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ABSTRACT

Voice assistant represents one of the most popular and important sce-
narios for speech recognition. In this paper, we propose two adap-
tation approaches to customize a multi-style well-trained acoustic
model towards its subsidiary domain of Cortana assistant. First, we
present anchor-based speaker adaptation by extracting the speaker
information, i-vector or d-vector embeddings, from the anchor seg-
ments of ‘Hey Cortana’. The anchor embeddings are mapped to
layer-wise parameters to control the transformations of both weight
matrices and biases of multiple layers. Second, we directly update
the existing model parameters for domain adaptation. We demon-
strate that prior distribution should be updated along with the net-
work adaptation to compensate the label bias from the development
data. Updating the priors may have a significant impact when the tar-
get domain features high occurrence of anchor words. Experiments
on Hey Cortana desktop test set show that both approaches improve
the recognition accuracy significantly. The anchor-based adaptation
using the anchor d-vector and the prior interpolation achieves 32%
relative reduction in WER over the generic model.
Index Terms: deep neural network, domain adaptation, speaker
adaptation, anchor embedding

1. INTRODUCTION

The application of deep neural networks (DNNs) [1, 2, 3, 4] and
recurrent neural networks (RNNs) [5, 6, 7, 8] has achieved tremen-
dous success for large vocabulary continuous speech recognition
(LVCSR). As speech recognition technologies continue to improve,
voice assistant becomes ubiquitous on computers, mobile devices
and smart speakers, such as Amazon’s Alexa, Apple’s Siri, Google
Now and Microsoft’s Cortana. Due to the popularity and importance
of the voice assistant scenario, there are growing interests to leverage
a large amount of data harvested from various speech application
scenarios to boost the performance of voice assistant.

Domain adaptation approaches have been proposed to adapt
an existing well-trained model to the target domain [9, 10, 11].
The entire model, or certain layers of the model, is directly up-
dated [9, 12, 13]. To avoid overfitting, conservative training such as
Kullback-Leibler divergence (KLD) regularization [10] is proposed.
In the context of speaker adaptation, many techniques have been
proposed to insert speaker-dependent (SD) transformation layers
into the generic model. The layers being adapted can be either input
features, hidden layers, or output layers [14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24]. One issue with these techniques is that they need to
learn the adaptation parameters using the backpropagation algorithm
[25] in the test time, which is considerably more expensive than the
adaptation of the Gaussian mixture models (GMMs).

Recently, i-vector based adaptation [26, 27, 28] has gained pop-
ularity since i-vectors can be estimated independent of DNN training
[29]. The acoustc features are augmented with i-vectors to form the
input to the DNNs. Since i-vectors capture useful speaker acoustic
properties, the DNNs are trained to be robust to speaker variations.
The augmentation of the i-vectors can be considered as adapting the
bias in the first hidden layer [30].

Speaker embeddings such as i-vectors can also be appended in
any layers of deep networks to transform both the weight matrixes
and biases [31, 32]. The mapping from speaker embedding to the
SD transformations can be linear or through a stack of multiple lay-
ers [33]. The main network and the adaptation components can
be jointly trained in a speaker adaptive training (SAT) scheme. In
[34], factorized hidden layers (FHL) constructs the SD transforma-
tion matrix as linear combination of rank-1 matrixes. The combi-
nation weights are initialized with i-vectors and optimized during
training. The SD transformation matrix in FHL can be regarded as
the low-rank plus diagonal (LRPD) decomposition [35]. In [36, 37],
i-vectors are mapped through a network to element-wise scaling and
bias parameters.

However, there remain challenges for deploying the i-vector
based system in real-time speech application, where an i-vector is
estimated for each utterance [28]. First, the i-vectors estimated at
the utterance level are far more noisy compared with the speaker
i-vectors. Second, the decoding does not start until the entire utter-
ance is available and the i-vector is extracted. One solution that is
particularly applicable in the voice assistant scenario is to extract
the speaker information from the anchor words. Users employ the
anchor words, or wake-up words, to activate the voice assistant and
then make requests or ask questions. With the speaker embedding
from the anchor words, the decoding can start immediately after
the anchor segment is received. Moreover, in the presence of the
determined speech content, the anchor embeddings are supposed to
capture speaker and environmental characteristics more accurately,
compared with the utterance level embeddings. In [38], both feature-
based and model-based methods have been proposed to exploit the
anchor embeddings to improve the model to combat the interfering
speech.

