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ABSTRACT

Teaching plays a very important role in our society, by spreading human knowl-
edge and educating our next generations. A good teacher will select appropriate
teaching materials, impact suitable methodologies, and set up targeted examina-
tions, according to the learning behaviors of the students. In the field of artificial
intelligence, however, one has not fully explored the role of teaching, and pays
most attention to machine learning. In this paper, we argue that equal attention, if
not more, should be paid to teaching, and furthermore, an optimization framework
(instead of heuristics) should be used to obtain good teaching strategies. We call
this approach “learning to teach”. In the approach, two intelligent agents interact
with each other: a student model (which corresponds to the learner in traditional
machine learning algorithms), and a teacher model (which determines the appro-
priate data, loss function, and hypothesis space to facilitate the training of the
student model). The teacher model leverages the feedback from the student model
to optimize its own teaching strategies by means of reinforcement learning, so as
to achieve teacher-student co-evolution. To demonstrate the practical value of our
proposed approach, we take the training of deep neural networks (DNN) as an ex-
ample, and show that by using the learning to teach techniques, we are able to use
much less training data and fewer iterations to achieve almost the same accura-
cy for different kinds of DNN models (e.g., multi-layer perceptron, convolutional
neural networks and recurrent neural networks) under various machine learning
tasks (e.g., image classification and text understanding).

1 INTRODUCTION

The evolution of modern human society heavily depends on its advanced education system. The goal
of education is to equip the students with necessary knowledge and skills, so as to empower them to
further deepen the understanding of the world, and push the frontier of our humanity. In general, the
growth of a student will be influenced by two factors: his/her own learning ability and the teaching
ability of his/her teacher. Among these two, the teacher plays a critical role: an experienced teach-
er enables faster learning of a student through elaborated strategies such as selecting appropriate
teaching materials, imparting suitable methodologies, and setting up targeted examinations.

The training of an agent in artificial intelligence (e.g., an image classification model) is very similar
to the growth of a student in human society. However, after carefully revisiting the literature of ar-
tificial intelligence (AI), we find that the importance role of the teacher has not been fully realized.
Researchers put most of their efforts on the student, e.g., designing various optimization algorithms
to enhance the learning ability of intelligent agents. In contrast, there are very limited attempts on
building good teaching strategies, as briefly summarized below. Machine teaching (Zhu, 2013; 2015;
Liu & Zhu, 2016; Liu et al., 2017) studies the problem of how to identify the smallest training set
to push the machine learning model towards a pre-defined oracle model. Curriculum learning (CL)
(Bengio et al., 2009; Spitkovsky et al., 2010; Graves et al., 2017) and self-paced learning (SPL) (Ku-
mar et al., 2010; Lee & Grauman, 2011; Jiang et al., 2014b) heuristically define the scheduling of
training data in a from-easy-to-hard order. Graduated optimization (Hazan et al., 2016) heuristically
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refines the non-convex loss function in a from-smooth-to-sharp manner, in order to make the ma-
chine learning process more robust. These attempts are either based on task-specific heuristic rules,
or the strong assumption of a pre-known oracle model. In this regard, these works have not reflected
the nature of education and the best practices in human society, where a good teacher is able to adap-
tively adopt different teaching strategies for different students under different circumstances, and is
good at constantly improving his/her own teaching skills based on the feedback from the students.

In this paper, we argue that a formal study on the role of ‘teaching’ in artificial intelligence is
sorely needed. Actually, there could be a natural analogy between teaching in artificial intelligence
and teaching in human society. For example, selecting training data corresponds to choosing right
teaching materials (e.g. textbooks); designing the loss functions corresponds to setting up targeted
examinations; defining the hypothesis space corresponds to imparting the proper methodologies.
Furthermore, an optimization framework (instead of heuristics) should be used to update the teaching
skills based on the feedback from the students, so as to achieve teacher-student co-evolution. Just
as French essayist Joseph Joubert said – “To teach is to learn twice”, we call this new approach
“learning to teach” (L2T).

In the L2T framework, there are two intelligent agents: a student model/agent, corresponding to
the learner in traditional machine learning algorithms, and a teacher model/agent, determining the
appropriate data, loss function, and hypothesis space to facilitate the learning of the student model.
The training phase of L2T contains several episodes of sequential interactions between the teacher
model and the student model. Based on the state information in each step, the teacher model updates
the teaching actions so as to refine the machine learning problem of the student model. The student
model then performs its learning process based on the inputs from the teacher model, and provides
reward signals (e.g., the accuracy on the held-out development set) back to the teacher afterwards.
The teacher model then utilizes such rewards to update its parameters via policy gradient methods
(e.g., REINFORCE (Williams, 1992)). This interactive process is end-to-end trainable, exempt from
the limitations of human-defined heuristics. Once converged, the teacher model could be applied to
new learning scenarios and even new students, without extra efforts on re-training.

