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A Game Theoretic Model for the Formation of
Navigable Small-World Networks — the Tradeoff between Distance
and Reciprocity
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Kleinberg proposed a family of small-world networks to explain the navigability of large-scale real-world
social networks. However, the underlying mechanism that drives real networks to be navigable is not yet
well understood. In this paper, we present a game theoretic model for the formation of navigable small world
networks. We model the network formation as a game called the Distance-Reciprocity Balanced (DRB) game
in which people seek for both high reciprocity and long-distance relationships. We show that the game has
only two Nash equilibria: One is the navigable small-world network, and the other is the random network
in which each node connects with each other node with equal probability, and any other network state can
reach the navigable small world via a sequence of best-response moves of nodes. We further show that the
navigable small world equilibrium is very stable — (a) no collusion of any size would benefit from deviating
from it; and (b) after an arbitrary deviations of a large random set of nodes, the network would return to
the navigable small world as soon as every node takes one best-response step. In contrast, for the random
network, a small group collusion or random perturbations is guaranteed to bring the network out of the
random-network equilibrium and move to the navigable network as soon as every node takes one best-
response step. Moreover, we show that navigable small world equilibrium has much better social welfare
than the random network, and provide the price-of-anarchy and price-of-stability results of the game. Our
empirical evaluation further demonstrates that the system always converges to the navigable network even
when limited or no information about other players’ strategies is available, and the DRB game simulated on
real-world networks leads to navigability characteristic that is very close to that of the real networks, even
though the real-world networks have non-uniform population distributions different from the Kleinberg’s
small-world model. Our theoretical and empirical analyses provide important new insight on the connection
between distance, reciprocity and navigability in social networks.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Network problems

Additional Key Words and Phrases: Small-world network, game theory, navigability, reciprocity

1 INTRODUCTION
In 1967, Milgram published his work on the now famous small-world experiment [Mil-
gram 1967]: he asked test subjects to forward a letter to their friends in order for the
letter to reach a person not known to the initiator of the letter. He found that on av-
erage it took only six hops to connect two people in U.S., which is often attributed as
the source of the popular term six-degree of separation. This seminal work inspired
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numerous studies on the small-world phenomenon and small-world models, which last
till the present day of information age.

In [Watts and Strogatz 1998] Watts and Strogatz investigated a number of real-
world networks such as film actor networks and power grids, and showed that many
networks have both low diameter and high clustering (meaning two neighbors of a
node are likely to be neighbors of each other), which is different from randomly wired
networks. They thus proposed a small-world model in which nodes are first placed on a
ring or a grid with local connections, and then some connections are randomly rewired
to connect to long-range contacts in the network. The local and long-range connections
can also be viewed as strong ties and weak ties respectively in social relationships
originally proposed by Granovetter [Granovetter 1973; Granovetter 1974].

Kleinberg notices an important discrepancy between the small-world model of Watts
and Strogatz and the original Milgram experiment: the latter shows not only that the
average distance between nodes in the network are small, but also that a decentralized
routing algorithm using only local information can construct short paths. Here, we call
a routing algorithm decentralized in that given a source node u and a destination node
v, the algorithm attempts to come up with a path u = x0, x1, x2, . . . , xm = v, only using
the acquaintance relationships of these m intermediate nodes x0, x1, x2, . . . , xm−1. By
contrast, a centralised algorithm (e.g., Dijkstra’s algorithm) requires the nodes to know
full network (i.e., the acquaintance relationships among all people in the world) to find
an optimal route, but obviously they cannot know this in real networks.

To address this issue, Kleinberg adjusted the Watts-Strogatz model so that the long-
range connections are selected not uniformly at random among all nodes but inversely
proportional to a power of the grid distance between the two end points of the connec-
tion [Kleinberg 2002]. More specifically, Kleinberg modeled a social network as com-
posed of nk nodes on a k-dimensional grid, with each node having local contacts to
other nodes in its immediate geographic neighborhood. Each node u also establishes a
number of long-range contacts, and a long-range link from u to v is established with
probability proportional to dM (u, v)−r, where dM (u, v) is the grid distance between u
and v, and r ≥ 0 is the model parameter indicating how likely nodes prefer to connect
to remote nodes, which we call connection preference in the paper. The Watts-Strogatz
model corresponds to the case of r = 0, and as r increases, nodes are more likely to
connect to other nodes in their vicinity. Kleinberg modeled Milgram’s experiment as
decentralized greedy routing in such networks, in which each node only forwards mes-
sages to one of its neighbors with coordinate closest to the target node. He showed that
when r = k, greedy routing can be done efficiently in O(log2 n) time in expectation, but
for any r 6= k, it requires Ω(nc) time for some constant c depending on r, exponentially
worse than the case of r = k. Therefore, the small world at the critical value of r = k
is meant to model the real-world navigable network validated by Milgram and others’
experiments, and we call it the navigable small-world network.

After Kleinberg’s theoretical analysis, a number of empirical studies have been con-
ducted to verify if real networks indeed have connection preferences close to the critical
value that allows efficient greedy routing [Liben-Nowell et al. 2005; Adamic and Adar
2005; Cho et al. 2011; Goldenberg and Levy 2009; Schaller and Latank 1995]. Since
real population is not evenly distributed geographically as in the Kleinberg’s model,
Liben-Nowell et al. [Liben-Nowell et al. 2005] proposed to use the fractional dimen-
sion D, defined as the best value to fit |{w : dM (u,w) ≤ dM (u, v)}| = c · dM (u, v)D,
averaged over all u and v. They showed that when the connection preference r = D,
the network is navigable. They then studied a network of 495,836 LiveJournal user-
s in the continental United States who list their hometowns, and find that D ≈ 0.8
while r = 1.2, reasonably close to D. We apply the same approach to a ten million
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node Renren network [Jiang et al. 2010; Yang et al. 2011], one of the largest online
social networks in China. We map the hometown listed in users’ profiles to (longitude,
latitude) coordinates. The resolution of our geographic data is limited to the level of
towns and cities and thus we cannot get the exact distance of nodes within 10km. We
found that D ≈ 1 (Figure 1) and r ≈ 0.9 (Figure 2) in the Renren network. Other s-
tudies [Adamic and Adar 2005; Cho et al. 2011; Goldenberg and Levy 2009; Schaller
and Latank 1995] also reported connection preference r to be close to 1 in other online
social networks (including Gowalla, Brightkite and Facebook). Even though they did
not report the fractional dimension, from both the LiveJournal data in [Liben-Nowell
et al. 2005] and our Renren data, it is reasonable to believe that the fractional dimen-
sion is also close to 1. Therefore, empirical evidences all suggest that the real-world
social networks indeed have connection preference close to the critical value and the
network is navigable.

A natural question to ask next is how navigable networks naturally emerge? What
are the forces that make the connection preference become close to the critical value?
As Kleinberg pointed out in his survey paper [Kleinberg 2006] when talking about the
above striking coincidence between theoretical prediction and empirical observation,
“it suggests that there may be deeper phenomena yet to be discovered here”. There
are several studies trying to explain the emergence of navigable small-world networks
[Mathias and Gopal 2001; Hu et al. 2011; Clauset and Moore 2003; Sandberg and
Clarke 2006; Chaintreau et al. 2008], mostly by modeling certain underlying node or
link dynamics (see additional related work below for more details).

In this paper, we tackle the problem in a novel way using a game-theoretic approach,
which is reasonable in modeling individual behaviors in social networks without cen-
tral coordination. One key insight we have is that connection preference r is not a
global preference but individual’s own preference — some prefer to connect to more
faraway nodes while others prefer to connect to nearby nodes. Therefore, we establish
small-world formation games where individual node u’s strategy is its own connection
preference ru (Section 2). This game formulation is different from most existing net-
work formation games where individuals’ strategies are creating actual links in the
network (c.f. [Tardos and Wexler 2007]). It allows us to directly explore the entire pa-
rameter space of connection preferences and answer the question on why nodes end up
choosing a particular parameter setting leading to the navigable small world.

In terms of payoff functions, we first consider minimizing greedy routing distance to
other nodes as the payoff, since it directly corresponds to the goal of navigable network-
s. However, Gulyás et al. [Gulyás et al. 2012] prove that with this payoff the navigable
networks cannot emerge as a equilibrium for the one-dimensional case. Our empirical
analysis also indicates that nodes will converge to random networks (ru = 0,∀u) rather
than navigable networks for higher dimensions. Our empirical analysis further shows
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that if we adjust the payoff with a cost proportional to the grid distance of remote
connections, the equilibria are sensitive to the cost factor.

The above unsuccessful attempt suggests that besides the goal of shortening dis-
tance to remote nodes, some other natural objective may be in play. Reciprocity is
regarded as a basic mechanism that creates stable social relationships in a person’s
life [Gouldner 1960]. A number of prior works [Java et al. 2007; Liben-Nowell et al.
2005; Mislove et al. 2007] also suggest that people seek reciprocal relationships in on-
line social networks. Therefore, we propose a payoff function that is the product of aver-
age distance of nodes to their long-range contacts and the probability of forming recip-
rocal relationship with long-range contacts. We call this game the distance-reciprocity
balanced (DRB) game. In practice, increasing relationship distance captures that indi-
viduals attempt to create social bridges by linking to “distant people”, which can help
them search for and obtain new resources. Meanwhile, increasing reciprocity captures
that individuals look at social bonds by linking to “people like them”, which could help
them preserve or maintain resources. Therefore, the DRB game is natural since it cap-
tures sources of bridging and bonding social capital in building social integration and
solidarity [Gittell and Vidal 1998]. We further allow heterogeneous utility function-
s in that different users may weigh the tradeoff between distance and reciprocity in
different ways.

Even though the payoff function for the DRB game is very simple, our analysis
demonstrates that it is extremely effective in producing navigable small-world net-
works as the equilibrium structure. In theoretical analysis (Section 3), we first show
that navigable small world (ru = k,∀u) and random small world (ru = 0,∀u) are the
only two Nash equilibria of the DRB game, despite the flexible and heterogeneous util-
ity functions. Moreover, for any strategy profile that is not the random network, it can
always reach the navigable small world through a cascade of nearby nodes adopting
strategy k in a best-response dynamic.