In this paper, we investigate two approaches to customize a
multi-style well-trained model towards its subsidiary domain of
Cortana assistant. First, we propose an anchor-based speaker adap-
tation scheme by extracting the speaker embeddings, i-vectors or
d-vectors, from the anchor segments of ‘Hey Cortana’. The anchor
embeddings are mapped to layer-wise SD parameters to control the
transformations of multiple layers in both weight matrix and bias.
The transformation matrix is defined in a low-rank plus diagonal
(LRPD) decomposition [35]. It allows us to flexibly controls the
number of adaptation parameters according to the available adapta-
tion data. Second, we directly update the existing model parameters
for the domain adaptation. We identify a subtle and often overlooked
difference between the DNN adaptation and the GMM adaptation:
the prior distribution should be updated along with the adaptation of
the DNN model to compensate the label bias from the development
data. Experiments conducted on Hey Cortana desktop test set show
that both approaches produce significant reductions in WER over
the SI model.

2. SPEAKER ADAPTATION USING ANCHOR
EMBEDDING

In this section, we present the proposed framework for speaker adap-
tation using the speaker embeddings extracted from the anchor seg-



ments. In the traditional i-vector based system, i-vectors are ex-
tracted as speaker embeddings and augmented to acoustic feature
vectors to form the input to a DNN. It amounts to adapting the bias
in the first hidden layer. We extend the i-vector based system by
fully leveraging the deep structure of the DNN model. The anchor
embeddings are applied to control the adaptation of multiple layers
in both weight matrices and biases.

Given a DNN with L hidden layers, the activation output, hl, at
the l-th hidden layer is recursively defined as the nonlinear transfor-
mation of the (l − 1)-th layer:

hl = σ(zl) = σ(W lhl−1 + bl) (1)

where zl is the excitation vector, W l is the weight matrix, bl is the
bias vector, and σ(·) is an element-wise sigmoid activation function.
h0 = x is the input observation vector. The output layer is normal-
ized by the softmax function to produce the posterior probability,
p(q|x), of senone q.

Fig. 1 illustrates a general structure of the proposed adaptation
algorithm. The main and adaptation networks are shown in the black
and red parts, respectively. The l-th layer is adapted based on the
anchor embeddings as follows:

zl
s =

(
I + P lU l

sQ
l
)
W lhl−1 + vl

s + bl (2)

where the weight matrix and bias are transformed through the SD
parameters U l

s and vl
s, respectively.

The term
(
I + P lU l

sQ
l
)

in Eq. (2), corresponding to the trans-
formation of the weight matrix, is defined in a low-rank plus diago-
nal (LRPD) decomposition [35, 39]. We restructure the transforma-
tion matrix as a superposition of an identify matrix I and a product of
three low-rank matrices P lU l

sQ
l, where P l and Ql are the speaker-

independent (SI) matrices connecting the SD matrix U l
s with the size

of c×c to the main network. When c is much smaller than the dimen-
sion of the layer being adapted, the LRPD can signicantly reduce the
SD transformation parameters. Moreover, the LRPD contains the
full and the diagonal transformation matrices as its special cases. It
allows us to flexibly controls the number of adaptation parameters
according to the available adaptation data.

The SD parameters U l
s and vl

s are mapped from the anchor em-
beddings es as follows:

U l
s =vec−1(ul

s) = vec−1(f l(es)) (3)

vl
s =gl(es) (4)

where f l and gl are auxiliary networks with es as input, and
vec−1(·) converts a vector to a matrix in terms of the columns.
These auxiliary networks each consist of multiple fully-connected
layers followed by the last linear layer and may share the bottom
layers. The use of the auxiliary networks eliminates the need to learn
the SD parameters in the test time. Reshaping the SD vector ul

s into
a matrix U l

s allows us to make full control of the transformation
matrices. This is in contrast to other methods [34, 40, 36], which
map the speaker embeddings to the diagonal elements of the trans-
formation matrices. Note that reshaping the SD vector is feasible
when we significantly reduce the size of the SD matrix U l

s.
Moreover, the LRPD can be extended to subsume the transfor-

mations of both the weight matrix and bias. If we associate Ql with
a bias term blq , the low-rank part of the transformation becomes:

P lU l
s(Q

lW lhl−1 + blq) = P lU l
sQ

lW lhl−1+(blTq ⊗ P l)ul
s (5)

where ⊗ is the Kronecker product. Thus, the transformation of both
the weight matrix and bias depends on the single SD vector ul

s.
Although having the similar architecture as the FHL adaptation

Fig. 1: Illustration of the model structure of the anchor-based
speaker adaptation. The red part corresponds to the adaptation net-
work appended to the main network.