To demonstrate the practical value of our proposed approach, we take a specific problem, training
data scheduling, as an example. We show that by using our method to adaptively select the most
suitable training data, we can significantly improve the accuracy and convergence speed of various
neural networks including multi-layer perceptron (MLP), convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), for different applications including image classification and
text understanding. Furthermore, the teacher model obtained by our method from one task can be
smoothly transferred to other tasks. For example, with the teacher model trained on MNIST with
the MLP learner, one can achieve a satisfactory performance on CIFAR-10 only using roughly half
of the training data to train a ResNet model as the student.

2 RELATED WORK

Our work connects two recently emerged trends of machine learning.

First, machine learning has evolved from simple learning to advanced learning. Representative
works include learning to learn (Schmidhuber, 1987; Thrun & Pratt, 2012), or meta learning, which
explores the possibility of automatic learning via transferring generic knowledge learnt from meta
tasks. The two-level setup including meta-level model evolves slowly and task-level model pro-
gresses quickly is regarded to be important in improving AI. Recently meta learning has been widely
adopted in quite a few machine learning scenarios. Several researchers try to design general optimiz-
ers or neural network architectures based on meta learning (Hochreiter et al., 2001; Andrychowicz
et al., 2016; Li & Malik, 2016; Zoph & Le, 2017). Meta learning has also been studied in few-shot
learning scenarios (Santoro et al., 2016; Munkhdalai & Yu, 2017; Finn et al., 2017).

Second, teaching has gradually attracted attention from researchers and been evolved as a new re-
search direction in recent years from its origin several decades ago (Anderson et al., 1985; Goldman
& Kearns, 1995). The recent efforts on teaching can be classified into two categories: machine-
teaching and hardness based methods. The goal of machine teaching (Zhu, 2015; 2013) is to con-
struct a minimal training set for the student model to learn a target model (i.e., an oracle). (Liu
& Zhu, 2016)) define the teaching dimension of several learners. (Liu et al., 2017) extend ma-
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chine teaching from batch settings to iterative setting. But with the strong assumption of oracle
existence, machine teaching is applied in limited areas such as security (Scott Alfeld, 2017) and
human-computer interaction (Suh et al., 2016). Without the assumption of the existence of the o-
racle model, hardness based methods assume that a data order from easy instances to hard ones
benefits learning process. The measure of hardness in curriculum learning (CL) (Bengio et al.,
2009; Spitkovsky et al., 2010; Tsvetkov et al., 2016; Graves et al., 2017) is typically determined by
heuristic understandings of data. As a comparison, self-paced learning (SPL) (Kumar et al., 2010;
Lee & Grauman, 2011; Jiang et al., 2014a;b; Supancic & Ramanan, 2013) quantifies the hardness
by the loss on data. There are parallel related work (Graves et al., 2017) exploring several reward
signals for automatically adapting data distributions along LSTM training. The teaching strategies
in (Graves et al., 2017) are on per-task basis without any generalization ability to other learners.
Furthermore, another literature called ‘pedagogical teaching’ (Shafto et al., 2014), especially its ap-
plication to inverse reinforcement learning (IRL) (Ho et al., 2016) is much closer to our setting in
that the teacher adjusts its behavior in order to facilitate student learning, by communicating with
the student (i.e., showing not doing). However, apart from some differences in experimental setup
and application scenarios, the applications of pedagogical teaching in IRL implies that the teacher
model is still much stronger than the student, similar to the oracle existence assumption since there
is an expert in IRL that gives the (state, action) trajectories based on the optimal policy.

The above works related to teaching have certain limitations. First, while a learning problem (e.g.,
the mathematic definition of binary classification (Mohri et al., 2012)) has been formally defined
and studied, the teaching problem is not formally defined and thus it is difficult to differentiate a
teaching problem from a learning problem. Second, most works rely on heuristic and fixed rules for
teaching, which are task specific and not easy to apply to general teaching tasks.

3 LEARNING TO TEACH

In this section, we will formally define the framework of learning to teach. For simplicity and
without loss of generality, we consider the setting of supervised learning in this section.

3.1 PROBLEM DEFINITION

In supervised learning, we are given an input (feature) space X and an output (label) space Y; for
any sample x drawn from the input space according to a fixed but unknown distribution P (x), a
supervisor returns a label y according to a fixed but unknown conditional distribution P (y|x); the
goal of supervised learning is to choose a function fω(x) with parameter vector ω that can predict
the supervisor’s label in the best possible way. The goodness of a function f with parameter ω is
evaluated by the risk

R(ω) =

∫
M(y, fω(x)) dP (x, y),

whereM(, ) is the metric to evaluate the gap between the label and the prediction of the function.

One needs to consider several practical issues when training a machine learning model. First, as the
joint distribution P (x, y) = P (x)P (y|x) is unknown, the selection of a good function f is based
on a set of training data D = {xi, yi}ni=1. Second, since the metricM(, ) is usually discrete and
difficult to optimize, in training one usually employs a surrogate loss L. Third, to search for a good
function f , a space of hypothesis functions should be given in advance, and one uses Ω to denote
the set of parameters corresponding to the hypothesis space. Thus, the training process actually
corresponds to the following optimization problem:

ω∗ = arg min
ω∈Ω

∑
(x,y)∈D

L(y, fω(x))
∆
= µ(D,L,Ω). (1)

As a summary, in conventional machine learning, a learning algorithm takes the set of training data
D, the function class specified by Ω, and the loss function L as inputs, and outputs a function
with parameter ω∗ by minimizing the empirical risk minω∈Ω

∑
(x,y)∈D L(y, fω(x)). We use µ()

to denote a learning algorithm, and we call it the student model to differentiate from the teaching
algorithm defined as below.