In terms of the stability of NE, we prove that the navigable small world is a strong
Nash equilibrium, which means that it tolerates collusion of any size trying to gain
better payoff. Moreover, it also tolerates arbitrary deviations (without the objective
of increasing anyone’s payoff) of large groups of random deviators, since the system
is guaranteed to return back to the navigable NE as soon as every node takes one
best-response step. In contrast, random small world can be moved away from its equi-
librium state by either a random perturbation of one node or a collusion of two near-
by nodes, and when a small random set of nodes perturb to different strategies, we
prove that the system is guaranteed to converge to the navigable small world as soon
as every node takes one best-response step. Our theoretical analysis provides strong
support that the navigable small-world NE is the unique and stable equilibrium that
would naturally emerge in the DRB game.

We further examine the global function of social welfare (i.e., the total payoff of al-
l nodes) and how selfish behavior of users affect the social welfare. Interestingly, we
find that the global optimum can be reached by a fraction of nodes sacrificing their
distance payoff to focus on reciprocity (by selecting a strategy greater than k) so that
their neighbors could select strategy k to reach a high balanced payoff of both distance
and reciprocity. This situation reminds us social relationships generated by different
social status (e.g. employee-employer relationship) or by tight bonds with mutual un-
derstanding and support (such as marriages). Next we compare the social welfare of
navigable and random small-world networks with the global optimum through the s-
tandard price of anarchy (PoA) and price of stability (PoS) metrics, which is the ratio
of social welfare between the global optimum and the worst (or the best) Nash equilib-
rium, respectively. We show that navigable network has the better social welfare, and
being only logarithmically worse than the global optimum.
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To complement our theoretical analysis, we conduct empirical evaluations to cov-
er more realistic game scenarios not covered by our theoretical analysis (Section 5).
We first test random perturbation cases and show that arbitrary initial profiles al-
ways converge to the navigable equilibrium in a few steps, while a very small random
perturbation (less than theoretical prediction) of the random small world causes it to
quickly converge back to the navigable equilibrium. Next, we simulate more realis-
tic scenarios where nodes have limited or no information about other nodes’ strate-
gies. We show that if they only learn their friends’ strategies (with some noise), the
system still converges close to the navigable equilibrium in a small number of step-
s. Further, even when the node has no information about other players’ strategies
and can only use its obtained payoff as feedback to search for the best strategy, the
system still moves close to the navigable equilibrium within a few hundred steps (in
the 100 × 100 grid). Finally we simulate the DRB game on Renren and LiveJournal
networks, which have non-uniform population distributions different from Kleinberg’s
grid-based small-world model. Our simulation results show that in both networks, the
game quickly converges to an equilibrium where connection preferences of users are
close to the empirical ones.

In summary, our contributions are the following: (a) we propose the small-world
formation game and design a balanced distance-reciprocity payoff function to explain
the navigability of real social networks; (b) we conduct comprehensive theoretical and
empirical analysis to demonstrate that navigable small world is the unique robust
equilibrium that would naturally emerge from the game under both random perturba-
tion and strategic collusions; and (c) our game reveals a new insight between distance,
reciprocity and navigability in social networks, which may help future research in un-
covering deeper phenomena in navigable social networks. To our best knowledge, this
is the first game theoretic study on the emergence of navigable small-world networks,
and the first study that linking relationship reciprocity with network navigability.
Additional related work. We provide additional details of prior works on explain-
ing the emergence of navigable small-world networks, and other related studies not
covered in the introduction.

Some studies try to explain navigability by assuming that nodes form links to opti-
mize for a particular property. Mathias et al. [Mathias and Gopal 2001] assume that
users try to make trade-off between wiring and connectivity. Hu et al. [Hu et al. 2011]
assume that people try to maximize the entropy under a constraint on the total dis-
tances of their long-range contacts. These works rely on simulations to study the net-
work dynamics. Moreover, the navigability of a network is sensitive to the weight of
wiring cost or the distance constraint, and it is unlikely that navigable networks as
defined by Kleinberg [Kleinberg 2002] would naturally emerge.

Another type of works propose node/link dynamics that converge to navigable small-
world networks. Clauset and Moore [Clauset and Moore 2003] propose a rewiring dy-
namic modeling a Web surfer such that if the surfer does not find what she wants in a
few steps of greedy search, she would rewire her long-range contact to the current end
node of the greedy search. They use simulations to demonstrate that a network close
to Kleinberg’s navigable small world will emerge after long enough rewiring rounds.
Sandberg and Clarke [Sandberg and Clarke 2006] propose another rewiring dynamic
where with an independent probability of p each node on a greedy search path would
rewire their long-range contacts to the search target, and provide a partial analysis
and simulations showing that the dynamic converges to a network close to the nav-
igable small world. Chaintreau et al. [Chaintreau et al. 2008] use a move-and-forget
mobility model, in which a token starting from each node conducts a random walk
(move) and may also go back to the starting point (forget), and use the distribution of
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the token on the grid as the distribution of the long-range contacts of the starting node.
They provide theoretical analysis showing that there exists a critical forgetting value
for which the move-and-forget model provides navigability. However, the underlying
mechanism driving the critical value to be chosen in practice remains unclear.

The approach taken by these studies can be viewed as orthogonal and complemen-
tary to our approach: they aim at using natural dynamics (rewiring or mobility dynam-
ics) to explain navigable small world, while we focus on directly exploring the entire
parameter space of connection preferences of nodes and use game theoretic approach
to show, both theoretically and empirically, that the nodes would naturally choose their
connection preferences to form the navigable small world. The connection preference
can be considered a higher level decision-making variable for individuals that push-
es them to make long-range connections over time. In particular, selecting connection
preference captures the people’s process of cognitively creating behavioral plans (i.e.,
intensions) on how to distribute the finite time and effort among nodes of different
distance. Once the preference is selected, the players would engage in activities such
as rewiring or mobility dynamics to create long-range contacts with the correspond-
ing connection intension. Moreover, all the prior studies only show that they converge
approximately to the navigable small world, while in our game the navigable small
world is precisely the only robust equilibrium. Finally, none of these works introduce
reciprocity in their model and we are the first to link reciprocity with navigability of
the small world.

Some studies use hyperbolic metric spaces or graphs to try to explain navigability
in small-world networks (e.g. [Boguñá et al. 2009; Papadopoulos et al. 2010; Krioukov
et al. 2010; Krioukov et al. 2009; Chen et al. 2013; Gulyás et al. 2015]). However, they
do not explain why connection preferences in real networks are around the critical
value and how navigable networks naturally emerge. In particular, Chen et al. [Chen
et al. 2013] show that the navigable small world in Kleinberg’s model does not have
good hyperbolicity. Most recently, Gulyás et al. [Gulyás et al. 2015] propose a game
where each player tries to minimize the number of links in order to be able to greedily
route to all other nodes. The equilibrium of the game is a scale-free network whose
degree distribution follows a power law. However, this game is not intended and does
not explain the emergence of navigable small-world network validated by Milgram and
others’ experiments, where greedy routing can be done efficiently in O(log2 n) time in
expectation, and relationship reciprocity is not included in any aspect of the game.

2 SMALL-WORLD FORMATION GAMES
In this section, we first present the game formulation based on Kleinberg’s small-world
model, and we then study the payoff function which is key to understanding the un-
derlying mechanisms that give rise to navigable small world networks.

2.1 Game Formulation based on Kleinberg’s Small-World Model

Small-world model. Let V = {(i, j) : i, j ∈ [n] = {1, 2, . . . , n}} be the set of n2 nodes
forming an n × n grid. For convenience, we consider the grid with wrap-around edges
connecting the nodes on the two opposite sides, making it a torus. For any two nodes
u = (iu, ju) and v = (iv, jv) on this wrap-around grid, the grid distance or Manhattan
distance between u and v is defined as dM (u, v) = min{|iv− iu|, n−|iv− iu|}+min{|jv−
ju|, n− |jv − ju|}.

The Kleinberg’s small-world model has two universal constants p, q ≥ 1, such that
(a) each node has undirected edges connecting to all other nodes within lattice distance
p, called its local contacts, and (b) each node has q random directed edges connecting
to possibly faraway nodes in the grid called its long-range contacts, drawn from the
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following distribution. Each node u has a connection preference parameter ru ≥ 0,
such that the i-th long-range edge from u has endpoint v with probability proportional
to 1/dM (u, v)ru , that is, with probability pu(v, ru) = dM (u, v)−ru/c(ru), where c(ru) =∑
∀v 6=u dM (u, v)−ru is the normalization constant. Let r be the vector of ru values on all

nodes. We use r ≡ s to denote ru = s,∀u ∈ V .
The above model can be easily extended to k dimensional grid (with wraparound) for

any k = 1, 2, 3, . . ., where each long range contact is still established with probability
proportional to 1/dM (u, v)ru . We use K(n, k, p, q, r) to refer to the class of Kleinberg
random graphs with parameters n, k, p, q, and r.
Small-world formation game. A game is described by a system of players, strate-
gies and payoffs. Connection preference ru in Kleinberg’s model reflects u’s intention
in establishing long-range contacts: When ru = 0, u chooses its long-range contacts
uniformly among all nodes in the grid; as ru increases, the long-range contacts of u be-
come increasingly clustered in its vicinity on the grid. Our insight is to treat connection
preference as node’s strategy in a game setting and study the game behavior.

More specifically, we model this via a non-cooperative game among nodes in the net-
work. First, we assume that each ru is taken from a discrete set Σ = {0, γ, 2γ, 3γ, . . . , },
where γ represents the granularity of connection preference and is in the form of 1/g
for some positive integer g ≥ 2. Using discrete strategy set avoids nuances in continu-
ous strategy space and is also reasonable in practice since people are unlikely to make
infinitesimal changes.

Next, we model the small-world network formation as a game Γ = (Σ, πu)u∈V , where
V is the set of nodes (players) in the grid, connection preference ru ∈ Σ is the strategy
of a player u, and πu : S → R is the payoff function of u, with S = Σ × Σ × . . . × Σ. An
element r = (r1, r2, . . . , rn) ∈ S is called a strategy profile.

Let C = 2V \∅ denote the set of all coalitions. For each coalition C ∈ C, let −C = V \C,
and if C = {u}, we denote −C by −u. We also denote by SC the set of strategies of
players in coalition C, and rC the partial strategy profile of r for nodes in C.
Objective. Greedy routing on the small-world network from a source node u to a
target node v is a decentralized algorithm starting at node u, and at each step if routing
reaches a node w, then w selects one node from its local and long-range contacts that
is closest to v in grid distance as the next step in the routing path, until it reaches v.
In [Kleinberg 2002], Kleinberg shows that given a two-dimensional grid, when r ≡ 2,
the expected number of greedy routing steps (called delivery time) is O(log2 n), but
when r ≡ s 6= 2, it is Ω(nc) for some constant c related to s. More generally, for any k
dimensional grid, it is shown that r ≡ k is the critical value allowing efficient greedy
routing. Hence, we call Kleinberg’s small world with r ≡ k the navigable small world.