proposed in [34], the proposed framework differs from FHL in two
aspects. First, in FHL, the i-vectors are used to initialize the di-
agonal elements of the SD transformation matrix and the full SD
transformation still needs to be learned for improved performance.
In contrast, we directly convert the SD parameter vectors into a full
transformation matrix, forgoing the DNN learning in the test time.
Second, FHL directly uses the i-vectors as the SD transformation
vectors among multiple layers. However, we observe optimal recog-
nition performance when SD vectors are mapped from the embed-
dings through separate networks. The proposed approach also sub-
sumes the embedding-based SAT [36, 37], where the transformation
is conducted through element-wise scaling and bias.

The adaptation model is learned in a lightly adaptive training
fashion. We first train the main network using the multi-style data
and keep it fixed. Then we adaptively train the adaptation network
using the target domain data with the anchor embeddings as a second
input stream.

3. DOMAIN ADAPTATION WITH PRIOR
INTERPOLATION

In a hybrid DNN-HMM system for speech recognition, the neural
network is trained to predict the posterior probability, p(qt|xt), of
each senone qt. During decoding, the state posterior probability is
divided by the prior probability, p(qt), of the state qt to form the
state likelihood p(xt|qt) used in the HMM:

p(xt|qt) ∝ p(qt|xt)/p(qt) (6)

In contrast, a traditional GMM-HMM system directly employs the
GMM to estimate the state likelihoods.

When it comes to model adaption, there is a subtle and often
overlooked difference between the DNN adaptation and the GMM
adaptation. Conceptually, the prior distribution should be updated
along with the adaptation of the DNN model to compensate the label
bias from the development data. When the target domain has similar
senone coverage to the source domain or has very limited develop-
ment data, this issue does not matter. It poses an issue when there is
a remarkable difference in the senone coverage. For example, in the
domain of Cortana assistant, a large amount of speech queries begin
with the anchor phrase ‘Hey Cortana’. Moreover, the speaking style
and contents of Cortana queries are more conversational and func-
tional than those from other scenarios such as voice search (VS) and
short message dictation (SMD).



A natural choice to perform prior adaptation is to interpolate the
prior distributions estimated from the source domain and the target
domain.

p̂(qt) = (1− ρ)p̃(qt) + ρpSI(qt) (7)

where ρ is the prior interpolation weight, and pSI(qt) and p̃(qt) are
the prior probabilities estimated from the SI domain and the devel-
opment data. This is analogous to the Kullback-Leibler (KL) reg-
ularization proposed in [10], where the target posterior probability
p̂(qt|xt) is a linear interpolation of the distribution estimated from
the SI model and the ground truth alignment of the adaptation data.

4. EXPERIMENTS AND RESULTS

The experiments were performed using Microsoft internal live US
English data of 3,400hr. These data were collected through of a
number of deployed speech services including VS, SMD, and Cor-
tana assistant. Cortana assistant can be activated through the anchor
phrase ‘Hey Cortana’. Within the 3,400hr data, we selected 220hr
Hey Cortana desktop utterances that begin with ‘Hey Cortana’ to
adapt the generic SI model. Note that different from the conven-
tional adaptation setup, the data set we used to train the SI model
subsumes the target domain. Thus, the gains from adaptation should
not be simply attributed to the significant acoustic mismatch between
the source and target domains. The models were tested in a separate
Hey Cortana desktop data set, which consists of 38,350 words from
6,139 utterances.

The first SI baseline is an 8-layer DNN model trained with the
3400hr data set. The input feature is the 80-dimension log-filter-
bank (LFB) feature with up to second-order derivatives, augmented
with a context window of 11 frames. On top of the input layer there
are 6 hidden layers each with 2,048 units followed by the last hidden
layer with 4,096 units. The output layer consists of 9,801 senones.
A second SI baseline is trained using the 220hr Hey Cortana desktop
set. It consists of 5 hidden layers each with 2,048 units. The Com-
putational Network Toolkit (CNTK) [41] is used for neural network
training.

