comes at a cost: every update involves atomic increment of the tail
offset to create a new record, copying data from previous location
and atomic replace of the logical address in the hash index. Further,
an append-only log grows fast, particularly with update-intensive
workloads, quickly making disk I/O a bottleneck.

On the other hand, in-place updates have several advantages
in such workloads: (1) frequently accessed records are likely to
be available in higher levels of cache; (2) access paths for keys
of different hash buckets do not collide; (3) updating parts of a
larger value is efficient as it avoids copying the entire record or
maintaining expensive delta chains that require compaction; and
(4) most updates do not need to modify the FASTER hash index.

6.1 Introducing HybridLog

HybridLog is a novel data structure that combines in-place updates
(in memory) and log-structured organization (on disk) while pro-
viding latch-free concurrent access to records. HybridLog spans
memory and secondary storage, where the in-memory portion acts
as a cache for hot records and adapts to a changing hot set.

In HybridLog the logical address space is divided into 3 contigu-
ous regions: (1) stable region (2) read-only region and (3) mutable
region as shown in Fig. 5. The stable region portion is on secondary
storage. The in-memory portion is composed of read-only and
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Figure 6: Lost Update Anomaly

mutable regions. Records in the mutable region can be modified
in-place, while records in the read-only region cannot. In order to
update a record currently in the read-only region, we follow the
Read-Copy-Update (RCU) strategy: a new copy is created in the
mutable region and then updated. Further updates to such a record
are performed in-place, as long as it stays in the mutable region.

We implement HybridLog on the log allocator from Sec. 5 using
an additional marker called the read-only offset, that corresponds
to a logical address residing in the in-memory circular buffer. The
region between head-offset and read-only offset is the read-only
region and the region after read-only offset is the mutable region.
If a record is at a logical address more than read-only offset, it is
updated in-place. If the address is between read-only and head offset,
we create an updated copy at the end of tail and update the hash
index to point to the new location; if the address is less than head-
offset, it is not available in memory and hence an asynchronous
IO request is issued to retrieve the record from secondary storage.
Once it is obtained, a new updated copy is created at the end of
tail followed by updating the hash index. This update scheme is
summarized in Table 1.

The read-only offset is maintained at a constant lag from tail-
offset and is updated only at page boundaries similar to the head-
offset. Since none of the pages with logical address less than the
read-only offset are being updated concurrently, it is safe to flush
them to secondary storage. As tail-offset grows, read-only offset
shifts along making pages ready to be flushed. Once they are safely
offloaded to disk, they can be evicted from the circular buffer (when
necessary) using the head-offset and closed-status array like in
Sec. 5. Thus, the read-only offset serves as a light-weight indicator
of pages that are ready to be flushed to disk. Note that the read-
only offset in HybridLog enables latch-free access to records in the
mutable region, whereas in traditional designs, records (or pages)
must be pinned in the buffer pool before updating it to prevent
concurrent updates while flushing them to disk.

The lag between read-only and tail offsets determines the divi-
sion of main memory buffer capacity into fast in-place updatable
and immutable read-only regions. In addition to helping flush pages
safely to secondary storage, the read-only region also acts as a
second-chance cache for records before being off-loaded to disk.
We discuss the caching behavior and impact of sizing the hybrid
log regions on FASTER performance in Sec. 6.4.

6.2 Lost-Update Anomaly

The read-only offset is updated and read atomically. However, it is
still possible that a thread decides on the update scheme based on
a stale value of the offset, leading to incorrect execution. Consider
the scenario shown in Fig. 6, from our count store example. Threads
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Figure 7: Thread Local View of Hybrid Log Regions

T; and T3 obtain the same logical address L from the FASTER hash
index. T1 decides to do an in-place update as L is more than the
current read-only offset Ry. Meanwhile, a thread T, updates the
read-only offset from R; to Ry due to shifting of tail-offset. Now,
thread T3 compares L with Ry and decides to create a new record
at L’ with the updated value of 5. However, thread T; updates the
value to 5 at L. All future accesses will use the value at L’ and hence
we have lost the update by Tj.

The above anomaly occurs because a thread T, updates read-
only offset, while T; is acting based on the current value. We could
prevent this by obtaining a read lock on read-only offset for the
entire duration of T;’s operation. However, such a locking scheme
is expensive and unnecessarily delays shifting of read-only offset,
which is integral to maintaining the circular buffer. On the other
hand, even if the read-only offset has shifted, the anomaly occurs
because one thread (T7) makes an update decision based on a stale
value and another (T3) based on the new value of the offset.

We use another marker called the safe read-only offset to elimi-
nate such incorrect executions. This marker tracks the read-only
offset that has been seen by all the threads. It is designed based
on the following invariant: safe read-only offset is the minimum
value of read-only offset seen by any active FASTER thread. We
maintain this using the epoch-trigger action mechanism as follows:
whenever the read-only offset is updated, we bump the current
epoch along with a trigger action that updates the safe read-only
offset to the new value. This epoch-based update for safe read-only
offset satisfies the invariant because all threads that crossed the
current epoch must have seen the new value of read-only offset.

With an additional marker, the safe read-only offset, HybridLog
is divided into 4 regions. We call the region between safe read-only
and read-only offset as fuzzy region, because some threads might
see it as after the read-only offset while some others may see it
as before. Threads are guaranteed to obtain the latest values of
safe read-only and read-only offsets only when they refresh their
epochs. As a result, each thread might have a thread-local view of
these markers as shown in Fig. 7. Thread T4 has the highest value of
read-only offset because it has refreshed its epoch recently, while T3
has stale values as it has not refreshed recently. However, note that
the safe read-only offset for any thread is at most the minimum read-
only offset (thread T3) and this is ensured by our epoch protection
framework. When the logical address of a record is less than safe
read-only, threads may try to create a new record concurrently
and only one will succeed due to the atomic compare-and-swap
operation on the FASTER hash index.