Interestingly, empirical evidences have demonstrated that the real-world network is
navigable with the connection preference close to the critical value [Liben-Nowell et al.
2005; Cho et al. 2011; Adamic and Adar 2005; Goldenberg and Levy 2009; Lambiotte
et al. 2008; Illenberger et al. 2013]. We aim to explain this striking coincidence from the
perspective of individual incentives. In particular, our objective is to study intuitively
appealing payoff functions πu and find one that individual efforts to get this payoff lead
fairly quickly to the emergence of navigable small-world network.

2.2 Routing-based Payoff
As navigable small world achieves best greedy routing efficiency, it is natural to con-
sider the payoff function as the expected delivery time to the target in greedy routing.
Given the strategy profile r ∈ S, let tuv(ru, r−u) be the expected delivery time from
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source u to target v via greedy routing. The payoff function is given by:

πu(ru, r−u) = −
∑
∀v 6=u

tuv(ru, r−u). (1)

We take a negation on the sum of expected delivery time because nodes prefer shorter
delivery time.

Although the above payoff function is intuitive and simple, it has some serious is-
sues. Prior work [Gulyás et al. 2012] has already proved that, with the length of greedy
paths as the payoff, player u’s best response is to link uniformly (i.e., ru = 0) for the
one-dimensional case. For higher dimensions, Figure 3 shows the expected delivery
time for a single node u at a 100 × 100 grids, where each node generates q = 10 links.
We see that when other nodes fixed their strategy (e.g., r−u ≡ 2), the best strategy
of a single node u is 0. More tests on different initial conditions reach the same re-
sult that the system will converge to the random small-world networks. The intuitive
reason is that to reach other nodes quickly, it is better for a node to evenly spread its
long-range contacts from the individual prospective (or equivalently, seeking the long-
range contacts of the largest distance on average given ru ≥ 0). This is inconsistent
with empirical evidence that real-world networks are navigable ones, where links are
much more likely to connect neighbor nodes than distant nodes.

In practice, creating and maintaining long-range links have higher costs, so one may
adapt the above payoff function by adding the grid distances of long-range contacts as
a cost term in the payoff function:

πu(ru, r−u) = −
∑
∀v 6=u

tuv(ru, r−u)− λ
∑
∀v 6=u

pu(v, ru)dM (u, v), (2)

where λ is a factor controlling the long range cost and pu(v, ru) = dM (u, v)−ru/c(ru) is
the probability that u takes v as a long-range contact under the strategy of ru. A larger
λ means users are more concerned with distance costs. Figure 4 shows that the best
strategy of a user u is significantly influenced by the cost factor. Similar result is also
shown in [Gulyás et al. 2012]. Thus, it is unclear if the navigable small-world network
can naturally emerge from this type of game.

In the above payoff functions, we use the expected delivery time to measure the
routing efficiency to an arbitrary node. It is also possible to give more complex pay-
off functions by considering the distribution functions of delivery time, such as the
percentage of nodes that can be delivered within a given number of steps. However,
given that individuals can have different strategies, it is very difficult to obtain the
explicit form of delivery time tuv(ru, r−u) in terms of users strategies r. Due to this
disadvantage of the delivery time-based games, there is no theoretical guarantee that
the network formation would converge to the desired navigable small world.
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2.3 Distance-Reciprocity Balanced Payoff
The previous section demonstrates that seeking short routing distance alone cannot
explain the emergence of navigable small world, and thus people in the social network
must have some other objective to achieve. Reciprocity is regarded as a basic mecha-
nism that creates stable social relationships in the real world [Gouldner 1960]. Several
empirical studies [Java et al. 2007; Liben-Nowell et al. 2005; Mislove et al. 2007] also
show that high reciprocity is also a typical feature present in real small-world net-
works (such as Flickr, YouTube, LiveJournal, Orkut and Twitter).

Therefore, we consider the payoff of a user u as the following balanced objective
between distance and reciprocity:

πu(ru, r−u) =

∑
∀v 6=u

pu(v, ru)dM (u, v)

αu

×

∑
∀v 6=u

pu(v, ru)pv(u, rv)

 , (3)

where
∑
∀v 6=u pu(v, ru)dM (u, v) is the mean grid distance of u’s long-range contacts,∑

∀v 6=u pu(v, ru)pv(u, rv) is the mean probability for u to form bi-directional links with
its long-range contacts, i.e., reciprocity, and αu (αu > 0) is a constant exponent with
respect to node u, capturing how that user weighs the relative importance of distance
and reciprocity. Note here the tradeoff exponent αu could be heterogeneous among
players, modeling users having different weights on the balance between the distance
and reciprocity tradeoff. So our utility function is very flexible and actually represents
a large class of tradeoff functions. We refer the small-world formation game with payoff
function in Eq.(3) the Distance-Reciprocity Balanced (DRB) game.

The payoff function in Eq.(3) reflects two natural objectives users in a social net-
work want to achieve: first, they want to connect to remote nodes, which may give
them diverse information as in the famous ”the strength of weak ties argument” by
Granovetter [Granovetter 1973]; second, they want to establish reciprocal relationship
which are more stable in the long term. However, these two objectives can be in conflict
for a node u when others prefer linking in their vicinity (i.e., other nodes v choosing
positive exponent rv). In this case, faraway long-range contacts are less likely to create
reciprocal links. Therefore, node u should obtain the maximum payoff when it achieves
a balance between the two objectives. We use the simple product of distance and reci-
procity objectives to model this tradeoff, and allow different nodes to have different
emphasis on distance-reciprocity tradeoffs with their own exponents. One may also
consider the addition of the distance term and the reciprocity term to model the trade-
off, but since the two quantities have different unit of scale — distance scales from 1 to
O(kn) while reciprocity is a probability between 0 and 1, we believe the multiplicative
formulation makes more sense.

We remark that the reciprocity term
∑
∀v 6=u pu(v, ru)pv(u, rv) does not consider reci-

procity formed by fixed local contacts. Effectively, we disregard local contacts and treat
p = 0 in the small world setting K(n, k, p, q, r). This treatment makes our analysis
more streamlined and only focused on long-range contacts, and it also makes intuitive
sense: the local contacts are passively given based on geographic location, while long-
range contacts are actively established by nodes based on their connection preference,
and thus reciprocity based on long-range contacts could make more sense. For exam-
ple, your neighbors in the same apartment building are your local contacts by physical
location, but it does not mean that they are your friends, and you still need to inten-
tionally establish friendship (based on your preference) among your neighbors, and
thus reciprocity only by physical location does not mean much but reciprocity based on
actively established relationship does mean a lot for an individual.
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Existing network formation games typically use pure-link-based strategy and lead
to mostly trivial equilibria such as cliques or stars. Different from prior games, we use
the link probability functions as the strategies, which can be viewed as a mix strategy
on pure links, but with restricted distributions. Here, we focus on the power-law dis-
tributions assumed in Kleinberg’s small-world models, which is also supported from
findings in several real complex networks, such as human travel network [Gonzlez
et al. 2008; Zhao et al. 2015], communication network [Krings et al. 2009], trade net-
work [Bhattacharya et al. 2008] and other social networks [Liben-Nowell et al. 2005;
Cho et al. 2011].

In practice, the strategy captures certain behavioral preference of players related
to connection. One concrete example is mobility preference in human travel network,
where the link distribution can be understood as the trip distance distribution by tak-
ing the grid location of a node as its home. In this network, the strategy ru captures the
mobility preference of individual u, large ru results in large possibility of short distance
travel. Our game means that each user adjusts its mobility preference to the hetero-
geneous preferences of others for a better payoff, such as obtaining non-redundant
information via long-distance visits and social support enforced by mutual visits.

3 PROPERTIES OF THE DRB GAME
In this section, we conduct theoretical analysis to discover the properties of the DRB
game. We begin by considering the problem of the existence of equilibria in the game,
and if the answer is yes, whether there exist multiple equilibria. In Section 3.1, we
prove that DRB game has only two Nash equilibria r ≡ k and r ≡ 0, corresponding
to the navigable and random small-world networks, respectively. Given multiple Nash
equilibria, we further investigate if the navigable small world possesses further prop-
erties making it the likely choice in practice. This is the task of the next two sections.

One way to solve the problem of multiple equilibria is to consider a more appealing
equilibrium concept–strong Nash equilibrium (SNE). While in a NE no player can
improve its payoff by unilateral deviation, in a SNE there is no coalition of players
that can improve their payoffs by collective deviation. In Section 3.2, we show that the
navigable small-world equilibrium is a SNE in the game, which is much more stable
than the random small-world equilibrium.

Another way to approach the problem is to study the convergence to equilibrium
under the best response dynamics. This dynamics could help to select among multi-
ple equilibria of the game. In Section 3.3, we show that the navigable small-world
equilibrium is reachable via best response dynamics from any state not in the other
equilibrium. We also prove that the navigable small-world NE can also tolerate large
perturbations of players under best response dynamics, whereas the random small-
world NE is extremely unstable under perturbation.

We finally give a description how the navigable small-world network is formed by
summarizing our results in Section 3.4.

3.1 Equilibrium Existence
Nash equilibrium (NE) for the strategic game Γ = (Σ, πu)u∈V is a strategy profile
r∗ ∈ S such that each player’s strategy r∗u (∀u ∈ V ) is a best response to the other
players’ strategies s∗−u, where the best response is defined as follow:

Definition 3.1 (Best response). Player u’s strategy r∗u ∈ Σ is a best response to the
strategy profile r−u ∈ S−u if

πu(r∗u, r−u) ≥ πu(ru, r−u),∀ru ∈ Σ \ {r∗u},
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Moreover, if “≥” above is actually “>” for all ru 6= r∗u, then s∗u is the unique best re-
sponse to s−u. We denote this unique best response as Bu(s−u). Strategy profile r∗ is a
strict Nash equilibrium if for every player u ∈ V , r∗u is the unique best response to r∗−u.

We first show that the navigable small-world network is a Nash Equlibrium of the
DRB game. To do so, we focus on a local region centering around a node w preferring
local connection, and we have the following important lemma.