The embedding vectors are extracted from the anchor phrase
‘Hey Cortana’. The average duration of the anchor segments is about
0.6 seconds. Two types of anchor embeddings are extracted to cap-
ture the speaker and environmental acoustic properties: i-vector and
d-vector [42]. The i-vectors are trained using 13-dim MFCC static
coefcients appended with the first and second derivatives. The uni-
versal background model (UBM) consists of 512 diagonal covari-
ance Gaussians and a 100-dim i-vector is generated for each an-
chor segment. In addition, it has been shown that d-vectors can
achieve comparable performance as i-vectors in the task of text-
dependent speaker verification. A bottleneck DNN model is trained
with speaker labels as targets in the output layer. The model consists
of 4 hidden layers, each with 1024 units, followed a bottleneck layer
of 100 units. The input is 41 spliced frames within the anchor seg-
ments. The output layer has 8,398 units representing training speak-
ers. D-vectors are obtained by averaging the bottleneck outputs over
the anchor segments.

Table 1 presents the results of several reference systems evalu-
ated on the Hey Cortana desktop test set. A trigram language model
with around 8 million n-grams is used for decoding. The two SI
baselines trained with 3400hr and 220hr data achieve 16.36% and
20.20% WER, respectively. This confirms that the multi-style train-
ing usually outperforms training individual models from separate
data sets. The SAT models in the last two rows are the standard
i-vector based system, except that the two embeddings are extracted
from the anchor segment other than the entire utterance. ‘L1 ivec

Fig. 2: WERs (%) for adapting biases and weight matrices of single
layer and multiple layers from bottom to top using the anchor d-
vectors. The dashed level line is the 3400hr SI baseline.

bias’ in the table means that the bias of the first hidden layer L1 is
adapted via the anchor i-vector. Both i-vector and d-vector based
systems outperform the corresponding 220hr SI model by 13% and
18% relative WER reduction (WERR), respectively. Compared with
the results obtained by Saon et al. [26] showing 10% WERR using
the speaker i-vectors and by Senior and Lopez-Moreno [28] showing
4% WERR using the utterance i-vectors, it indicates that the anchor-
level embedding can effectively capture and normalize the speaker
and environmental variations for speech recognition. Moreover, the
anchor d-vector performs better than the anchor i-vector.

Table 1: WER (%) of the SI and SAT models on the Hey Cortana
desktop test set.

Model WER (%)
3400hr SI 16.36
220hr SI 20.20
220hr SAT, L1 ivec bias 17.49
220hr SAT, L1 dvec bias 16.64

4.1. Speaker adaptation using anchor embeddings
We first evaluate the proposed speaker adaptation approach using
the anchor d-vectors. We keep fixed the main network trained using
the 3400hr data set, and train the adaptation network in a lightly
SAT fashion. The anchor embedding is mapped to the layer-wise
adaptation vectors ul

s and vl
s through individual auxiliary networks.

Each auxiliary network consists of 2 fully-connected hidden layers
with 100 units per layer and the last linear layer with the right units
determined by the adaptation network. The vector ul

s is reshaped
into U l

s of size 10 × 10 for transforming the weight matrix. These
settings are found to produce good adaptation results.

Fig. 2 shows the results of speaker adaptation by transforming
single layer and multiple layers from bottom to top using anchor d-
vectors. It is observed that adapting the biases of a single layer (L*)
improves the performance by 3%-8% relative. These gains are less
than what we have observed on the d-vector based SAT system us-
ing 220hr data. Second, adapting multiple layers (L1-*) outperforms
adapting a single layer. Basically, the recognition accuracy improves
continuously as the number of the adapted layers increases until the
last hidden layer L7. Moreover, adapting the weight matrix only, Eq.
(5), produces comparable performance as adapting both the weight
matrix and bias, Eq. (2), with a smaller footprint. Both are con-
sistently better than adapting the bias only. Specifically, adapting



Fig. 3: WERs (%) against prior interpolation weights ρ for three
adaptation models. The dashed level line is the SI baseline.

the weight matrices of the multiple layers L1-7 gives the WER of
13.51%, 18% relative reduction over the SI baseline.

4.2. Domain adaptation with prior interpolation
The second experiment is conducted by directly updating the exist-
ing layers without inserting SD layers. The goal is to examine how
the prior interpolation impacts the adaptation performance. Fig. 3
compares the recognition results with different prior interpolation
weights ρ for the SI model and the model with layer L8 updated
(the model ‘L1-7 dvec weight’ will be discussed later). We can
see directly adapting the softmax layer L8 with prior interpolation
(ρ = 0.5) yields the WER of 13.06%, 20% relative reduction over
the SI model. In contrast, the adaptation yields only 3% relative gain
if the prior distribution is unchanged (ρ = 1). Moreover, adapt-
ing alone the priors of the SI model improves the performance by
4% relative, confirming that the estimation of the prior distribution
should be consistent with that of the posterior probability in terms of
data coverage.