3



Published as a conference paper at ICLR 2018

In contrast to traditional machine learning, which is only concerned with the student model, in the
learning to teach framework, we are also concerned with a teacher model, which tries to provide
appropriate inputs to the student model so that it can achieve low risk functional R(ω) as efficiently
as possible:

• Training data. The teacher model outputs a good training set D ∈ D to facilitate the
training of the student model, whereD is the Borel set on (X ,Y) (i.e., the set of all possible
training set). Data plays a similar role to the teaching materials such as textbooks in human
teaching.

• Loss function. The teacher model designs a good loss function L ∈ L to guide the training
process of the student model, where L is the set of all possible loss functions. As an
analogy, the loss corresponds to the examination criteria for the student in human teaching.

• Hypothesis space. The teacher model defines a good function class Ω ∈ W , such as
linear function class and polynomial function class, for the student model to search from,
where W is the set of all possible hypothesis spaces. This also has a good analogy in
human teaching: in order to solve a mathematical problem, middle school students are only
taught with basic algebraic skills whereas undergraduate students are taught with calculus.
The choice of different hypothesis spaces Ω will lead to different optimization difficulty,
approximation errors, and generalization errors (Mohri et al., 2012).

The goal of the teacher model is to provide D, L and Ω (or any combination of them) to the student
model such that the student model either achieves lower risk R(ω) or progresses as fast as possible.
Taking the first case as an example, the goal of the teacher model, denoted as φ, is:

min
D,L,Ω

M(µ(D,L,Ω), Dtest). (2)

For ease of reference, we use A to represent the output space of the teacher model. It can be any
combination of D, L andW . When A only contains D, we call the special case “data teaching”.

3.2 FRAMEWORK

As reviewed in Section 2, existing works that also consider the teaching strategies simply employ
some heuristic rules and are task specific. In this subsection, we propose to model the learning and
teaching strategies in L2T as a sequential decision process, as elaborated below.

• S is a set of states. The state st ∈ S at each time step t represents the information available
to the teacher model. st is typically constructed from the current student model ft−1 and
the past teaching history of the teacher model.

• At the t-th step, given the state st, the teacher model takes an action at ∈ A. Depending
on specific teaching tasks, at can be (1) a set of training data, (2) a loss function, or (3) a
hypothesis space.

• φθ : S → A is the policy with parameter θ employed by the teacher model to generate its
action: φθ(st) = at. When without confusion, we also call φθ the teacher model.

• The student model takes at as input and outputs a function ft, by using conventional ma-
chine learning technologies.

Teaching Action 𝑎𝑡

Reward Feedback 𝑟𝑡

Next State 𝑠𝑡+1

Student 𝑓𝑡 Teacher 𝜙𝑡

Figure 1: The interactive process between teacher
and learner.

During the training phase of the teacher mod-
el, the teacher model keeps interacting with the
student model. In particular, it provides the stu-
dent model with a subset Atrain from A and
takes the performance of the learned studen-
t model as a feedback to update its own param-
eter. After the convergence of the training pro-
cess, the teacher model can be used to teach ei-
ther new student models, or the same student
models in new learning scenarios such as an-
other subset Atest is provided. Such a gener-
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alization is feasible as long as the state repre-
sentations S are the same across different stu-
dent models and different scenarios. As an ex-
ample case, in the case of data teaching where
A = D, in the training process teacher model
φθ could be optimized via the interaction with
an MLP learner by selecting data from the MNIST dataset (acted as Atrain), and then the learned
teacher model can be applied to teach a CNN student model on the CIFAR-10 dataset (acted as
Atest).
While one can choose different approaches to train the teacher model, in this paper, we employ
reinforcement learning (RL) for this purpose. In this case, the teacher model φθ acts as the policy
interacting with the environment, which is represented by S. After seeing the teaching action at,
the student model updates itself based on at, changes the environment to st+1 and then provides
a reward rt to the teacher model. The reward indicates how good the current student model ft is,
e.g., measured by the evaluation measureM on a held-out validation set. The teacher model then
updates its own parameters in φθ to maximize the accumulated reward. Such an interactive process
between the teacher model and the student model is illustrated in Fig. 1. The interaction process
stops when the student model get converged, forming one episode of the teacher model training.

Mathematically speaking, taking data teaching as an example in which L and Ω are fixed, the
objective of the teacher model in the L2T framework is:

max
θ

∑
t

rt = max
θ

∑
t

r(ft) = max
θ

∑
t

r(µ(φθ(st), L,Ω)), (3)

where st is the t-th step state in the interaction of student model µ and teacher model φ.