LEMMA 3.1. In the k-dimensional DRB game, for any constant δ, there exists n0 ∈ N
(may depend on δ), for any n ≥ n0, for any non-zero strategy profile r 6≡ 0, if a node w
satisfies rw ≥ k or rw = maxv∈V rv, then for any node u within δ grid distance of w (i.e.
dM (u,w) ≤ δ), u has the unique best response of ru = k.

PROOF (SKETCH). The intuition is as follows. When a node w satisfying rw ≥ k or
rw = maxv∈V rv, it prefers its long-range contacts to be in its vicinity. For a nearby
node u with dM (u, v) ≤ δ, the case of ru = k provides the best balance between good
grid distance to long-range contacts and high reciprocity (even just counting the reci-
procity received from w). In other cases, the node u obtains either too low reciprocity
or too short average grid distance to long-range contacts. In the case of ru < k, the
node u could increase the average grid distance to long-range contacts by an factor
of O(lnn), but the reciprocity can be reduced by a factor of Ω(nγ), as compared with
those provided by ru = k. Thus, the ratio of payoff for ru < k to payoff for ru = k is
at most O(lnαu n/nγ), which is smaller than one given sufficient large n. Similarly, in
the case of ru > k, the node u could increase the reciprocity by an factor of O(lnn), but
the average grid distance to long-range contacts can be reduced by a factor of Ω(nγ), as
compared with those provided by ru = k. Thus, the ratio of payoff for ru > k to payoff
for ru = k is also at most O(lnn/nαuγ), which is also smaller than one given sufficient
large n. The detailed proof is included in Appendix B.

The above lemma shows that given a non-zero profile, we can find a local region where
the best response of every node is k. This lemma is instrumental to several analytical
results, including the following theorem.

THEOREM 3.1. For the DRB game in a k-dimensional grid, the following is true for
sufficiently large n: 1 For every node u ∈ V , every strategy profile r, and every s ∈ Σ, if
r−u ≡ s, then u has a unique best response to r−u ≡ s:

Bu(r−u ≡ s) =

{
k if s > 0,

0 if s = 0.

PROOF (SKETCH). For the case of s > 0, given the strategy profile of r−u ≡ s, for ev-
ery node u, each of its nearest neighbor w (i.e., dM (u,w) = 1) satisfies rw = maxv∈V rv.
Thus by Lemma 3.1, node u’s unique best response to r−u ≡ s is ru = k.

When s = 0, all others nodes link uniformly. In this case, the reciprocity for node u
becomes a constant independent of its strategy ru. Thus, ru should be selected to max-
imize average distance of u’s long-range contacts, which leads to ru = 0. The detailed
proof of this case is included in Appendix C.

Theorem 3.1 shows that when all other nodes use the same nonzero strategy s, it is
strictly better for u to use strategy k; when all other nodes uniformly use the 0 strategy,
it is strictly better for u to also use 0 strategy. When setting s = k and s = 0, we have:

1Technically, a statement being true for sufficiently large n means that there exists a constant n0 ∈ N that
may only depend on model constants such as k, γ and αu, such that for all n ≥ n0 the statement is true in
the grid with parameter n.
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COROLLARY 3.1. For the DRB game in the k-dimensional grid, the navigable small-
world network (r ≡ k) and the random small-world network (r ≡ 0) are the two strict
Nash equilibria for sufficiently large n, and there are no other uniform Nash equilibria.

We next examine if there exists any non-uniform equilibrium.

THEOREM 3.2. In the k-dimensional DRB game, there is no non-uniform Nash e-
quilibrium for sufficiently large n.

PROOF. Given any non-uniform strategy profile r, let V≥k = {v|rv ≥ k}. If V≥k 6= ∅,
we can find a pair of grid neighbors (u,w) with ru 6= k and rw ≥ k. If V≥k = ∅, we
can find a pair of grid neighbors (u,w) with ru 6= k and rw = maxv∈V rv. In either
case, we know the node u could obtain better payoff by unilaterally deviating to the
strategy ru = k by Lemma 3.1. Therefore, non-uniform strategy profile r is not a Nash
equilibrium.

Combining the above theorem with Corollary 3.1, we see that DRB game has only two
Nash equilibria r ≡ k and r ≡ 0, corresponding to the navigable and random small-
world networks, respectively.

3.2 Equilibrium Stability under Collusion
While in an NE no player can improve its payoff by unilateral deviation, some of the
players may benefit (sometimes substantially) from forming alliances/coalitions with
other players. So we study a more general t-Strong Nash equilibrium (t-SNE) to study
the resilience to coalitions.

Definition 3.2 (t-Strong Nash equilibrium). For a number t ∈ {1, 2, . . . , |V |}, a strat-
egy profile r∗ ∈ S is a t-strong Nash equilibrium if for all C ∈ C with |C| ≤ t, there does
not exist any rC ∈ SC such that

∀u ∈ C, πu(rC , r
∗
−C) ≥ πu(r∗),∃u ∈ C, πu(rC , r

∗
−C) > πu(r∗).

When t = |V |, we simply call r∗ the strong Nash equilibrium (SNE). Note that 1-SNE
falls back to NE.

We first show the important result that the navigable small-world network is able
to tolerate collusion of any group of players, i.e., r ≡ k is a |V |-SNE or simply SNE.

THEOREM 3.3. For the DRB game in the k-dimensional grid, the navigable small-
world network (r ≡ k) is a strong Nash equilibrium for sufficiently large n.

PROOF (SKETCH). We prove a slightly stronger result — any node u in any strategy
profile r with ru 6= k has strictly worse payoff than its payoff in the navigable small
world. Intuitively, when u deviates to 0 ≤ ru < k, its loss on reciprocity would outweigh
its gain on link distance; when u deviates to ru > k, its loss on link distance is too much
to compensate any possible gain on reciprocity. The detailed proof is in Appendix D.

The above theorem shows that the navigable small-world equilibrium is not only
immune to unilateral deviations, but also to deviations by coalitions of any size, and
in particular it is Pareto-optimal, such that no player can improve her payoff without
decreasing the payoff of someone else.

After showing that the navigable small-world is robust to collusions of any size, we
now show that random small world equilibrium is not stable even under the collusion
of a pair of nodes.

THEOREM 3.4. For the DRB game in a k-dimensional grid, the random small-world
NE r ≡ 0 is not a 2-strong Nash equilibrium for sufficiently large n.
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PROOF (SKETCH). If a pair of grid neighbors collude to deviate their strategies to
k, they could gain much benefit in terms of reciprocity, as compared with the loss of
relationship distance. As a result, they would both get better payoff than their payoff
in r ≡ 0. The detailed proof is in Appendix E.

3.3 Convergence under Best Response Dynamics
For our game, we finally study its best response dynamics to investigate its proper-
ties of convergence to Nash equilibria. Best response dynamics are typically specified
in terms of asynchronous steps: in each asynchronous step, one player moves from its
current strategy to its best response to the current strategy profile, and thus the en-
tire strategy profile moves one step accordingly. To facilitate the study of convergence
speed, we also look into synchronous steps for the best response dynamics: in each syn-
chronous step, every player moves from its current strategy to its best response to the
current strategy profile, and collectively we count this as one synchronous step.

With the concept of best-response dynamics, we first show that for any non-zero
profile, we can find a node that triggers a cascade of adopting strategy k from neighbors
to neighbors of neighbors, and so on, ultimately leading to the navigable small world
equilibrium.

THEOREM 3.5. In the k-dimensional DRB game, for sufficiently large n, the nav-
igable small-world equilibrium r ≡ k is reachable via best response dynamics from
any non-zero strategy profile r 6≡ 0. Moreover, if all nodes move synchronously in the
best response dynamics, then it takes at most kbn/2c synchronous steps for any non-zero
strategy profile to converge to the navigable small-world equilibrium r ≡ k.

PROOF. Let Vw(j) = {v|dM (v, w) ≤ j}. Given a non-zero profile r, we can find a node
w satisfying rw ≥ k or rw = maxv∈V rv. Given a constant δ (δ ≥ 2), Lemma 3.1 implies
that for sufficiently large n, for every u ∈ Vw(δ), in one asynchronous step u will set
ru = k. Then consider u’s neighbors Vu(δ), in one asynchronous step each of them will
also set their strategy to k. Following this cascade it is clear that there exists a step
sequence such that the non-zero profile r will reach the navigable small world r ≡ k.

We now consider that all nodes move synchronously. Again we first find a node w
satisfying rw ≥ k or rw = maxv∈V rv. By Lemma 3.1 all nodes in Vw(δ/2) (δ/2 ≥ 1) move
to strategy k in the first synchronous step. Consider the second synchronous step. Even
though we are not sure if node w adopts strategy k in the first synchronous step, we
know that w adopts k in the second synchronous step since w has neighbors adopting
k after the first synchronous step. Moreover, for all nodes in Vw(δ/2), their mutual
grid distance is at most δ, and thus Lemma 3.1 applies to these nodes in the second
synchronous step and they all stay at strategy k. Finally for their grid neighbors within
grid distance δ/2, essentially nodes in Vw(δ) \ Vw(δ/2), they will also adopt strategy k
in the second synchronous step. Repeating the above procedure, all nodes that have
adopted k will keep k while their grid neighbors will also adopt k. Since the longest
grid distance among nodes in the k-dimension grid is kbn/2c, after at most kbn/2c
synchronous steps, all nodes adopt k.

The proof of the above theorem provides valuable insights into the scalability of
the game. Notice that a k-dimension grid contains a total of |V | = nk players, so the
above theorem states that, for any non-zero strategy profile, the convergence time to
navigable NE is at most O(|V | 1k ) synchronous steps if players move synchronously in
the best response dynamics. Also, any player u involved in the cascade of adopting
ru = k can make this best decision locally according to the strategies of the players in
his neighborhood. Thus our game is scalable with the number of players.
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Next, we would like to see if the navigable equilibrium can also tolerate pertur-
bations of players under best response dynamics, where the perturbations could be
arbitrary and there is no guarantee that perturbed players are better off. From The-
orem 3.5, we know that as long as not all nodes deviate to zero, there exists a best
response dynamic sequence for the system to go back to the navigable small world,
and if all nodes move synchronously, the system reaches the navigable small world
in at most kbn/2c synchronous steps. We now give a further result on the stability
of navigable small-world in tolerating perturbations of random players: we show that
even if each individual independently perturbs to an arbitrary strategy with a fair-
ly large probability, the system moves back to the navigable small world in just one
synchronous step, and even if players move asynchronously, it is guaranteed that the
system moves back to the navigable small world after each node takes at least one
asynchronous step.