6.3 Fuzzy Region

When a record falls in the fuzzy region, interestingly, different types
of updates can be handled differently. Here, we classify the types



Logical Address Read-Modify-Write CRDT Update Blind Update

Invalid Create a new record at tail-end Create a new record at tail-end

< HeadAddress Issue Async 'IO Rfequest . Create a new record at tail-end
< SafeReadOnlyAddress | Add to pending list Create a delta record at tail-end

< ReadOnlyAddress Create an updated record at tail-end

<o Update in-place concurrently Update in-place concurrently Update in-place concurrently

Table 2: Update scheme for different types of updates

of updates into three, namely blind update, read-modify-write and
CRDT update. The update scheme for each of these update types is
summarized in Table 2.

Blind Update. This update does not read the old value of a key.
Even if one thread is updating a previous location in-place, another
thread can create a new record at the end of tail with the new
value. Since the updates are issued concurrently, semantics of the
application must allow all possible serial orders. Further, we can
avoid an expensive retrieval from the disk in case the record is not
available in memory, as we do not need the old value.

Read-Modify-Write. This kind of update first reads and then up-
dates a record based on the current value. Since we cannot be
entirely sure that no other thread is updating a value concurrently,
we cannot create a new copy at the end of tail precisely to avoid
the lost-update anomaly discussed earlier. So, we defer the update
by placing the context in a pending queue to be processed later,
similar to how records on storage are handled.

CRDTs. CRDT updates are RMWs, but present an interesting
middle-ground between blind updates and RMWs. Recall that CRDTs
can be computed as independent partial values that can later be
merged to obtain the final value. Our running example (count store)
is a CRDT, as multiple partial counts can be summed to obtain
the overall count value. With CRDT updates, we can handle the
fuzzy region similar to blind updates. When a record is in the fuzzy
region (or on disk), we simply create and link a new delta record at
the tail, with the update performed on the initial (empty) value. A
read has to reconcile all delta records to obtain the final converged
value. One can imagine a scheme that periodically collapses deltas
to maintain a bound on the length of delta chains.

6.4 Analysis of the Hybrid Log

Cache Behavior and Shaping of the Log. The in-memory portion
of a key-value store acts like a cache and so performance heav-
ily depends on its efficiency. Several caching protocols have been
proposed in the context of buffer pool management in databases
and virtual memory management in operating systems such as
First-In First-Out (FIFO), CLOCK, Least Recently Used (LRU) and
an extended version of LRU, the LRU-K[33] Protocol. All of them
(except FIFO) require fine-grained per-page (or per-record) statistics
to work efficiently. Interestingly, FASTER is achieves a good caching
behavior at a per-record granularity without any such overheads,
by virtue of the access pattern. The hybrid in-place and copy update
scheme of FASTER results in efficient caching, quite similar to a
Second-Chance FIFO protocol. We compare these protocols using a
simulation in Sec. 7.5.

FAsSTER shapes the log based on the access pattern and helps
keep the hot items in memory. Consider a write-heavy workload

on our count store example (Appendix D addresses other kinds of
workloads). When a record is retrieved from disk for update, the
new record with updated count is created at the end of tail. The
record stays in memory and is available for in-place updates, until
it enters the read-only region of the hybrid log. If a key is hot, it is
likely that there is a subsequent request before it is evicted from
memory resulting in a new mutable record. This serves as a second
chance for the key to remain cached in memory. Otherwise, it is
evicted to disk, making space for hotter keys in memory.

Sizing the Hybrid Log Regions. Sizing the mutable and read-only
regions in the hybrid log allocator is important. One extreme (lag
= 0) is an append-only store, while the other extreme (lag = buffer-
size) is an in-memory store when data fits in memory. The size of
read-only region determines the degree of second chance provided
to a record to stay cached in memory. A smaller read-only (or larger
mutable) region results in better in-memory performance due to
in-place updates. However, a hot record might be evicted to disk
simply because there was no access to that key for a very short time.
A larger read-only region, on the other hand, results in expensive
append-only updates, causing the log to grow faster. Further, it
causes a replication of records in the read-only and mutable region
effectively reducing the in-memory cache size. We observe that,
in practice, an 90 : 10 division of buffer size for the mutable and
read-only regions result in good performance. We evaluate the
performance impact of HybridLog region sizes in Sec. 7.4.2.

6.5 Recovery and Consistency in FASTER

In the event of a failure, the unflushed tail of HybridLog is lost.
However, FASTER can recover to a database state that is consistent
with respect to the monotonicity property: for any two update re-
quests r1 and ry issued (in order) by a thread, the state after recovery
includes the effects of (1) none; (2) only r1; or (3) both r; and rp. In
other words, the state after recovery cannot include the effects of
r without also including r;. We can achieve this property using
a Write-Ahead-Log (WAL) that logs all the modifications due to
a request, similar to traditional databases and modern key-value
stores such as RocksDB. Applications can periodically obtain a
fuzzy checkpoint of FASTER in memory, which can then be used
in combination with the WAL to recover to a consistent state. Re-
covering from a fuzzy checkpoint using a WAL is a well-studied
problem [32, 37], and hence we do not cover it in this paper.

Eliminating the WAL. Having a separate WAL could introduce a
bottleneck for update-intensive workloads, so we have designed a
recovery scheme for FASTER that does not require a WAL. We sketch
our solution briefly below, but leave a detailed treatment of recovery
to future work. The basic idea is that we can treat HybridLog as our
WAL, and delay commit in order to allow in-place updates within a
limited time window.



Checkpointing FasTer. While technically we can rebuild the en-
tire hash-index from the HybridLog, checkpointing the index peri-
odically allows faster recovery. All operations on the FASTER index
are performed using atomic compare-and-swap instructions. So, the
checkpointing thread can read the index asynchronously without
acquiring any read locks. However, since the hash index is being
updated concurrently, such a checkpoint is fuzzy, and may not be
consistent with respect to a location on the HybridLog. However,
we can use the HybridLog to recover a consistent version of the
hash index from this fuzzy checkpoint, as described next.