4 APPLICATION TO DATA TEACHING FOR NEURAL NETWORKS

In this section, taking data scheduling as an example, we show how to fully leverage the proposed
learning to teach framework to help deep neural network training.1

4.1 STUDENT AND TEACHER SETUP

The student model f is the deep neural network model for several real-world classification tasks.
The evaluation measureM is therefore the accuracy. The student model obeys mini-batch stochastic
gradient descent (SGD) as its learning rule (i.e., the arg min part in Eqn. 1). Mini-batch SGD is a
sequential process, in which mini-batches of data {D1, · · ·Dt, . . . } arrive sequentially in a random
order. HereDt = (d1, · · · , dM ) is the mini-batch of data arriving at the t-th time step and consisting
of M training instances. The teacher model is responsible to provide training data to the student,
i.e, A = D. Considering the sequential nature of SGD, essentially the teacher model wants to
actively determine what is the next mini-batch data Dt for the student. Furthermore, in reality it is
computationally prohibitive to scan over all the remaining training data to select out Dt at each step.
To overcome this, after receiving the randomly arrived mini-batch Dt of M training instances, our
teacher model A dynamically determine which instances in Dt are used for training and the others
are abandoned. By teaching with appropriate data, the teacher aims to help the student model f
make faster progress, as reflected by the rapid improvement ofM(f,Dtest).

4.2 MODELLING THE INTERACTION OF TEACHER AND STUDENT VIA REINFORCEMENT
LEARNING

We introduce in details on how to leverage reinforcement learning to model the interaction between
student and teacher. That is, the concrete concepts for st, at and rt introduced in Subsection 3.2.
For the state representation S, it corresponds to the mini-batch data arrived and current state of
the deep neural network (i.e., the student): st = (Dt, ft). The teacher’s actions are denoted via
a = {am}Mm=1 ∈ {0, 1}M , where M is the batch size and am ∈ {1, 0} denotes whether to keep the

1The experiments on teaching for other scenarios such as choosing L and F are easy to conduct as long as
the teaching domain A is similarly defined.
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m-th data instance in Dt or not2. Those filtered instances will have no effects to student training.
To encourage fast teaching convergence, we set the reward to be related with how fast the student
model learns. Concretely speaking, r is set as the terminal reward, with rt = 0,∀t < T , and
rT is computed in the following way: we set an accuracy threshold τ ∈ [0, 1] and record the first
mini-batch index iτ in which the accuracy on a held-out dev set D′dev exceeds τ , then set rT as
rT = − log(iτ/T

′), where T ′ is a pre-defined maximum iteration number.

The teacher model sample its action at per step by its policy φθ(a|s) with parameters θ to be learnt.
The policy φθ can be any binary classification model, such as logistic regression and deep neural
network. For example, φθ(a|s) = aσ(w · g(s) + b) + (1− a)(1− σ(θg(s) + b)), where σ(·) is the
sigmoid function, θ = {w, b} and g(s) is the feature vector to effectively represent state s, discussed
as below.

State Features: The aim of designing state feature vector g(s) is to effectively and efficiently repre-
sent state s (Graves et al., 2017). Since state s includes both arrived training data and student model,
we adopt three categories features to compose g(s):

• Data features, contain information for data instance, such as its label category (we use 1
of |Y | representations), (for texts) the length of sentence, linguistic features for text seg-
ments (Tsvetkov et al., 2016), or (for images) gradients histogram features (Dalal & Triggs,
2005). Such data features are commonly used in curriculum learning (Bengio et al., 2009;
Tsvetkov et al., 2016).

• Student model features, include the signals reflecting how well current neural network is
trained. We collect several simple features, such as passed mini-batch number (i.e., it-
eration), the average historical training loss and historical validation accuracy. They are
proven to be effective enough to represent the status of current student model.

• Features to represent the combination of both data and learner model. By using these fea-
tures, we target to represent how important the arrived training data is for current leaner.
We mainly use three parts of such signals in our classification tasks: 1) the predicted prob-
abilities of each class; 2) the loss value on that data, which appears frequently in self-paced
learning (Kumar et al., 2010; Jiang et al., 2014a; Sachan & Xing, 2016); 3) the margin
value.

The state features g(s) are computed after the arrival of each mini-batch of training data. For a
concrete feature list, as well as an analysis of different importance of each set of features, the readers
may further refer to Appendix Subsection 8.3.

4.3 OPTIMIZATION BY POLICY GRADIENT

The teacher model is trained by maximizing the expected reward: J(θ) = Eφθ(a|s)[R(s, a)], where
R(s, a) is the state-action value function. Since R(s, a) is non-differentiable w.r.t. θ, we use RE-
INFORCE (Williams, 1992), a likelihood ratio policy gradient algorithm to optimize J(θ) based on
the gradient: ∇θ =

∑T
t=1Eφθ(at|st)[∇θ log φθ(at|st)R(st, at)], which is empirically estimated as

∇θ ≈
∑T
t=1∇θ log φ(at|st)vt. Here vt is the sampled estimation of reward R(st, at) from one

episode execution of the teaching policy φθ(a|s). Given the reward is terminal reward, we finally
have∇θ ≈

∑T
t=1∇θ log φθ(at|st)rT .