THEOREM 3.6. Consider the navigable small-world equilibrium r ≡ k for the DRB
game in a k-dimensional grid (k > 1). Suppose that with probability pu each node u ∈ V
independently perturbs ru to an arbitrary strategy r′u ∈ Σ, and with probability 1 − pu
r′u = ru. Let αmin = minu∈V αu, then for any constant ε with 0 < ε < min{1, αmin}γ/4,
there exists n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0, if pu ≤ 1− n−ε, with
probability at least 1−1/n, the perturbed strategy profile r′ moves back to the navigable
small world (r ≡ k) in one synchronous step, or as soon as every node takes at least one
asynchronous step in the best response dynamics.

PROOF (SKETCH). The independently selected deviation node set satisfies that
with high probability, for any node u, at sufficiently many distance levels from u there
are enough fraction of non-deviating nodes. We then show that u obtains higher order
payoff just from these non-deviating nodes than any possible payoff she could get from
any possible deviation. The detailed proof is in Appendix F.

Notice that the bound of 1 − n−ε is close to 1 when n is sufficiently large, meaning
that the navigable equilibrium tolerates arbitrary deviations from a large number of
random nodes.

For the random small-world network, which is shown to be the other NE, Theo-
rem 3.5 already implies that even one deviating player could possibly drive the system
out of the random small-world equilibrium and lead it towards the navigable small-
world equilibrium. However, converging to navigable small world is not guaranteed in
this case. In the following, we show a stronger convergence result: if each individual
u deviates from ru = 0 independently with even a small probability, then the system
could switch to the navigable small world in just one synchronous step, or after each
node takes at least one asynchronous step, and the convergence to the navigable small
world is guaranteed in this case.

THEOREM 3.7. For the DRB game in a k-dimensional grid (k > 1) with the initial
strategy profile r ≡ 0 and a finite perturbed strategy set S ⊂ Σ with at least one non-
zero entry (0 < maxS ≤ β), for any constant ε with 0 < ε < γ/2, there exists n0 ∈ N
(depending only on k, γ, and ε), for all n ≥ n0, if for any u ∈ V , with independent
probability of p ≥ n−

(k−1)ε
k+β , ru ∈ S \ {0} after the perturbation, then with probability at

least 1 − 1/n, the network converges to the navigable small world in one synchronous
step, or as soon as every node takes at least one asynchronous step in the best response
dynamics.

PROOF (SKETCH). We consider the gain of a node u when selecting ru = k separate-
ly from each group of nodes with the same strategy after the perturbation, and then
apply the results in Theorem 3.1. The full proof is in Appendix G.
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Note that 1/n
(k−1)ε
k+β is very small for large n and a finite perturbed strategy set S,

which implies that the best response of any node u in the perturbed profile becomes
ru = k as long as a small number of random nodes are perturbed to a finite set of
nonzero strategies.

3.4 Implications from Theoretical Analysis
Combining the above theorems together, we obtain a better understanding of how the
navigable small-world network is formed. From any arbitrary initial state, best re-
sponse dynamic drives the system toward some equilibrium, with the navigable small
world as one of them (Corollary 3.1 and Theorem 3.5). Even if the systems temporar-
ily converges to a non-navigable equilibrium, the state will not be stable — either a
small-size collusion (Theorem 3.4) or a small-size random perturbation (Theorem 3.7)
would make the system leave the current equilibrium and quickly enter the navigable
equilibrium. Once entering the navigable equilibrium, it is very hard for the system to
move away from it — no collusion of any size would drive the system away from this
equilibrium (Theorem 3.3), and even if a large random portion of nodes deviate arbi-
trarily the system still converge back to the navigable equilibrium as long as each node
takes one best-response step (Theorem 3.6). These theoretical results strongly support
that the navigable small world is the unique stable system state, which suggests that
the fundamental balance between reaching out to remote people and seeking reciprocal
relationship is crucial to the emergence of navigable small-world networks.

4 QUALITY OF EQUILIBRIA
In a Nash equilibrium, each user is maximizing its individual payoff. However, there is
also a global function of social welfare, which is the total payoff of all nodes. A natural
question then is how the social welfare of a system is affected when its users are selfish.
Thus, in this section, we would like to examine how good the solution represented by
an equilibrium is relative to the global optimum.

To study the social welfare, we focus on the homogenous network in which all play-
ers use the same tradeoff exponent α, since it is difficult to normalize and integrate
individual utility measures if they have different emphasis on distance or reciprocity.
We first examine the global optimum.

THEOREM 4.1. In the k-dimensional homogeneous DRB game, the optimal social
welfare is Θ

(
nα+k

lnα+1 n

)
for sufficiently large n.

PROOF (SKETCH). We prove that a node u with ru = k could get high payoff if it has
at least one neighbor v with rv > k. In this case, the node u could get both large grid
distance to long-range contacts and high reciprocity (at least from v). So if the system
has a constant fraction of such nodes, the social welfare is optimized. The detailed
proof is included in Appendix H.

The proof of the above theorem provides some interesting insights: First, the optimal
strategy profile is not the navigable network where all players get the same payoff,
instead, it exhibits inequality in the distribution of payoff. The rich (e.g., those with
strategy of k) could get high payoff whereas the poor (e.g., those with strategy larger
than k) only get very low payoff. Furthermore, the optimum social welfare is achieved
when the poor sacrifice their distance payoff and focus on their reciprocity (by selecting
a strategy greater than k), so that their rich neighbors could obtain a high balanced
payoff of both distance and reciprocity. This situation reminds us social relationships
generated by different social status (e.g. employee-employer relationship) or by tight
bonds with mutual understanding and support (such as marriage relationship).
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We next focus on the standard measures of the sub-optimality introduced by self-
interested behavior. In particular, price of stability (PoS) is the ratio of the solution
quality at the best Nash equilibrium relative to the global optimum, whereas the price
of anarchy (PoA) is the ratio of the worst Nash equilibrium to the optimum.

THEOREM 4.2. In the k-dimensional homogeneous DRB game, for sufficiently large
n, the PoS is Θ(lnn) and the PoA is Θ

(
nk

lnα+1 n

)
.

PROOF (SKETCH). From the analysis in Section 3.1, we know that the system has
only two Nash equilibria r ≡ k and r ≡ 0, corresponding to navigable and random
small-world networks, respectively. We show that the navigable small-world NE is
a better equilibrium since the strategy of k provides the best balance between grid
distance to long-range contacts and reciprocity. Combined with Theorem 4.1, we get
the PoS and PoA of the system. The detailed proof is included in Appendix I.

The above theorem indicates that, in the good case when the system is in the navigable
network equilibrium, the social welfare is reasonably close to the social optimum (with
ratio Θ(lnn) among nk nodes), but in the bad case when the network is in the random
network equilibrium, the social welfare is far from the social optimum.

5 EMPIRICAL EVALUATION
In this section, we empirically examine the stability of navigable small-world NE. We
simulate the DRB game on two dimensional grids, and consider nodes having full in-
formation, limited information, or no information of other players’ strategies.

In Section 5.1 and Section 5.2, we focus on the homogeneous game (αu = 1, ∀u ∈ V )
as our equilibrium analysis is robust to αu under the k-dimensional grid of people. In
Section 5.3, we further examine the heterogeneous game under non-uniform popula-
tion density across real social networks. Before the main empirical evaluation, we first
test the effect of the grid size n on navigable equilibrium, since our theoretical results
require a sufficiently large n.

Our theoretical analysis shows that one can find a large enough constant n0, such
that the navigable equilibrium is exactly r ≡ 2 for all n ≥ n0. Thus, we first verify em-
pirically the relationship between the size of the grid and the actual connection prefer-
ence value for the equilibrium. Figure 5 shows how the equilibrium value changes over
n in a 2D grid, with various granularity. For example, with a granularity of γ = 0.1, the
equilibrium decreases from r ≡ 2.3 for a very small 10×10 grid, to r ≡ 2 for a 1000×1000
grid. This shows that we do not need a very large grid in order to obtain results close
to our theoretical predictions. In our following experiments, we use a 100 × 100 grid
with the granularity γ = 0.1, which leads to an equilibrium r ≡ 2.1 close to theoretical
prediction while reducing the simulation cost.

5.1 Stability of NE under Perturbation
To demonstrate the stability of navigable NE, we simulate the DRB game with random
perturbation. At time step 0, each player is perturbed independently with probability
p. If the perturbation occurs on a player u, we assume that the player u chooses a
new strategy uniformly at random from the interval [0, 10]∩Σ. Notice that for strategy
ru > 10, the behavior of nodes is similar to ru = 10 as nodes only connect to the 4 grid
neighbors. Let r0 be the strategy profile at time 0 after the perturbation. At each time
step t ≥ 1, every player picks the best strategy based on the strategies of others in the
previous step: rtu = argmaxru∈Σ∩[0,10] π(ru, r

t−1
−u ),∀u,∀t > 1.

Figure 6 shows an extreme case where every player is perturbed when the initial
profile is r ≡ 2. The box-plot shows the distribution of players’ strategies at each step.
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Fig. 7. From random NE to small-
world NE (perturbed probability
p=0.01).

The figure shows that in just two steps the system returns to the navigable small-world
NE. We tested 100 random starting profiles, and all of them converge to the navigable
NE within two steps. This simulation result indicates that the navigable NE is very
stable for random perturbations.

To contrast, we study the stability of the random small-world network in terms of
tolerating perturbations. Figure 7 shows the result of randomly perturbing only 1%
of players at the random NE, which are shown as the outliers at step 0. Note that
1% perturbation does not meet the requirement in Theorem 3.7. However, this small
fraction of players would affect the decision of additional players in their vicinity, who
can significantly improve the reciprocity by also linking in the vicinity (indicated by
Theorem 3.5). The figure clearly shows that in a few steps, more and more players
would change their strategies, and the system finally goes to the navigable small-world
NE.2 We tested 100 random starting profiles, and all of them converge to the navigable
NE within at most 12 steps.

These results show that the navigable small-world NE are robust to perturbations,
while random small-world NE is not stable and easily transits to the small-world NE
under a slight perturbation.