We record the tail-offset of the HybridLog before starting (¢;)
and after completing (¢2) the fuzzy checkpoint. All updates to the
hash index during this interval correspond only to records between
t; and t; on the log, because in-place updates do not modify the
index. However, some of these updates may be part of the fuzzy
checkpoint and some may not. During recovery, we scan through
the records between t; and t; on the HybridLog in order, and update
the recovered fuzzy index wherever necessary. The resulting index
is a consistent hash index that corresponds to HybridLog until ¢,
because all updates to hash index entries after completing the fuzzy
checkpoint (and recording the tail-offset #;) correspond only to
records after t; on the log.

Finally, by moving the read-only offset of the HybridLog to t3,
we get a checkpoint corresponding to location ¢, in the log, after
the corresponding flush to disk is complete. Note that our check-
pointing algorithm can be performed in the background without
quiescing the database. Every such checkpoint in FASTER is incre-
mental, as we offload only data modified since the last checkpoint.
Incremental checkpointing usually requires a separate bitmap-like
data structure to identify data that needs to be flushed, whereas
FASTER achieves this by organizing data differently.

Discussion. The state after recovery using the above technique
may violate monotonicity due to in-place updates: update r; can
modify a location [; > t, whereas a later update r; may modify a
location Iy < tz. Our checkpoint until £, that includes I, but not /4,
violates monotonicity. Interestingly, we can restore monotonicity
by using epochs and triggers so that threads can collaboratively
switch over to a new version of the database, as identified by a
location on HybridLog — the details are left as future work.

7 EVALUATION

We evaluate FASTER in four ways. First, we compare overall through-
put and multi-thread scalability of FASTER to leading key-value
stores when the dataset fits in memory. Next, we perform experi-
ments with data larger than main-memory, by varying the memory
budget. Third, we perform micro-benchmarks to illustrate how the
specific design choices of FASTER and HybridLog. Finally, we use
simulations to evaluate the caching behavior of FASTER.

7.1 Implementation, Setup, Workloads

Implementation. We implemented FASTER in C# as an embedded
component that can be used with any application, and uses code
generation to inline user functions for performance. Threads issue
a sequence of operations for 30 secs, and we measure the number of
operations completed during that period. We point FASTER to a file
on SSD to store the log. We assume an expiration-based garbage

collection scheme (Appendix C) and do not include this cost in re-
sults. Costs related to checkpointing and recovery are not included
as well. We size the in-place-updatable region at 90% of memory
unless indicated otherwise. By default, we size the FASTER index
with #keys/2 hash bucket entries. While FASTER can be paired with
in-memory allocators, all experiments in this paper use HybridLog,
and thus represent the complete version of the FASTER key-value store
that can handle data larger than main-memory.

Setup. Experiments are carried out on two identical machines,
one running Windows Server 2018 (for FASTER) and another run-
ning Ubuntu Linux (for other systems, since they are optimized
for Linux). Both are Dell PowerEdge R730 machines with 2.60GHz
Intel Xeon CPU E5-2690 v4 CPUs. They have 2 sockets and 14 cores
(28 hyperthreads) per socket. They have 256GB RAM and a 3.2TB
FusionIO NVMe SSD drive for the log. We pin threads to hardware
cores where possible. The two-socket experiments shard threads
across sockets for a smoother gradient with an increasing number
of threads. We preload input datasets into memory and run each
test for 30secs, except for RocksDB, which is described below.

Workloads. We use an extended version of the YCSB-A workload
from the Yahoo Cloud Serving Benchmark [4], with 250 million dis-
tinct 8 byte keys, and value sizes of 8 bytes and 100 bytes. Workloads
are described as R:BU for the fraction of reads and blind updates in
the workload. Further, we add read-modify-write (RMW) updates
in addition to the blind updates supported by the benchmark. Such
updates are denoted as 0:100 RMW in experiments (we only ex-
periment with 100% RMW updates in this paper). RMW updates
increment a value by a number from a user-provided input array
with 8 entries, to model a running per-key “sum” operation.

Apart from the provided Uniform and Zipfian (6 = 0.99) distri-
butions, we add a new hot set distribution in some experiments,
which models a hot and cold set of keys, with items moving from
cold to hot, staying hot for a while, and then becoming cold. This
distribution models users of a search engine, for example.

Baseline Systems. We compare FASTER with two categories of
systems: pure in-memory and larger-than-memory systems. In the
pure in-memory category, we evaluate against Masstree [29], a
high-performance pure in-memory range index, and Intel TBB con-
current hash map [5], a highly optimized pure in-memory hash
index. In the category of systems that can handle large data, we
evaluate against RocksDB [40] and Redis [36], two leading key-
value stores. Note that we add comparisons to stores that employ
range indices mainly because such systems are deployed widely
even for point workloads, and are known to be highly optimized for
main memory (Masstree) and larger-than-memory (RocksDB). We
configured RocksDB with write-ahead logging and checksums dis-
abled, with parameters as recommended on the RocksDB Wiki [9].
We used direct I/O for reads and writes, and ran each test for 10
minutes. With MassTree, we used the default configuration, pin-
ning software threads to cores. With Intel TBB, we stored values
in-line in the hash map. Redis is evaluated separately in Sec. 7.2.4.

7.2 Comparison to Existing Systems

7.2.1  Single Thread Performance. For a single thread, we use
YCSB (8 byte payloads) with a 100% RMW workload, as well as
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Figure 9: Scalability with increasing #threads, YCSB dataset fitting in memory.

varying read percentages with blind updates, with the dataset fitting
in memory. The results for uniform and Zipf are shown in Fig. 8a
and Fig. 8b respectively. We note that FASTER is able to achieve
very high single-threaded throughput, which makes it a good fit
in embedded environments. Further, FASTER, which handles data
larger than memory, outperforms pure in-memory systems as well.

7.2.2  All Threads Performance. We use all 56 threads (on two
sockets), and compare the systems with the same workload as
before. The results for uniform and Zipf are shown in Fig. 8c and
Fig. 8d respectively. FASTER is able to achieve a throughput of up to
115M ops/sec for uniform, and 165M ops/sec for a Zipfian workload.
Interestingly, Intel TBB hash does well with uniform, but faces
some contention with the Zipf distribution and is unable to scale.
Other systems show much lower performance, as expected.