2We consider data instances within the same mini-batch are independent with each other, and therefore for
statement simplicity, when the context is clear, a will be used to denote the remain/filter decision for single
data instance, i.e., a ∈ {1, 0}. Similarly, the notation s will sometimes represent the state for only one training
instance.
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5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

5.1.1 TASKS AND STUDENT MODELS

We conduct comprehensive experiments to test the effectiveness of the L2T framework: we consider
three most widely used neural network architectures as the student models: multi-layer perceptron
(MLP), convolutional neural networks (CNNs) and recurrent neural networks (RNNs), and adopt
three popular deep learning tasks: image classification for MNIST, for CIFAR-10 (Krizhevsky,
2009), and sentiment classification for IMDB movie review dataset (Maas et al., 2011).

We use ResNet (He et al., 2015) as the CNN student model and Long-Short-Term-Memory net-
work (Hochreiter & Schmidhuber, 1997) as the RNN student model. Adam (Kingma & Ba, 2014) is
used to train the MLP and RNN student models and Momentum-SGD (Sutskever et al., 2013) is used
for the CNN student model. We guarantee that the final performance of each student model without
teaching matches with previous public reported results. Please refer to Appendix Subsection 8.1 for
more details about student models/tasks setup.

5.1.2 DIFFERENT TEACHING STRATEGIES

• NoTeach. It means training the student model without any teaching strategy, i.e, the con-
ventional machine learning process.

• Self-Paced Learning (SPL) (Kumar et al., 2010). It refers to teaching by the hardness of
data, as reflected by loss value. Mathematically speaking, those training data d satisfying
loss value l(d) > η will be filtered out, where the threshold η grows from smaller to larger
during the training process. To improve the robustness of SPL, following the widely used
trick in common SPL implementation (Jiang et al., 2014b), we filter training data using its
loss rank in one mini-batch rather than the absolute loss value: we filter data instances with
top K largest training loss values within a M -sized mini-batch, where K linearly drops
from M − 1 to 0 during training.

• Learning to Teach (L2T), i.e., the teacher model in L2T framework. The state features
g(s) are constructed according to the principles described in Subsection 4.2. We use a
three-layer neural network as the policy function φ for the teacher model. Appendix Sub-
section 8.2 lists more details of teacher model training.

• RandTeach. To conduct comprehensive comparison, for the L2T model we obtained, we
record the ratio of filtered data instances per epoch, and then randomly filter data in each
epoch according to the logged ratio. In this way we form one more baseline, referred to as
RandTeach.

For all teaching strategies, we make sure that the base neural network model will not be updated
until M un-trained, yet selected data instances are accumulated. That is to guarantee that the
convergence speed is only determined by the quality of taught data, not by different model updating
frequencies. The model is implemented with Theano and run on one NVIDIA Tesla K40 GPU for
each training/testing process.

5.1.3 EVALUATION PROTOCOL

For each teaching strategy in every task, we report the test accuracy with respect to the number of
effective training instances. To demonstrate the robustness of L2T, we set different hyper-parameters
for both L2T and SPL, and then plot the curve for each hyper-parameter configuration. For L2T, we
vary the validation threshold τ in reward computation. For SPL, we test different speeds to include
all the training data during training process. Such a speed is characterized by a pre-defined epoch
number E, which means all the training data will gradually be included (i.e., K linearly drops from
M − 1 to 0) among the first E epochs. All the experimental curves reported below are the average
results of 5 repeated runs.

To test the generalization ability of the teacher model learnt in the L2T framework, we consider two
test settings:
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• Teaching a new student with the same model architecture (see Subsection 5.2). It refers
to train the teacher model using a student model, and then fixed the teacher model to train
a new student model with the same architecture. That is, the student model used in the
training phase of the teacher model and the student model used in the test phase of the
teacher model share the same architecture. The difference between the two student models
is that they use different datasets for training. For example, we use the first half of MNIST
dataset to train the teacher model for a CNN learner, and apply the teacher to train the same
CNN student model on the second half.

• Teaching a new student with different model architecture (see Subsection 5.3). Dif-
ferent from the first setting, the two student models in the training and test phases of the
teacher model are of different architectures. For example, we use MNIST to train the teach-
er model for a MLP student, but fix the teacher model to teach a CNN model on CIFAR-10.

5.2 TEACHING A NEW STUDENT WITH THE SAME MODEL ARCHITECTURE

In this setting, we have a training set Dtrain and a test set Dtest for each task. We evenly split the
training data Dtrain in each task into two folds: Dteacher

train and Dstudent
train . We conduct experiments

as follows.

Step 1: The first fold Dteacher
train is used to train the teacher model, with 5% of Dteacher

train acting as a
held-out set D′dev used to compute reward for the teacher model during training.