5.2 DRB Game with Limited Knowledge
In practice, a player does not know the strategies of all players. So we now consid-
er how to operate best response dynamics in practical scenarios. We first examine a
weaker scenario where a player only knows the strategies of their friends. With these
limited knowledge, a player can guess the strategies of all other players and pick the
best response to the estimated strategies of all players. We next consider the weakest
scenario where each player has no knowledge about the strategies of other players, and
the only information needed is the empirical payoff observed by the player. To get this
information, a player can create a certain number of links with the current strategy,
and compute the payoff by multiplying the average link distance and the percentage of
reciprocal links. In this scenario, players cannot directly calculate the best responses.
Instead, they perform a heuristic search through choosing a response of better payoff
than their current strategies, whenever they have opportunities to adjust the strate-
gies. So as the time goes on, the player could change the strategy towards the best
response.
Scenario 1: knowing friends’ strategies. To examine the convergence of naviga-
ble small-world NE in this scenario, we simulate the DRB game as follows. At time

2In step 1 and 2 in Figure 7, the number of outliers is larger than in step 0, even though the rendering make
it seems they are less.
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edge of strategies of others.

step 0, each player chooses an initial strategy uniformly at random from the interval
[0, 10]∩Σ. At every step t ≥ 0, each player u creates q out-going long-range links based
on her current strategy rtu, and learns the connection preferences of these q long-range
contacts. Let F tu be the set of these q long-range contacts. We further allows a random
noise term ε for each connection preference learned from the friends. Let r̂tv (v ∈ F tu) be
the learned (noisy) connection preference. Then based on these newly learned connec-
tion preferences, player u estimates the strategies of all other players. One reasonable
estimation method is to assume that players close to one another in grid distance have
similar strategy. More specifically, for a non-friend node v 6∈ F tu, u estimates the strat-

egy of v by the average weight of known strategies: r̂tv =

∑
f∈Ftu

r̂f,t−1/dM (v,f)∑
f∈Ftu

1/dM (v,f) .

Here we do not use the connection preferences learned in the previous steps and
effectively assume that those old links are removed. This is both for convenience, and
also reasonable since people could only maintain a limited number of connections and
it is natural that new connections replace the old ones. Moreover, the connection pref-
erences of those old connections may become out-dated in practice anyway. After the es-
timation procedure, player u uses the strategy r̂tv from all other players (either learned
or estimated) to compute its best response r̂t+1

u for the next step.
In our experiment, we set q = 30. Figure 8 shows that when players have accurate

knowledge of the strategies of their friends without noise, the system converges in just
two steps. Even when the information on friends’ strategies is noisy, the system can
still quickly stabilize in a few steps to a state close to the navigable small-world NE, as
shown in Figure 9. We tested 100 random starting profiles and also other estimation
methods such as randomly choosing a connection preference based on friends’ con-
nection preference distributions, and results are all similar. This experiment further
demonstrates the robustness of the small-world NE even under limited information on
connection preferences.
Scenario 2: No information about others’ strategies. To make it even harder, we
do not allow the player to try many different strategies at each step before fixing her
strategy for the step. Instead, at each step each player only has one chance to slightly
modify her current strategy. If the new strategy yields better payoff, the player would
adopt the new strategy. So as the time goes on, the player could change the strategy
towards the best one.

We simulate the DRB game as follows: At time step 0, each player chooses an initial
strategy uniformly at random from the interval [0, 10] ∩ Σ. Every player creates q out-
going links with her current strategy. At each time step t ≥ 1, each player changes the
strategy, i.e.,ru ← ru + δ, and creates q new links with this new strategy, where δ is
a random number determined as follows. First, for the sign of δ, in the first step it is
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Fig. 12. Simulated network evo-
lution over Renren grid.

Fig. 13. Example of a 50-node
navigable network over Renren’s
latitude-longitude grid.

randomly assigned positive or negative sign with equal probability; in the remaining
steps, to make the search efficient, we keep the sign of δ if the previous change leads
to a higher payoff; otherwise we reverse the sign of δ. For the magnitude of δ, i.e. |δ|,
we sample a value uniformly at random from (0, 1] ∩ Σ.

We simulate this system with q = 30. Figure 10 demonstrates that the system can
still evolve to a state close to the navigable small-world NE in a few hundred steps,
e.g., the strategies of 80.5% players fall in the interval [1.8, 2.4], and the median of
the strategies is the navigable NE strategy of 2.1. We test 50 random starting profiles,
and take snapshots of the strategy profiles at the time step t = 500. On average, the
strategies of 79.8% players in the snapshots fall in the interval [1.8, 2.4].

In summary, our empirical evaluation strongly supports that our payoff function con-
sidering the balance between link distance and reciprocity naturally gives rise to the
navigable small-world network. The convergence to navigable equilibrium will happen
either when the players know all other players’ strategies, or only learn their friend-
s’ strategies, or only use the empirical distance and reciprocity measure. Once in the
navigable equilibrium, the system is very stable and hard to deviate by any random
perturbation. Furthermore, other equilibria such as the random small world is not
stable, in that a small perturbation will drive the system back to the navigable small-
world network.

5.3 DRB Game under Real Population Distribution
Recall that real population is not evenly distributed geographically as in the Klein-
berg’s model. So we want to examine if our game could lead to an overall connection
preference r similar to the empirical one in the real network. To do so, we examine our
game with the non-uniform geographic distribution of people in the following two real
networks. We also introduce heterogeneity in players’ tradeoff functions with αu taken
from a uniform distribution on [0.1, 10].
Renren Network. We sample 10K users at random from Renren network, and we
construct a real grid through mapping the hometown listed in users’ profiles to (lon-
gitude, latitude) coordinates, as shown in Figure 11. To examine the convergence of
navigable small-world NE in this scenario, we simulate the DRB game as follows. At
time step 0, each player chooses an initial strategy uniformly at random from the inter-
val [0, 5] ∩Σ. At each time step t ≥ 1, every player picks the best strategy based on the
strategies of others in the previous step: rtu = argmaxru∈Σ∩[0,5] π(ru, r

t−1
−u ),∀u,∀t > 1.

Figure 12 shows that in a few steps, the system reaches a NE, where individual users
adopt their respective equilibrium strategies. In the NE, the mean of the strategies
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Fig. 16. Simulated network evo-
lution over LiveJournal network.

is 0.85 and the strategies of 88.1% users fall in the interval [0.7,1.1]. So the overall
connection preference of users in the simulated game is very close to the empirical
value of 0.9 shown in Figure 2.

To better understand our result, we also provide an example figure of navigable net-
work in Figure 13, which is obtained by allowing individuals to create outgoing links
with their own connection preferences given by the equilibrium. For clear visualiza-
tion, we sample 50 users from Renren who are distributed over the latitude-longitude
space, and the number of outgoing links for each node is drawn from the power-law
distribution. As expected, nodes typically have more short-distance links where reci-
procity could arise, as well as some shortcut links that connect distant users.
LiveJournal Network. To evaluate across-dataset generalization, we also exam-
ine our DRB game in the LiveJournal social network. LiveJournal is a community of
bloggers with over 39 million registered users worldwide as the end of 2012. Each us-
er provides a personal profile, including home location, personal interests and a list
of other bloggers considered as friends. We crawl the profiles of 527,769 LiveJournal
users used in the study [Liben-Nowell et al. 2005]. Given the 224,155 users provid-
ing city information, we successfully obtained a meaningful geographic location for
only 197,504 users, as shown in Figure 14. To get the empirical connection preference
of these LiveJournal users, we compute the friendship probability p(d) for any given
distance d by the proportion of friendships among all pairs (u, v) with distance d. Fig-
ure 15 shows the relationship between friendship probability and geographic distance,
which shows that the real connection preference of users is around 1.08. These results
demonstrates that our game does generalize across online social networks.

6 DISCUSSION AND FUTURE WORK
Our paper is a contribution to the literature on navigability and also on network for-
mation games. There exists a plethora of results relating to network formation games
in economics, as well as in computer science [Jackson 2004]. Existing games typically
use pure-link-based strategy, and it is difficult for an individual to estimate the poten-
tial likelihood of forming reciprocal links to other users (i.e., the introduced notion of
reciprocity). These games lead to mostly trivial equilibria such as cliques or stars. Dif-
ferent from prior games, our game uses the link probability functions as the strategies,
and an individual is able to estimate reciprocity by learning the connection preferences
of others. This difference in modeling methodology is substantive since it gives rise to
the non-trivial structure of navigable small world networks. Also, most network for-
mation games examine the strategically stable networks in static and non-perturbed
settings. By contrast, our game examines the stability of equilibrium networks under
the best response dynamics with the perturbation introduced. Dynamics could help
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select among different equilibria of the static game, the results in this paper illustrate
this potential very well.

In the paper, we use a k-dimensional grid (k ∈ N \ {0}) to be consistent with Klein-
berg’s small-world model, where each grid location contains a single node (a total of nk
nodes). Let Bl(u) denote the number of nodes within distance l(l > 0) from a node u. In
fact, the key spatial property required in our analysis is Bl(u) = Θ(lD),∀u ∈ V,∀D > 0,
where D is actually the fractional dimension proposed by Liben-Nowell et al. [Liben-
Nowell et al. 2005]. So most of our results can be easily extended to a more general
space that can be described the fractional dimension, where the grid is only the spe-
cial case of integer dimension. The results in Section 5.3 actually provided empirical
demonstration on Renren and LiveJournal latitude-longitude space that have a frac-
tional dimension close to one. Similarly, we can also allow multiple nodes to be in the
same location as long as the spatial property of Bl(u) = Θ(lD),∀u ∈ V holds for l > 0,
i.e., the space could still be described by the fractional dimension. Given p = 0 in our
setting K(n, k, p, q, r), each node has undirected edges connecting to all other nodes in
the same location as local contacts. As we have discussed in Section 2.3, we do not
consider these local contacts in our game.

The population size and the payoff obtained at the critical value are sufficiently large
to allow us to ignore stochastic effects. In our game, the environment state consists of
(i) the geographical distribution of users, which remains stable over time given the
large population size; and (ii) the tradeoff factor αu (αu > 0) for any user u, which has
no influence on the strategy choice over time, as implied by lemma 3.1. Specifically, a
node u chooses ru = k once it has a nearby node w satisfying rw ≥ k or rw = maxvV rv,
irrespective of the tradeoff factor every node chooses (including the u itself).