We also ran experiments varying the size of the tag in the index,
to check its impact on throughput. Briefly, for the YCSB 50 : 50
uniform workload on all threads, we found that even with a tag of
just 1 bit (or 4 bits), performance decreased by less than 14% (or
5%), verifying that FASTER can robustly handle larger address sizes.

7.2.3  Scalability. We plot performance with a Zipf distribution,
with an increasing number of threads, using one CPU and using
both CPUs. We first evaluate a 100% RMW YCSB workload with 8
byte payloads in Fig. 9a. We see FASTER scales very well on both one
CPU and two CPUs. Masstree (a pure in-memory range index) also
scales well, but has much lower absolute performance. The Intel
TBB hash map scales well within one CPU, but falls over at around
20 cores when running on two CPUs, likely because of locking
contention with the Zipf workload. We next evaluate a 0 : 100
blind upsert workload with 100 byte payloads in Fig. 9b. In this
case, performance is linear until 48 threads on two CPUs, but levels
off after this point because the larger 100 byte payloads cause the
system to reach the maximum cross-socket available bandwidth.
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Figure 10: Throughput with increasing
memory budget, for 27GB dataset.

7.2.4  Comparison to Redis. Redis is an in-memory key-value
store (or cache) that differs from FASTER in three ways:

e Redis is not concurrent, and the user is expected to incur the
overhead of hash partitioning the data and operations.

o While Redis offers optional recoverability, it expects that all data
will fit in memory and snapshots the database using fork.

o Redis is designed to be accessed over a network, and as such is
designed with this bottleneck in mind. Thus, its performance is
expected to be lower than embedded systems such as FASTER.
We investigated the last point by running redis-benchmark

on a single thread, and with the following parameters: -d 8 -c
10 -P ${PIPELINE} -t set,get -r 1000000 -n 20000000. The
values are 8 bytes, we use 10 client threads, connected to localhost
(to avoid network overhead), and ran 20M get and set operations,
which access random records in the range between 0 and 1M. We
varied the pipeline (batching) depth from 1 to 200. In this simplified
scenario, we saw around 1.1M sets/sec and 1.4M gets/sec. For a key
space of 250M (similar to our YCSB workload), we saw around 700K
sets/sec and 900K gets/sec. These speeds are significantly lower
than those for single-threaded FASTER.

7.3 Larger-than-Memory Experiments

We run YCSB with 100 byte payloads, for a core dataset size of
27GB, and set the number of threads to 14 (7 cores) on one socket.
The memory budget for FASTER includes 2GB of space for the hash
index, which is sized at #key/8 hash buckets for this experiment.

First, we use a 50 : 50 Zipf workload, and plot throughput vs.
RocksDB in Fig. 10. As expected, FASTER slows down with limited
memory because of increased random reads from SSD, but quickly
reaches in-memory performance levels once the entire dataset fits
in memory. We believe that the steep performance drop-off as we
reduce memory can be improved by optimizing the I/O path in
FASTER; we plan to address this problem in future work.
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Figure 14: Cache miss ratio (Uniform).

Next, with a 0 : 100 blind update workload, performance of
FASTER is slightly lower with enough memory, as expected. As the
memory budget drops, more data spills to storage, but throughput
does not drop by as much as it does for reads, because of the higher
efficiency of bulk sequential log writes (with no random reads) to
SSD. We see that RocksDB achieves around 500K operations per
second at best, for both these workloads.

Finally, we use a 0 : 100 workload with 80% read-only region
and a uniform distribution. This stresses the write throughput of
the system because of fewer in-place updates. We found FASTER to
reach a sequential log write bandwidth of 1.74GB/sec, close to the
theoretical maximum of 2GB/sec for our SSD drive.

7.4 Detailed Evaluation of FASTER

7.4.1  Comparison to Append-Only. We run YCSB-A 50 : 50 (50%
reads and 50% blind updates) with the FASTER append-only log
allocator. Our circular in-memory buffer has 21> pages, and each
page is 4MB in size. Fig. 11 shows the performance for uniform
and Zipf distributions. We see that while performance scales lin-
early with the hybrid log, the creation of new entries in the log
and the contention on the tail result in the append-only log being
significantly slower. In case of hybrid log, Zipf performs much bet-
ter than uniform, because the key skew results in better TLB and
cache behavior. On the other hand, with append only, the perfor-
mance benefit of a Zipf distribution is outweighed by more failed
compare-and-swap operations, because of conflicting updates.

7.4.2  Size of IPU region. We use a YCSB-A with 100% RMW
workload, and vary the IPU Region Factor, defined as the fraction
of the dataset that is in the in-place-update (IPU) region of the log.
Fig. 12a shows overall throughput achieved (on 56 threads) and the
rate at which the log grows (on the secondary axis), as we increase
the IPU Region Factor. With a uniform distribution of keys, we see
that throughput increases as we increase the IPU region, because
we get more opportunities to perform in-place updates. Further,
the log grows more slowly, which is highly desirable. Note that

Cache Size / Total Size

Figure 15: Cache miss ratio (Zipf).

Cache Size / Total Size

Figure 16: Cache miss ratio (Hot Set).

we show log growth rate for 8 byte keys and values, for a total of
24 bytes per record, but the growth rate will multiply for larger
payloads. Finally, the plots for a Zipfian key distribution indicate
that due to the concentration of keys, throughput is high at even
lower IPU region factors than that for uniform, due to the shaping
effect of the hybrid log. The log growth rate declines more rapidly
as well (with increasing IPU region size), due to the same reason.

7.4.3  Fuzzy Region. We execute a 100% RMW workload (uni-
form) on all 56 threads, and vary the IPU region size from 0.25 to
1.0 of the database, which causes the log to grow faster, and in turn
results in the ReadOnlyAddress moving faster, which should result
in more updates going pending in the fuzzy region. Fig. 12b shows
the percentage of fuzzy updates with increasing IPU region size.
Threads refresh their epochs every 256 operations. Even with a
uniform key distribution and 56 threads, this percentage rises no
more than 3%, and is higher than 0.5% only in the artificial scenario
where less than 70% of memory is used for in-place updates.