Step 2: After the teacher model is well trained usingDteacher
train , it is fixed to teach and train the student

model using the second fold Dstudent
train . The other teaching strategies listed in Subsection 5.1.2 are

also used to teach the student model on Dstudent
train .

Step 3: The student model is tested on the test set Dtest. The accuracy curve of the student model
accompany with different teaching strategies on Dtest is plotted in Fig. 2.
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Figure 2: Test accuracy curves of different teaching strategies on MNIST(a), CIFAR-10(b) and
IMDB(c). Different hyper-parameter settings are included: The numbers in L2T-τ and SPL-E
respectively represent the two hyper-parameters in L2T and SPL introduced in Subsection 5.1.3.

We can observe that L2T achieves the best convergence speed, significantly better than other teach-
ing strategies in all the three tasks. For example, in MNIST experiments 2(a), L2T achieves a fairly
good classification accuracy (e.g, 0.96) with roughly 45% training data of the student model without
any data teaching strategy, i.e., the baseline NoTeach. Such a reduction ratio of training data for
CIFAR-10 and IMDB is about 50% and 75% respectively. Therefore, we conclude that L2T per-
forms quite well when its learnt teacher model is used to teach a new student model with the same
architecture.

5.2.1 FILTRATION NUMBER ANALYSIS

To further investigate the learnt teacher model in L2T, in Fig. 3 we show the number of training data
it decides to filter in each epoch in Step 2 of the student model training.

There are several interesting observations: (1) For the two image recognition tasks L2T acts quite
differently from CL/SPL: as training goes on, more and more data will be filtered. Meanwhile,
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(a) MNIST
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(b) CIFAR-10
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(c) IMDB

Figure 3: The number of instances filtered by L2T teacher in each training epoch of MNIST(a),
CIFAR-10(b) and IMDB(c). Different curves denote the number of filtered data corresponding to
different hardness levels, as indicated by the ranks of loss on that filtered data instance within its
mini-batch. Concretely speaking, we evenly partition all the rank values {1, 2, · · · ,M}, where M
is the batch size, into five buckets. Bucket 1 denotes the hardest data whose loss values are largest
among the instances in each mini-batch, while bucket 5 is the easiest.
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(a) ResNet32 → ResNet110
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(b) MNIST → CIFAR-10
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(c) CIFAR10→MNIST

Figure 4: (a):Apply the teacher trained based on ResNet32 to teach ResNet110 on CIFAR-10. (b):
Apply the teacher trained based on MLP for MNIST to train CNN for CIFAR-10. (c):Apply the
teacher trained based on CNN for CIFAR-10 to train MLP for MNIST.

hard data (the purple curve) tend to be kept as teaching materials, while easy ones (the green and
blue lines) will probably be filtered. Such a result suggests that the student models for MNIST
and CIFAR-10 favor harder data as training goes on, whereas those less informative data instances
with smaller loss values are comparatively redundant and negligible. (2) In contrast, L2T behaves
similarly to CL/SPL for the LSTM student model on IMDB by teaching from easy to hard order.
This observation is consistent with previous findings (Zaremba & Sutskever, 2014). Our intuitive
explanation is that harder instances on one aspect may affect the initialization of LSTM (Dai & Le,
2015; Wang & Tian, 2016), and on the other aspect are likely to contain noises. Comparatively
speaking, MLP and CNN student models are relatively easier to initialize and image data instances
contain less noise. Thus, for the two image tasks, the teacher model can provide hard instances
to the student model for training from the very beginning, while for the natural language task, the
student model needs to start from easy instances. The different teaching behaviors of L2T in image
and language tasks demonstrate its adaptivity and applicability to different learning tasks, and seems
to suggest the advantage of learning to teach over fixed/heuristic teaching rules.

5.3 TEACHING A NEW STUDENT WITH DIFFERENT ARCHITECTURE

In this subsection, we consider more difficult, yet practical scenarios, in which the teacher model is
trained through the interaction with a student model and then used to teach another student model
with different model architecture.

5.3.1 RESTNET32→ RESNET110 ON CIFAR-10

The first scenario is using the teacher model trained with ResNet32 as student on the first half
of CIFAR-10 training set, to teach a much deeper student model, ResNet110, on the second half
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of CIFAR-10 training set. The accuracy curve on the test set is shown in Fig. 4(a). Apparently,
L2T effectively collects the knowledge in teaching the student with smaller model, and successfully
transfers it to the student with much bigger model capacity.

5.3.2 MLP ON MNIST↔ CNN ON CIFAR-10

The second scenario is even more aggressive: We first train the teacher model based on the inter-
action with a MLP student model using the MNIST dataset, and then apply it to teach a ResNet32
student model on the CIFAR-10 dataset. The accuracy curve of the ResNet32 model on the CIAR-
10 test set is shown in Fig. 4(b). Similarly, we conduct experiments in the reverse direction, and the
results are shown in Fig. 4(c). Again, L2T succeeds in such difficult scenarios, demonstrating its
powerful generalization ability. In particular, the teacher model trained on CIFAR-10 significantly
boosts the convergence of the MLP student model trained with MNIST (show in Fig. 4(c)).