Our study opens many possible directions of future work. For example, one may
provide a theoretical analysis of the DRB game on the non-uniform population dis-
tributions, which has been empirically validated by our experiments on the Renren
and LiveJournal datasets. Another direction is to integrate prior studies on human
mobility model to provide a more complete picture of the underlying mechanisms for
navigable small-world networks. For example, one could use move-and-forget mobility
model [Chaintreau et al. 2008] to generate link probability functions of power law form,
and adopt our game-theoretic approach to drive individuals to choose the critical one
enabling navigability to arise. It is also interesting to investigate the existence of other
forms of utility functions, since given the complex human behavior in the real world,
there might be more behavioral factors leading to the actual real small world. We wish
our study could encourage more empirical and theoretical studies on the relationship
between reciprocity, distance, and navigability, and perhaps uncover the underlying
human behavior model that integrates these factors together.
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Table I.
Notation

k, n Dimension and edge length of a grid n× n× . . .× n︸ ︷︷ ︸
k

nD Diameter of grid, nD = kbn/2c
V Set of players
p, q Number of local and long-range contacts

dM (u, v) Manhattan distance between players u and v
ru Connection preference of player u
αu Constant exponent for player u’s distance-reciprocity tradeoff, (αu > 0)
c(ru) Normalization constant c(ru) =

∑
∀v 6=u dM (u, v)−ru

pu(v, ru) Probability that u connects v under ru, pu(v, ru) = dM (u, v)−ru/c(ru)
r Vector of ru values on all players (strategy profile)

πu(ru, r−u) Player u’s payoff given the strategy profile r
D(ru) Average link distance of u, D(ru) =

∑
∀v 6=u pu(v, ru)dM (u, v)

Pu(ru, r−u) Reciprocity of u, Pu(ru, r−u) =
∑
∀v 6=u pu(v, ru)pv(u, rv)

γ Granularity of connection preference, strategy set Σ = {0, γ, 2γ, 3γ, . . . , }
bu(j) The number of players at grid distance j from u
ξ−k Constant making bu(j) ≥ ξ−k j

k−1 for 1 ≤ j ≤ bn/2c
ξ+k Constant making bu(j) ≤ ξ+k j

k−1 for j ≤ nD
ε Deviation from strategy k, ε = k − ru

Appendix A: COMMONLY USED RESULTS ON THE KLEINBERG’S SMALL WORLD AND THE
DRB GAME

In all proofs in the appendix, for a given node u ∈ V , we denote D(ru) =∑
∀v 6=u pu(v, ru)dM (u, v) as its average grid distance of its long range contacts (sim-

ply referred to as the link distance), and Pu(ru, r−u) =
∑
∀v 6=u pu(v, ru)pv(u, rv) as its

reciprocity. When r−u ≡ s, we simply use P (ru, s) to denote Pu(ru, r−u ≡ s). Moreover,
for any A ⊆ V , let Pu,A(r) =

∑
v∈A pu(v, ru)pv(u, rv) be the reciprocity u obtained from

subset A. We denote c(ru) =
∑
∀v 6=u dM (u, v)−ru as u’s normalized coefficient. The sub-

script u in D(ru), P (ru, s) and c(ru) is omitted because their values are the same for all
u ∈ V .

Let nD be the longest grid distance among nodes in K(n, k, p, q, r). We have that
nD = kbn/2c. We denote bu(j) as the number of players at grid distance j from u. We
can find two constants ξ−k and ξ+

k only depending on the dimension k, so that ξ−k j
k−1 ≤

bu(j) ≤ ξ+
k j

k−1 for 1 ≤ j ≤ bn/2c and 1 ≤ bu(j) ≤ ξ+
k j

k−1 for bn/2c < j ≤ nD.3 Note
that the payoff function for the DRB game is indifferent of parameters p and q of the
network, so we treat p = q = 1 for our convenience in the analysis.

Recall that we assume that each ru is taken from a discrete set Σ = {0, γ, 2γ, 3γ, . . . , },
where γ represents the granularity of connection preference and is in the form of 1/g
for some positive integer g ≥ 2. Using discrete strategy set avoids nuances in continu-
ous strategy space and is also reasonable in practice since people are unlikely to make
infinitesimal changes. Henceforth, for any ru 6= k, we have |k − ru| ≥ γ. The notation
commonly used in the paper is described in Table I.

We first show the following two lemmas, which will be used in the most of theorems.

3The exact values of ξ−k and ξ+k can be derived by the combinatorial problem of counting the number of ways
to choose k non-negative integers such that they sum to a given positive integer j.
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LEMMA A.1. In the k-dimensional grid K(n, k, p, q, r), for a given node u ∈ V with
a strategy of ru, the normalized coefficient c(ru) has the following bounds:

ξ−k
2k+1k

nk−ru ≤ c(ru) ≤ ξ+k k
k−runk−ru if ru < k, (A.1a)

ξ−k lnn

2
≤ c(ru) ≤ ξ+k ln(2kn) if ru = k, (A.1b)

ξ−k ≤ c(ru) ≤ ξ+k (1 + 1/γ) if ru > k. (A.1c)

PROOF. In the case of ru < k, we write ε = k − ru (γ ≤ ε ≤ k). The coefficient c(ru)
can be bounded as:

c(ru) =
∑
∀v 6=u

dM (u, v)−ru ≥
n/2∑
j=1

bu(j)j−ru ≥ ξ−k
n/2∑
j=1

jε−1

≥ ξ−k
∫ n/2

1

xε−1dx ≥
ξ−k
ε

(n
2

)ε
−
ξ−k
ε
≥
ξ−k
2ε

(n
2

)ε
The last inequality above relies on a loose relaxation of 1

2

(
n
2

)ε ≥ 1, which is guaran-
teed for all n ≥ 21+1/γ since ε ≥ γ. Note that ε < k, so we have:

c(ru) ≥
ξ−k

21+εε
nε ≥

ξ−k
21+kk

nε.

The upper bound of coefficient c(ru) can be given as:

c(ru) =
∑
∀v 6=u

dM (u, v)−ru =

nD∑
j=1

bu(j)j−ru ≤ ξ+k
nD∑
j=1

jε−1

≤

{
1 + ξ+k

∫ nD
1

jε−1dx ≤ 1 + (kn/2)ε if ε < 1,
ξ+k
∫ nD+1

j=1
jε−1dx ≤ ξ+k (kn/2 + 1)ε if ε ≥ 1,

≤ ξ+k k
εnε.

The last inequality above relies on a loose relaxation of kn
2 ≥ 1, which is guaranteed

for all n ≥ 2 since k ≥ 1.
We now turn to the case of ru = k. The upper bound of normalization coefficient c(k)

can be given as

c(k) =
∑
∀v 6=u

dM (u, v)−k =

nD∑
j=1

bu(j)j−k ≤ ξ+k
nD∑
j=1

1

j
≤ ξ+k ln(2kn),

and its lower bound is

c(k) ≥ ξ−k
n/2∑
j=1

j−1 ≥ ξ−k
∫ n/2

1

x−1dx ≥ ξ−k (lnn− ln 2) ≥
ξ−k lnn

2
.

where the last inequality is true when n ≥ e4.
We finally consider the the case of ru > k, it is easy to get that

c(ru) =
∑
∀v 6=u

dM (u, v)−ru ≥
n/2∑
j=1

bu(j)j−r ≥ bu(1) ≥ ξ−k ,

and its upper bound is given as:

c(ru) =
∑
∀v 6=u

dM (u, v)−ru =

nD∑
j=1

bu(j)j−ru ≤ ξ+k
nD∑
j=1

jk−1j−ru ≤ ξ+k
nD∑
j=1

j−(ru−k)−1.
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Note ru − k ≥ γ, we have:

c(ru) ≤ ξ+k
nD∑
j=1

j−(ru−k)−1 ≤ ξ+k
nD∑
j=1

j−γ−1 ≤ ξ+k (1 +

∫ nD+1

1

x−γ−1dx) ≤ ξ+k
(

1 +
1

γ

)
.

LEMMA A.2. In the k-dimensional grid K(n, k, p, q, r), for a given node u ∈ V with
a strategy of ru, the average distance of its long-range contacts D(ru) has the following
bounds: 

D(ru) ≤
ξ+k k

1+k

c(ru)
n1+k−ru if ru < k, (A.2a)

ξ−k n

2c(k)
≤ D(ru) ≤

ξ+k n

c(k)
if ru = k, (A.2b)

D(ru) ≤
ξ+k k

2γc(ru)
n1−γ if k < ru < k + 1, (A.2c)

D(ru) ≤
ξ+k
c(ru)

ln(2kn). if ru ≥ k + 1 . (A.2d)

PROOF. When ru < k, we write ε = k − ru (γ ≤ ε ≤ k) and get the upper bound for
the link distance

D(ru) =

∑nD
j=1 bu(j) · j−ru · j

c(ru)
≤
ξ+k
∫ nD+1

1
xεdx

c(ru)
≤
ξ+k (nD + 1)1+ε

(1 + ε)c(ru)
≤
ξ+k (kn)1+ε

c(ru)
≤
ξ+k k

1+k

c(ru)
n1+ε.

We now turn to the case of ru = k. The upper bound of link distance D(k) can be
given as

D(ru = k) =

∑nD
j=1 bu(j) · j−k · j

c(ru)
≤
ξ+k n

c(k)
,

and its lower bound is

D(ru) ≥
∑n/2
j=1 bu(j) · j−k · j

c(k)
≥

ξ−k n

2c(k)
.

We finally consider the case of ru > k. We write ε = ru − k(ε ≥ γ), and the bound for
the link distance is:

D(ru) =

∑nD
j=1 bu(j) · j−ru · j

c(ru)
≤ ξ+k

nD∑
j=1

j−ε

c(ru)
≤ ξ+k

1 +
∫ nD
1

x−εdx

c(ru)

In the case of ε < 1,

D(ru) ≤ ξ+k
1 +

∫ nD
1

x−εdx

c(ru)
≤

ξ+k
(1− ε)c(ru)

(kn/2)1−ε ≤
ξ+k k

2γc(ru)
n1−ε ≤

ξ+k k

2γc(ru)
n1−γ .

otherwise,

D(ru) ≤ ξ+k
1 +

∫ nD
1

x−εdx

c(ru)
≤

ξ+k
c(ru)

ln(2kn).
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LEMMA A.3. In the k-dimensional DRB game, there exists a constant κ (only de-
pending on model constants k and γ), for sufficiently large n (in particular n ≥
max(e4, 2k)), the following statement holds: for any strategy profile r, any node u with
ru 6= k and αu > 0, πu(ru, r−u) ≤ κnαu−min{1,αu}γ .