Next, we keep the log growth rate fixed by fixing the IPU Region
factor at 0.8, and vary the number of threads. As expected, Fig. 13
shows that the percentage of fuzzy operations increases with the
number of threads, but stays below 1% even with all 56 threads.

7.5 Simulation of Caching Behavior

We perform a simulation study to compare well-known caching pro-
tocols (Sec. 6.4) with the caching behavior of HybridLog (HLOG).
We maintain a constant-sized key buffer as a cache, and use each
caching protocol to evict a key whenever an accessed key is not
in the buffer. For HLOG, we have a read-only marker that is at
a constant lag from the tail address; when a key is in read-only
region, we copy it to end of tail like in FASTER. We vary the cache
size and observe cache hit rate for 3 access patterns: uniform, zip-
fian (6 = 0.99) and the hot-set distribution. The hot set distribution
consists of a shifting hot-set (1/5th total size) uniformly accessed
with 90% probability and the remaining cold-set accessed uniformly
with a 10% probability. Our results are shown in Fig. 14, Fig. 15 and



Fig. 16. HLOG performs as well as other protocols for the uniform
distribution. In case of zipfian and hot-set distributions, HLOG’s
cache miss rate is higher than LRU-1, LRU-2 and CLOCK protocols
due to replication of keys in memory. The HLOG protocol results
in two copies of hot keys one within the read-only region and one
in the mutable region, thus reducing the effective cache size. How-
ever, HLOG is better than simple FIFO as it provides keys a second
chance to stay in the cache. Overall HLOG’s caching behavior is
competent with other optimized algorithms without requiring to
maintain extensive statistics, unlike other protocols (except FIFO),
while still providing a latch-free fast-access path.

8 RELATED WORK

FASTER contributes to a richly researched space of concurrent sys-
tem designs, data structures, key-value stores, file systems, and
databases. We summarize the current state-of-the-art next.

In-Memory Designs and Structures. Many concurrent design pat-
terns have been proposed in the past, such as hazard pointers [31]
and the repeat offender problem [20]. Epoch-based designs [16, 23]
have been used by many systems [25, 29, 41] to alleviate specific
bottlenecks. However, we augment epoch protection with trigger
actions, and design it as a generic framework to enable lazy syn-
chronization. FASTER uses it as a building block at several instances
in the paper (see Sec. 2.4). In-place updates are prevalent in pure
in-memory data structures. Read-copy-update was proposed to al-
low readers to be unaffected by concurrent writers. Fast sequential
writes in modern storage resulted in the popularity of log structur-
ing , which applies read-copy-update to data on an append-only
log. Log structuring was first applied to file systems [38], but was
later used in key-value stores [24, 34, 35, 40]. The FASTER hybrid log
combines these techniques to achieve the best of both worlds: high
performance for hot data and fast sequential logging to storage.

Hash Key-Value Stores. In-memory caches and stores such as Re-
dis [36], Memcached [30], and improvements such as MemC3 [10]
and MICA [27] are used to speed-up web deployments and alleviate
database load, but do not themselves handle data larger than mem-
ory (Redis supports a write-ahead log for recovery). Distributed
systems such as RAMCloud [35] and FaRM [7] focus on scaling
out the key-value store, e.g., by using partitioning, remote memory,
or RDMA, rather than leveraging storage for cold data. Reported
single-node performance of all these systems is lower than our
target. In contrast, FASTER is a single-node concurrent high-level
language component that exploits storage using a hybrid log-based
data organization. Streaming state stores, such as the Spark State
Store [14] and the Storm Trident State Store [15], use a simple
partitioned in-memory hash table, synchronously checkpointed
periodically. They do not support concurrent access and have low
reported throughputs. Google Cloud Dataflow [17] stores recent
state in memory, and offloads data periodically to BigTable [3],
resulting in potentially high overhead due to the decoupling.

Range Key-Value Stores. Systems such as Masstree [29, 41] are
pure in-memory range indices, and as such target different applica-
tions. Systems such as Cassandra [11], RocksDB [34, 40], and Bw-
Tree [25] are key-value stores that can handle state larger than main
memory. However, they are not a good fit for our target applications

due to their key-ordered page format that is optimized for reads and
range queries, at the cost of greater complexity. Further, their use of
read-copy-update can be expensive for update-intensive workloads.
RocksDB supports in-place updates in its in-memory component
(level 0), but is unable to exploit it to get acceptable performance
for in-memory workloads. RocksDB generally achieves throughput
less than 1M ops/sec, and its “merge” operation is expensive for
RMW workloads. In contrast, FASTER targets point operations and
update-intensive workloads at very high performance.

Databases. In-memory databases are optimized for more general
data processing needs than what FASTER is optimized for. They
cannot handle data that spills to secondary storage. ERMIA [22]
is a fast memory-optimized database that uses techniques such
as latch-free structures, epoch protection, and log-structuring in
its design. However, it is append-only, and targets fully serializ-
able transactions instead of atomic point operations, leading to
lower expected performance for our target applications. Traditional
databases handle large data using a buffer pool. FASTER avoids a
buffer-pool and page latching, but uses coarse-grained regions in
the log to achieve high performance while adapting to a chang-
ing working set. H-Store [21] partitions the workload and avoids
concurrency, but this strategy can create shuffle overheads, load
imbalance, and skew issues. Deuteronomy [26] and SQL Server
Hekaton [6] use hashing to index the recovery log and in-memory
database respectively, but are based on read-copy-update.