5.3.3 WALL-CLOCK TIME ANALYSIS

Different from previous curves showing the performance w.r.t. the number of effective training data,
we in Fig. 5 show the learning curves of training a ResNet32 model on CIFAR-10 using different
teaching strategies, but varying with wall-clock time. The teacher model in L2T is trained on MNIST
with MLP student models, i.e., the same one with Fig. 4(b). Apparently, even with the process of
obtaining all the state features, L2T also achieves training time reduction for the student model
through providing high-quality training data.
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Figure 5: Learning curves w.r.t. wall-clock time of training ResNet32 student model on CIFAR-10
under different teaching strategies.

5.4 TEACHING FOR IMPROVING ACCURACY

In this subsection, apart from boosting the convergence speed, we show that the teacher model in
L2T also helps to improve the final accuracy. The student model is the LSTM network trained on
IMDB. We first train the teacher model on half of the training data of IMDB dataset. The terminal
reward is defined as the dev set accuracy after the student model is trained for 15 epochs. Then
the teacher model is applied to train the student model on the full dataset till its convergence (as
indicated by that the dev set accuracy stops to increase). The state features are kept the same as
those in previous experiments. The other settings in student model training such as LSTM model
sizes are the same as previous work (Dai & Le, 2015) (see subsection 8.1 for more details).

The results are shown in Table 1. Note that the baseline accuracy of NoTeach is comparable to the
result reported in (Dai & Le, 2015). We can see that L2T achieves better classification accuracy
for training LSTM network, surpassing the SPL baseline by more than 0.6 point (with p value <
0.001).
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Teaching Policy NoTeach SPL L2T
Accuracy 88.54% 88.80% 89.46%

Table 1: Accuracy of IMDB sentiment classification using different teaching policies.

6 CONCLUSION

Inspired by the education systems in human society, we have proposed the framework of learning
to teach, an end-to-end trainable method to automate the teaching process. Comprehensive experi-
ments on several real-world tasks have demonstrated the effectiveness of the framework.

There are many directions to explore for learning to teach in future. First, we have studied the
application of L2T to image classification and sentiment analysis. We will study more applications
such as machine translation and speech recognition. Second, we have focused on data teaching
in this work. As stated in Subsection 3.1, we plan to investigate other teaching problems such as
loss function teaching and hypothesis space teaching. Third, we have empirically verified the L2T
framework through experiments. It is interesting to build theoretical foundations for learning to
teach, such as the consistence and generalization of the teacher model.
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8 APPENDIX

8.1 TASKS AND STUDENTS SETUP

8.1.1 SETTINGS FOR TRAINING MLP ON MNIST

MNIST dataset consists of 60k training and 10k testing images of handwritten digits from 10 cate-
gories (i.e., 0, · · · , 9). SGD with momentum is used to perform MLP model training, and mini-batch
size is set as 20. The base model is a three-layer feedforward neural network with 784/500/10 neu-
rons in its input/hidden/output layers. tanh acts as the activation function for the hidden layer.
Cross-entropy loss is used for training.
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8.1.2 SETTINGS FOR TRAINING CNN ON CIFAR-10

Cifar10 is a widely used dataset for image classification, which contains 60k RGB images of size
32 × 32 categorized into 10 classes. The dataset is partitioned into a training set with 50k images
and a test set with 10k images. Furthermore, data augmentation is applied to every training image,
with padding 4 pixels to each side and randomly sampling a 32× 32 crop. ResNet (He et al., 2015),
a well-known effective CNN model for image recognition, is adopted to perform classification on
CIFAR-10. Concretely speaking, we use ResNet32 and ResNet110 models, respectively containing
32 and 110 layers. The code is based on a public Lasagne implementation 3. The mini-batch size is
set as M = 128 and Momentum-SGD Sutskever et al. (2013) is used as the optimization algorithm.
Following the learning rate scheduling strategy in the original paper (He et al., 2015), we set the
initial learning rate as 0.1 and multiply it by a factor of 0.1 after the 32k-th and 48k-th model
update. Training in this way the test accuracy reaches about 92.4% and 93.2%, respectively for
ResNet32 and ResNet110.

8.1.3 SETTINGS FOR TRAINING LSTM ON IMDB

IMDB 4 is a binary sentiment classification dataset consisting of 50k movie review comments with
positive/negative sentiment labels (Maas et al., 2011), which are evenly separated (i.e., 25k/25k)
as train/test set. The sentences in IMDB dataset are significantly long, with average word token
number as 281. Top 10k most frequent words are selected as the dictionary while the others are
replaced with a special token UNK. We apply LSTM (Hochreiter & Schmidhuber, 1997) RNN to
each sentence, taking randomly initialized word embedding vectors as input, and the last hidden
state of LSTM is fed into a logistic regression classifier to predict the sentiment label (Dai & Le,
2015). The size of word embedding in RNN is 256, the size of hidden state of RNN is 512, and the
mini-batch size is set as M = 16. Adam (Kingma & Ba, 2014) is used to perform LSTM model
training with early stopping based on validation set accuracy. The test accuracy is roughly 88.5%,
matching the public result in previous work (Dai & Le, 2015).