Table 2 shows the list of top 10 words ranked by word count
changes from the SI model to the model with layer L8 updated (ρ =
1) on the Hey Cortana desktop test set. It encloses the word counts
of the reference transcripts, the SI model, and adapting layer L8
without and with the priors being updated, respectively. We observe
that the adaptation can systematically rectify the errors committed
by the SI model. Although the model, L8 (ρ = 1), improves lit-
tle over the SI model, it reduces the recognition errors in ‘have’ and
‘hello’ at the expense of increased errors in words from the ‘what’ to
‘anna’ (3rd to 10th). The increased errors in ‘what’, ‘hey’, ‘the’, and
‘what’s’ can be attributed to the higher occurrences of these words in
the target domain than the generic domain. The increased errors in
‘caught’, ‘nah’, ‘ne’, and ‘anna’ are attributed to these words sharing
the senones with ’Cortana’. After the prior interpolation, many such
errors are effectively suppressed. This demonstrates that updating
the priors has a significant impact when the target domain features
high occurrence of anchor words.

Table 3 compares the results of the domain adaptation by updat-
ing multiple existing layers from top to bottom with ρ = 0.5. We
can see adapting the top layer contributes most of the gain. Adapting
more layers only slightly improves the performance.
4.3. Speaker adaptation with prior interpolation
In this section, we evaluate the anchor-based speaker adaptation
more extensively by updating the priors, varying embedding vec-
tors, and additionally updating the softmax layer. Fig. 3 shows the
effect of the prior interpolation for the anchor-based model, L1-7

Table 2: Top 10 word count changes from the SI model to the model
with layer L8 updated (ρ = 1) on Hey Cortana desktop test set.

Ref SI L8 (ρ = 1) L8 (ρ = 0.5)

WER (%) – 16.36 15.92 13.06
have 61 575 111 117
hello 9 492 42 50
what 591 890 1067 764
hey 6212 6132 6306 6230
caught 0 1 102 23
nah 0 42 133 4
ne 0 15 98 3
the 1081 1203 1279 1184
what’s 498 561 609 562
anna 0 13 55 5

Table 3: WERs (%) for the domain adaptation by updating multiple
selected layers with prior interpolation ρ = 0.5.

SI L8 L7-8 L6-8 L1-8
WER (%) 16.36 13.06 12.99 12.98 12.90

Table 4: WERs (%) for the anchor-based speaker adaptation using
i-vector and d-vector embeddings with prior interpolation ρ = 0.5.

Model ivec dvec
L1-7 weight 11.66 11.06
L8 + L1-7 weight 11.42 11.02

dvec weight. When ρ = 0.5, the improvement from adaptation
(11.06% WER) can be further enlarged to 32% relative over the SI
model, or 14% relative over the corresponding adaptation model
without updaint the priors.

Table 4 gives more results. In these experiments, the prior in-
terpolation weight ρ is set to 0.5. From the first row, it is confirmed
that adaptation using the anchor d-vector outperforms the adapta-
tion using the anchor i-vector. In the second row, we extend the
anchor-based adaptation by further updating layer L8. However, for
the i-vector system, this only yields slight gain over the one without
updating L8, and the d-vector system shows no gain. We conjecture
that deeply inserting adaptation layers from bottom to top may not
only normalize the speaker and environmental variations, but also
systematically shift the senone classification boundaries.

5. CONCLUSION

In this paper, we explored two approaches to adapt a multi-style
well-trained model towards its subsidiary domain of Cortana as-
sistant. We demonstrated that prior distribution should be updated
along with the adaptation of the neural network to compensate the
label bias from the development data. Updating the priors may have
a significant impact when the target domain features high occurrence
of anchor words. Moreover, we performed the anchor-based speaker
adaptation by extracting the speaker embeddings from the anchor
segments of ‘Hey Cortana’. We proposed a deep adaptation frame-
work where the anchor embedding controls the adaptation of multi-
ple layers in both weight matrices and biases, along with the update
of prior distribution. Experiments on Hey Cortana desktop test set
showed that directly updating the softmax layer with prior interpola-
tion yielded 20% relative reduction over the SI model. The anchor-
based system using the anchor d-vector and the prior interpolation
achieved 32% relative reduction over the SI model.
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