9 CONCLUSIONS

We present FASTER, a new concurrent key-value store optimized
for update-intensive applications. FASTER combines concurrent
latch-free execution, seamless integration of secondary storage,
and in-place update capabilities, to achieve very high throughput
in a multi-threaded setting. FASTER is based on a latch-free index
that works with HybridLog, a novel concurrent log that combines
an in-place updatable region with a log-structured organization, to
optimize for the hot set without any fine-grained caching statistics.
Experiments show that FASTER achieves orders-of-magnitude better
throughput - up to 160M operations per second on a single machine
- than alternative systems deployed widely today, outperforms pure
in-memory data structures when the workload fits in memory, and
degrades gracefully as memory becomes limited.
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A ATOMIC OPERATIONS

FASTER heavily leverages native latch-free atomic 64-bit operations
such as compare-and-swap (CAS), fetch-and-add, and fetch-and-
increment. CAS compares a given value to that at the location and
swaps to a desired value atomically (all or nothing). Fetch-and-add
adds a given value to the value at the location and returns the orig-
inal value. Similarly, fetch-and-increment atomically increments
the value at the given location.

B RESIZING THE FASTER INDEX

The hash index may need to be resized over time as keys are inserted
and removed from the store. Without resizing, bucket linked-lists
could grow large and result in reduced performance, or there could
be many wasted buckets, resulting in memory waste!.

Index resizing does not address the problem of many keys mapping to the same
hash value, which is problematic for all hashing schemes. Standard techniques such


https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://doi.org/10.1145/2463676.2463710
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/
https://github.com/facebook/rocksdb/wiki/performance-benchmarks
https://github.com/facebook/rocksdb/wiki/performance-benchmarks
https://github.com/facebook/rocksdb/wiki
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
http://cassandra.apache.org/
http://cassandra.apache.org/
https://flink.apache.org/
http://hadoop.apache.org/
https://issues.apache.org/jira/browse/SPARK-13809
https://issues.apache.org/jira/browse/SPARK-13809
http://storm.apache.org/releases/current/Trident-state.html
http://storm.apache.org/releases/current/Trident-state.html
https://cloud.google.com/dataflow/
https://doi.org/10.1145/271074.271094
http://dl.acm.org/citation.cfm?id=645959.676129
http://dl.acm.org/citation.cfm?id=645959.676129
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1145/320613.320619
https://doi.org/10.1145/320613.320619
https://doi.org/10.14778/2536206.2536215
https://doi.org/10.1109/ICDE.2013.6544834
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper15.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper15.pdf
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/2933349.2933358
https://doi.org/10.1145/2168836.2168855
https://memcached.org/
https://doi.org/10.1145/571825.571829
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/170035.170081
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/2043556.2043560
https://redis.io/
https://doi.org/10.1145/2882903.2915966
https://doi.org/10.1145/2882903.2915966
https://doi.org/10.1145/146941.146943
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://rocksdb.org/
https://doi.org/10.1145/2517349.2522713
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

Recall that the index is sized in powers of 2. Logically, we have
two versions of the hash index during resizing: one of the current
size (old) and another (new) of double the size when growing, or half
the size when shrinking. Further, resizing occurs in three phases:
prepare-to-resize, resizing, and stable. We maintain both these val-
ues (version and phase) in a single byte called ResizeStatus. A
thread reads ResizeStatus to determine what phase it is in. In the
common stable phase, threads proceed directly with their operation
on the active version of the table.

A hash index is logically divided into n contiguous chunks, where
n is set to the smaller of the maximum concurrency and the number
of hash buckets in the active version. Chunks serve as the granu-
larity at which threads can independently perform resizing. There
is a shared pin array of n counters, which are used only during
resizing to indicate the number of threads updating buckets in a
given chunk. When a thread wishes to resize, it allocates an index
of double (or half) the size, and sets the phase to prepare-to-resize.
It then bumps the current epoch with a future trigger action to
atomically set the phase to resizing and version to new. Threads
that are in the prepare-to-resize phase are aware that resizing is
going to occur, but cannot start because other threads may not
be aware of resizing yet. Therefore, they use fetch-and-increment
to increment the pin count (if it is non-negative) in the pin array
entry corresponding to the chunk (in the old version) that they are
operating over. Similarly, they decrement the pin count after their
operation.

Threads that are in the resizing phase know that all threads are
using the pin array. Therefore, they compare-and-swap the pin
count of the chunk from 0 to —co (until successful) to indicate that
they are starting to resize that chunk. Threads in the prepare-to-
resize phase that see a negative pin count refresh their value of
ResizeStatus to enter the resizing state immediately.

When splitting a chunk, a thread iterates over the records in
each hash bucket and copies over entries to one of two destination
hash buckets in the new index (merging works similarly). Finally,
it increments a counter (numChunks) to indicate that the chunk
is done. Threads co-operatively grab other chunks to resize if the
chunk they are accessing is being resized by another thread (indi-
cated by a pin count of —oo). Finally, when numChunks reaches n,
we are done with resizing, and can set ResizeStatus to stable in
order to resume high-performance normal operation.

When using FASTER with HybridLog, resizing leaves records
on disk untouched. A split causes both new hash entries to point
to the same disk record, whereas a merge creates a meta-record
pointing to two disk records, in the two prior linked-lists, and adds
this meta-record to the linked-list for the merged hash entry.

C GARBAGE COLLECTION FOR HYBRIDLOG

HybridLog is a log-structured record store, and as such requires to
be trimmed from the head of the log in order not to grow indefinitely
on storage. Interestingly, HybridLog by its nature has lower garbage
collection overhead than traditional logs because in-place updates
significantly reduce the rate at which the tail of the log grows. We
can garbage collect HybridLog in two ways:

as adding key suffixes to spread the load of colliding keys are applicable, but are
orthogonal to our proposal.

e Expiration: Data stored in cloud providers often has a maximum
time to live, after which it is deleted. We can use this property to
periodically delete chunks of log prefixes from storage.

o Roll To Tail: We can roll forward a chunk of the log by scanning
from the head and copying over live key-values to the tail.

We prefer to use the expiration-based garbage collection mecha-
nism, as it reflects our use cases where the log is used for analytics,
and expires based on data collection guidelines. The FASTER index
keeps track of the earliest valid logical address, and when a thread
encounters an invalid address in a hash bucket, it simply deletes it.
Further, any linked list traversal of log records is stopped when it
encounters an invalid previous logical address.