8.2 DETAILS FOR THE TEACHER MODELS IN L2T

In L2T, we use a three-layer neural network, with layer sizes d × 12 × 1, as the teacher model
φθ(a|s). d is the dimension of g(s) and tanh is the activation function for the middle layer. All the
weight values in this network are uniformly initialized between (−0.01, 0.01). The bias terms are
all set as 0 except for the bias in the last-layer which is initialized as 2, with the goal of not filtering
too much data in the early age. Adam (Kingma & Ba, 2014) is leveraged to optimize the policy. To
reduce estimation variance, a moving average of the historical reward values in previous episodes is
set as a reward baseline for the current episode (Weaver & Tao, 2001). We train the teacher model
till convergence, i.e., the terminal reward rT stops improving for several episodes.

8.3 STATE FEATURE ANALYSIS

In this section, we give a detailed list for all the features used to construct the state feature vector
g(s) (Subsection 8.3.1), as well as their different importance in making a qualified L2T policy
(Subsection 8.3.2).

8.3.1 STATE FEATURES g(s)

Corresponding to the feature description in Section 4.2 of the paper, we list details of the aforemen-
tioned three categories of the features:

• Data features, mainly containing the label information of the training data. For all the three
tasks, we use 1 of |Y | representations to characterize the label. Additionally, the sequence
length (i.e., word token number), divided by a pre-define maximum token number 500 and
truncated to maximum value 1.0 if exceeded, is set as an additional data feature for IMDB
dataset.

3https://github.com/Lasagne/Recipes/blob/master/papers/deep_residual_
learning/Deep_Residual_Learning_CIFAR-10.py

4http://ai.stanford.edu/˜amaas/data/sentiment/
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• Model features. We use three signals to represent the status of current modelWt: 1) current
iteration number; 2) the averaged training loss over past iterations; 3) the best validation
loss so far. All the three signals are respectively divided by pre-defined maximum number
to constrain their values in the interval [0, 1].

• The combined features. Three parts of signals are used in our classification tasks: 1) the
predicted probabilities of each class; 2) the loss value on that data, i.e, − logPy , which ap-
pears frequently in self-paced learning algorithms (Kumar et al., 2010; Jiang et al., 2014a;
Sachan & Xing, 2016); 3) the margin value on the training instance (x, y), defined as
P (y|x) −maxy′ 6=y P (y′|x) (Cortes et al., 2013). For the loss and margin features, to im-
prove stability, we use their (normalized) ranks in the mini-batch, rather than the original
values.

Based on the above designs, the dimensions of the state feature vector g(s) for the three tasks are
respectively: a) 25 = 10 (Data features) +3 (Model features)+12 (Combined features) for MNIST;
b) 25 = 10 + 3 + 12 for CIFAR-10; c) 10 = 3 (1 of |Y | = 2 representation + sequence length) +3
(Model features)+ 4 (Combined features) for IMDB. The feature vector g(s) is further normalized
to satisfy ||g(s)||2 = 1.

8.3.2 IMPORTANCE ANALYSIS FOR DIFFERENT FEATURES

To better understand how different features play effects in constructing a good L2T policy, we con-
duct a systematic studies on the importance of different features. Concretely speaking, for all the
three categories of features, we respectively remove each of them, and use the remaining two parts as
state features g(s) to re-train/test the L2T policy. The base task is training MLP on MNIST dataset
since it takes shortest time among all the three tasks in our experiments. The experimental results
are shown in Fig. 6.
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Figure 6: Feature analysis for L2T on MNIST dataset. The learning curves of NoTeach, and L2T
with all the three parts of features remained, are also included.

We have the following observations from Fig. 6.

• The model features and the combined features are critical to the success of L2T policy, as
shown by the poor convergence when either of the two are removed. Actually without any
category of the two subset of features, the performance of SGD with L2T decreases to that
of SGD without data scheduling.

• The data features are relatively less important to L2T. By removing the data features, i.e.,
the label information of the data, the performance of SGD with L2T drops but not by much.
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Figure 7: (a):The reward curves in each episode of teacher model training. (b): The L2 norm of
teacher model weight changes (∆θ) in each episode of teacher model training.

8.4 THE CONVERGENCE OF TEACHER MODEL TRAINING

In this subsection, we show the convergence property of training teacher model in L2T. Similar to
8.3.2, we investigate the training of the teacher model used to supervise the MLP on MNIST as the
student. In Fig.7(a), we plot the terminal reward (i.e., rT = − log(iτ/T

′) in 4.2) in each episode of
teacher model training. In Fig.7(b), we plot the L2 norm of the teacher model parameter updates in
each episode(i.e., ∆θ(t) = θ(t + 1) − θ(t) for each episode t). From both figures, it can be seen
that the teacher model trained after 50 episodes is ready to be deployed since the reward is much
larger than that of scratch (shown in Fig. 7(a)) and the model variation is small afterwards (shown
in Fig. 7(b)).
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