Identifying Live Values. In the roll-to-tail approach, we need to
identify whether a given key is live or not, in order to determine if
we should copy it to the tail. We could traverse the linked-list for
the corresponding hash entry, but this may be expensive. Instead,
we can reserve an overwrite bit in the record header to indicate that
the record has been overwritten by a subsequent operation. We can
set this bit even if the record is in the read-only region (until it gets
flushed to disk). On garbage collection, we perform the linked-list
scan only for records that do not have this bit set. This captures the
common case of a data item being hot and frequently updated, and
then suddenly becoming cold — all earlier versions of the record
would have the overwrite bit set, assuming that the record was
hot enough to get copied over to the tail before being flushed. The
final version of the record (now cold) likely has an entry in the
in-memory index, allowing us to avoid a random seek into the log.

D HANDLING READ-HOT RECORDS

The single HybridLog design we present in the paper works well
for update-mostly workloads. Reads are simply treated as updates
and copied over to the tail of HybridLog. Interestingly, this is a
good solution for read-mostly workloads where the working set fits
in memory as well, because the read-hot records get clustered into
the tail of HybridLog in memory, and provide good in-memory
performance without significant log growth.

For a mixed workload with a non-trivial number of read-hot
records, our design can accommodate a separate read cache. In fact,
we can simply create a new instance of HybridLog for this purpose.
The only difference between this log and the primary HybridLog
is that there is no flush to disk on page eviction. Record headers in
these read-only records point to the corresponding records in the
primary log. As in normal HybridLog, the size of the “read-only”
region controls the degree of “second chance” that records get (to
move back to the tail) before being evicted from the read-only cache.

For the hash index, we have two options: (1) The hash index can
use an additional bit to identify which log the index address points
to. When a read-only record is evicted, the index entry needs to be
updated with the original pointer to the record on the primary log.
Index checkpoints need to overwrite these addresses with addresses
on the primary log. (2) We can keep a separate read-only hash index
to lookup the read-only HybridLog. Read or update operations on
the main index that point to addresses on disk first check this
index before issuing an I/O operation. This approach provides clean
separation, at the cost of an additional cache miss for read-hot



objects. A detailed evaluation of these techniques is outside the
scope of this paper.

E INTERFACE AND CODE GENERATION

FASTER separates a compile-time interface, which accepts user-defined
read and update logic in the form of functions; and a customized
runtime interface, whose code is generated for an application for
the required read, upsert, and RMW operations.

The user-defined functions are defined over five types: Key, Value,
Input, Output, and Context. The first two types represent the data
stored in FASTER. The Input type is used to update or read a value
in the store. For instance, we may have a sequence of CPU readings
used to update a per-device average: here, the key is a device-
id (1ong), input is the reading (int) and the value is the average
CPU utilization (float). The Output type is for the output read (or
computed) from the value and an (optional) input. For example,
input could be a field id to select a field to be copied from the value
on a read. Finally, the Context type represents user state that is
used to relate asynchronous callbacks with their corresponding
original user operation.

void CompletionCallback(Contextx);

// Read functions
void SingleReader (Key*, Input*, Valuex, Outputx);
void ConcurrentReader (Key*, Input*, Valuex, Outputx);

// Upsert functions
void SingleWriter(Key*, Valuex, Valuex);
void ConcurrentWriter (Key*, Valuex, Valuex);

// RMW functions

void InitialUpdater (Key*, Inputx, Valuex);

void InPlaceUpdater (Key, Input*, Valuex);

void CopyUpdater (Key*, Input*, Valuex, Valuex);

For functions that have two parameters of type Value, the first
represents the old value and the second represents the new, up-
dated, value. FASTER invokes the CompletionCallback with a user-
provided context associated with a pending operation, when com-
pleted. To support reads, the user defines two functions. The first,
SingleReader, takes a key, an input, and the current value and
allows the user to populate a pre-allocated output buffer. The sys-
tem guarantees read-only access to the value during the operation.
The second, ConcurrentReader, is similar, but may be invoked
concurrently with updates or writes; the user is expected to handle
concurrency (e.g., using an S-X lock).

FASTER supports two kinds of updates: Upserts and RMWs. An
upsert require two functions: SingleWriter overwrites the value
with a new value, where FASTER guarantees exclusive write ac-
cess. ConcurrentWriter may be called (as its name implies) con-
currently with other reads and writes. An RMW requires three
update functions: an InitialUpdater to populate the initial value,
an InPlaceUpdater to update an existing value in-place, and a
CopyUpdater to write the updated value into a new location, based
on existing value and the input. Initial and copy updaters are guar-
anteed exclusive access to the value, whereas in-place updaters may
be invoked concurrently. Users can optionally indicate that an RMW
is mergeable, which allows FASTER to apply CRDT optimizations.

We use these functions to generate the FASTER runtime interface:

Status Read(Key*, Input*, Output*, Contextx);
Status Upsert(Key*, Value*, Contextx);

Status RMW(Key*, Inputx, Contextx);

Status Delete(Keyx, Contextx);

void Acquire(); void Release();

void CompletePending(bool wait);

Read takes a key, an input, and a pre-allocated buffer for storing
the output. Upsert and RMW take a key and value as parameters.
Threads call Acquire and Release to register and deregister with
FASTER. They call CompletePending regularly to continue pending
operations. A thread may optionally block (when wait = true),
until all outstanding operations issued by the thread are completed.

While it is possible to implement these advanced operations on
top of a simple key-value interface, such layering adds significant
overheads to the end-to-end application performance. For example,
one might choose to use an atomic fetch-and-add instead of latches
to build a sum-based update store, use non-latched operations in
SingleReader and SingleWriter, or even use non-latched opera-
tions everywhere if they know that their input arrives partitioned.

F LOG ANALYTICS

The FASTER record log is a sequence of updates to the state of the
application. Such a log can be directly fed into a stream processing
engine to analyze the application state across time. For example, one
may measure the rate at which values grow over time, or produce
hourly dashboards of the hottest keys in the application. The size
of read-only and in-place updatable regions in HybridLog controls
the frequency of updates to values present in the log. Further, one
may handle point-in-time queries by scanning the log, or query
historical values of a given key (since our record versions are linked
in the log). Investigating these possibilities in a hybrid updates and
analytics system is an interesting direction for future work.

G ALGORITHMS FOR HYBRIDLOG AND FASTER

We present algorithms for HybridLog in Alg. 1. Allocate is in-
voked by a thread when it wishes to allocate a new record. New
records are allocated at the tail using fetch-and-add. If the address
is within a logical page (common case), we simply return the logi-
cal address. The first thread whose Allocate overflows the page
handles buffer maintenance and resets the offset for the new page.
Other threads spin-wait for this thread to reset the offset.

Next, we present the Read, Upsert, and RMW algorithms for
FASTER using HybridLog, in Algs. 2, 3, and 4 respectively. The
find_tag procedure finds an existing (non-tentative) entry in the
index, while find_or_create_tag returns an existing (non-tentative)
entry, or creates a new one, using the two-phase insert algorithm
described in Sec. 3. The trace_back_until procedure traverses
the record linked-list that is present in memory to obtain the logical
address of the record that corresponds to the key or first on-disk
record (obtained from the last record in memory).

A read operation issues a read request to disk if logical address
is less than head offset, reads using the single reader if record is
in the safe-read-only region, or the concurrent reader if it is in the
fuzzy or mutable region. Upsert updates in-place if the record is in
the mutable region, and creates a new copy at the tail otherwise.
RMW issues a read request if logical address is less than head offset;
creates a new record at the tail if it is in the safe-read-only region;



puts an operation into a pending list for processing later, if it is
in the fuzzy region; and updates it in-place if it is in the mutable
region. For Reads and RMW, the operation context is enqueued into

a pending queue when the asynchronous operation is complete.

These operations continue processing (using their saved contexts)
when the user invokes CompletePending.

1 function Allocate(int size)
2 offset = toffset.fetch_and_add(size);
3 if offset + size < page_size then
4 L return (tpage < page_size_bits) | offset;
5 else if offset < page_size then
6 buffer_maintenance (tpage++);
7 index = tpage % buffer_size;
8 spin-wait until closed-status[index] =="C’;
9 flush-status[index] = 'D’; closed-status[index] = *O’;
10 allocate (or clean) frame[index] for tpage;
11 if (offset + size) == page_size then
12 toffset.store(0);
13 ‘ return ((tpage - 1) < page_size_bits) | offset;
14 else
15 toffset.store(size);
16 L return (tpage < page_size_bits) | 0;
17 else
18 spin-wait until toffset < page_size;
19 L return Allocate(size);
20 procedure buffer_maintenance(long tpage)
21 index = tpage % buffer_size;
22 if head_offset is lagging then
23 new_head = (tpage - buffer_size) < page_size_bits;
24 adjust new_head based on flush-status;
25 old_head = head_offset;
26 head_offset.store(new_head);
27 bump_epoch(() =
28 { close pages in range [old_head, new_head); });

29 if ro_offset is lagging then
30 ro_offset.store((tpage - ro_lag) < page_size_bits);
31 bump_epoch(() = { update_safe_ro(ro_offset)});

32 procedure update_safe_ro(long new)

33 old = safe_ro_offset;

34 safe_ro_offset = new;

35 foreach page € [old, new) do

36 L async_flush_page(page, callback : () = {flush-status[index] = "F’;});

Algorithm 1: Algorithms for HybridLog

1 function Status Read(key, input, output, ctx)

2 entry = find_tag(key);

3 laddr = trace_back_until(key, entry.address, head offset);
4 if laddr is invalid then

5 L return Status.Error;

6 else if laddr < head_offset then

7 Create context and issue async 10 request to disk;

8 L return Status.Pending;

9 else
10 paddr = get_physical_address(laddr);
11 record = obtain record at paddr;
12 if laddr < safe_ro_offset then

13 | SingleReader (key, input, record.value, output);
14 else

15 L ConcurrentReader (key, input, record.value, output);
16 return Status.OK;

Algorithm 2: Read algorithm in FASTER
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function Status Upsert(key, value, ctx)

entry = find_or_create_tag(key);
laddr = trace_back_until(key, entry.address, head_offset);
if laddr is valid and laddr > read_only_offset then
paddr = get_physical_address(laddr);
record = Obtain record at paddr;
ConcurrentWriter (key, record.value, value);
return Status.OK;
else
new_laddr = Allocate (size);
new_record = record at new_paddr;
write key, entry.address at new_record;
SingleWriter(key, new_record.value, value);
updated_entry = unset tentative bit, tag, new_laddr;
if entry.CAS(entry, updated_entry) then

‘ return Status.OK;
else

new_record.invalid = true;
L return Upsert(key, value, ctx);

Algorithm 3: Upsert Algorithm in FASTER

function Status RMW(key, input, ctx)

entry = find_or_create_tag(key);
laddr = trace_back_until(key, entry.address, head_offset);
if laddr is invalid then

| goto CREATE_RECORD;

else if laddr < head_offset then
create context and issue async 10 request to disk;
L return Status.Pending;
else
paddr = get_physical_address(laddr);
record = Obtain record at paddr;
if laddr < safe_ro_offset then
| goto CREATE_RECORD;
else if laddr < ro_offset then
add context to pending list;
L return Status.Pending;
else
InplaceUpdater (key, input, record.value);
L return Status.OK;
CREATE_RECORD:
new_laddr = Allocate (size);
new_paddr = get_physical_address(new_laddr);
new_record = record at new_paddr;
write key, entry.address at new_record;
if laddr is invalid then
‘ InitialUpdater(key, input, new_record.value);
else
| CopyUpdater (key, input, record.value, new_record.value);

updated_entry = unset tentative bit, tag, new_laddr;
if not entry.CAS(entry, updated_entry) then
new_record.invalid = true;
L return RMW(key, input, ctx);

return Status.OK;

Algorithm 4: RMW Algorithm in FASTER
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