PROOF. We introduce some notations first. Given the strategy profile r and a node
u with ru 6= k, we partition the rest nodes V \ {u} into three sets: V<k = {v ∈ V \ {u} |
rv < k}, V>k = {v ∈ V \ {u} | rv > k}, V=k = {v ∈ V \ {u} | rv = k}. Then we have

πu(r) = D(ru)αu
(
Pu,V<k (r) + Pu,V>k (r) + Pu,V=k (r)

)
. (A.3)

We now consider the case of ru < k and ru > k separately.
Payoff of ru < k. Let ε = k − ru (γ ≤ ε ≤ k). We first consider the average grid
distance to long-range contacts in this case. Based on the bound on D(ru) and c(ru)
given by inequalities (A.2a) and (A.1a), we get:

D(ru)αu =
ξ+k k

1+k

c(ru)
n1+ε =

ξ+k k
1+k

ξ−
k

2k+1k
nε
n1+ε =

2k+1ξ+k k
2+k

ξ−k
n (A.4)

We now examine the reciprocity. We first consider the reciprocity player u obtains
from the players in V<k. We have c(rv) ≥ c(k − γ) for ∀v ∈ V<k, since rv ≤ k − γ. Then
we have:

Pu,V<k (r) =
∑
v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑
v∈V<k

dM (u, v)−ru

c(ru)c(k − γ)
≤
∑
∀v 6=u dM (u, v)−ru

c(ru)c(k − γ)
=

1

c(k − γ)
.

Combining with the inequalities (A.4) and (A.1a), we get:

D(ru)αuPu,V<k (r) ≤
(

2k+1ξ+k k
2+k

ξ−k
n

)αu
1

ξ−
k

2k+1k
nγ
≤

(ξ+k )αu2(k+1)(αu+1)k(k+2)αu+1

(ξ−k )αu+1
nαu−γ . (A.5)

Next we examine the reciprocity that player u obtains from the players in V>k. Note
that for all v ∈ V>k, rv ≥ k+ γ. Using the bound on c(rv) given by inequality (A.1c), we
have:

Pu,V>k (r) =
∑
v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤
∑nD
j=1 bu(j) · j−ru · j−k−γ

ξ−k c(ru)
=
ξ+k
∑nD
j=1 j

−1−ru−γ

ξ−k c(ru)

≤
ξ+k (1 +

∫ nD
1

x−1−ru−γdx)

ξ−k c(ru)
≤

ξ+k (1 + ru + γ)

ξ−k (ru + γ)c(ru)
≤
ξ+k (k + 1)

ξ−k γc(ru)
.

Based on the bound on D(ru) and c(ru) given by inequalities (A.4) and (A.1a), we
get:

D(ru)αuPu,V>k (r) ≤
(

2k+1ξ+k k
2+k

ξ−k
n

)αu
·
ξ+k (k + 1)

ξ−k γ
ξ−
k

2k+1k
nε

≤
(ξ+k )αu+12(k+1)(αu+1)k(k+2)αu+1(k + 1)

(ξ−k )αu+2γ
nαu−ε

≤
(ξ+k )αu+12(k+1)(αu+1)+1k(k+2)αu+2

(ξ−k )αu+2γ
nαu−γ .

(A.6)
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We now examine the payoff of player u from players in V=k. In this case, the upper
bound for the reciprocity is:

P (ru, k) =

∑nD
j=1 bu(j) · j−ru · j−k

c(ru)c(k)
≤ ξ+k

nD∑
j=1

jε−1−k

c(ru)c(k)
.

Notice that ε ≤ k, we have:

P (ru, k) ≤
ξ+k

c(ru)c(s)

(
1 +

∫ nD

j=1

jε−1−s
)
≤


ξ+
k
(1+k−ε)

(k−ε)c(ru)c(k) ≤
2kξ+

k
γc(ru)c(k)

if ε < k,
2ξ+
k

ln(2kn)

c(ru)c(k)
if ε = k,

The inequalities in the cases above use the facts γ ≤ ε ≤ k and k − ε ≥ γ when ε < k.
Combining the the above bounds on reciprocity with bounds given by inequalities

(A.4), (A.1a) and (A.1b), we have the payoff of node u getting from V=k:
D(ru)αuPu,V=k (r) ≤ D(ru)αuP (ru, k)

≤


(

2k+1ξ+
k
k2+k

ξ−
k

n

)αu
· 2kξ+

k

γ
ξ
−
k
nε

2k+1k
·
ξ
−
k

lnn

2

if ε < k,(
2k+1ξ+

k
k2+k

ξ−
k

n

)αu
· 2ξ+

k
ln(2kn)

ξ
−
k
nε

2k+1k
·
ξ
−
k

lnn

2

if ε = k,

≤


(ξ+
k
)αu+12αu(k+1)+k+3kαu(k+2)+1

γ(ξ−
k

)αu+2

nαu−γ

lnn
if ε < k.

(ξ+
k
)αu+12αu(k+1)+k+3kαu(k+2)+1 ln(2kn)

(ξ−
k

)αu+2 lnn
nαu−γ ≤ (ξ+

k
)αu+12αu(k+1)+k+4kαu(k+2)+1

(ξ−
k

)αu+2
nαu−γ if ε = k.

(A.7)

The last inequality in the case of ε = k requires n ≥ 2k.
Adding up results in Eq.(A.5), (A.6), (A.7), we obtain that

π(ru, r−u) ≤
(ξ+k )αu2(k+1)(αu+1)k(k+2)αu+1

(ξ−k )αu+1
nαu−γ +

(ξ+k )αu+12(k+1)(αu+1)+1k(k+2)αu+2

(ξ−k )αu+2γ
nαu−γ+

(ξ+k )αu+12αu(k+1)+k+4kαu(k+2)+1

(ξ−k )αu+2
nαu−γ

≤
3(ξ+k )αu+1 · 2αu(k+1)+k+4kαu(k+2)+2

γ(ξ−k )αu+2
nαu−γ

≤
(ξ+k )αu+1 · 2αu(k+1)+k+6kαu(k+2)+2

γ(ξ−k )αu+2
nαu−γ ,

(A.8)
when n ≥ max{e4, 2k}.
Payoff of ru > k. Let ε = ru − k (ε ≥ γ). For this case, we can relax the reciprocity
Pu(ru, r−u) to one and only consider the upper bound on link distance D(ru). Applying
bounds given by inequalities (A.2c), (A.2d) and (A.1a), we obtain:

π(ru = k + ε, r−u) ≤ D(ru)αu ≤


(

ξ+
k
k

2γξ−
k

n1−γ
)αu

if ε < 1,(
ξ+
k

ξ−
k

ln(2kn)

)αu
if ε ≥ 1.

≤


(
ξ+
k
k

ξ−
k
γ

)αu
nαu(1−γ) if ε < 1,(

ξ+
k

ξ−
k

)αu
ln(2kn)αu ≤

(
ξ+
k

ξ−
k

)αu
2nαu(1−γ) if ε ≥ 1.

(A.9)
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The last inequality in the above case of ε ≥ 1 holds when n ≥ 2k and γ ≤ 1/2.
Finally, the lemma holds when we combine Eq.(A.8) and (A.9)

LEMMA A.4. In the k-dimensional DRB game, for sufficiently large n, the payoff
of any node u ∈ V with αu > 0 in the navigable small world r ≡ k has the following
bounds:

(ξ−k )αu+1

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
≤ π(ru = k, r−u ≡ k) ≤

23+αu(ξ+k )αu+1

(ξ−k )2+αu
· nαu

ln2+αu n
. (A.10)

PROOF. We have the lower bound for the reciprocity:

P (ru, k) ≥
∑n/2
j=1 bu(j) · j−2k

c2(k)
≥

ξ−k
c2(k)

.

Combining the above inequality with bounds (A.2b) and (A.1b), we get.

π(ru = k, k) = D(ru)αuP (ru, k) ≥
(ξ−k )αu+1nαu

2cαu+2(k)
=

(ξ−k )αu+1

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
.

The upper bound on the reciprocity is:

P (ru, k) =

∑nD
j=1 bu(j) · j−2k

c2(k)
≤

ξ+k
c2(k)

(
1 +

∫ nD

j=1

j−k−1

)
≤

2ξ+k
c2(k)

Combining the above inequality with bounds (A.2b) and (A.1b), we get the upper
bound on the payoff:

π(ru = k, r−u ≡ k) = D(ru)αuP (ru, k) ≤
2(ξ+k )αu+1nαu

cαu+2(k)
≤

2αu+3(ξ+k )αu+1

(ξ−k )2+αu
· nαu

ln2+αu n
.

Appendix B: PROOF OF LEMMA 3.1
LEMMA 3.1. In the k-dimensional DRB game, for any constant δ, there exists n0 ∈ N

(may depend on δ), for any n ≥ n0, for any non-zero strategy profile r 6≡ 0, if a node w
satisfies rw ≥ k or rw = maxv∈V rv, then for any node u within δ grid distance of w (i.e.
dM (u,w) ≤ δ), u has the unique best response of ru = k.

PROOF. For a given node w, define the set of nodes with distance of δ to w as: Nw,δ =
{u|u ∈ V ∧ dM (u,w) ≤ δ}.

In the case of rw ≥ k, for any u ∈ Nw,δ, if u chooses the strategy ru = k, we have:

P (ru, r−u) > pu(w, ru)pw(u, rw) ≥ dM (u,w)−2k

c(k)2
≥ δ−2k

c(k)2
.

Combining the above inequality with the bounds in (A.2b) and (A.1b), we get:

π(ru = k, r−u) ≥ D(ru)αuP (ru, r−u) ≥
(
ξ−k n

2c(k)

)αu
· δ
−2k

c(k)2
≥

(ξ−k )αuδ−2k

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
. (B.1)

However, if node u chooses ru 6= k, by Lemma A.3 we know that there is a constant
κ such that for all sufficiently large n, π(ru, r−u) ≤ κnαu−min{1,αu}γ . We see that the
lower bound (B.1) for ru = k is in strictly higher order in n than the upper bound of
ru 6= k, thus there exists n0 ∈ N (n0 may depend on δ), such that for all n ≥ n0, ru = k
is the unique best response to r−u for any u ∈ Nw,δ.

In the case of rw = maxv∈V rv, if rw ≥ k, from the above analysis we know that ru = k
is the unique best response to r−u for any u ∈ Nw,δ.
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Otherwise, given rw < k, we know V = V<k. In this case, we further partition the
nodes V<k into two sets: V>0 = {v ∈ V | k > rv > 0} and V=0 = {v ∈ V | rv = 0}. So we
know that:

πu(r) = D(ru)αu (Pu,V>0(r) + Pu,V=0(r)) . (B.2)

Let rmin be the minimum value among the strategies of users in the set of V = V>0.
Clearly, γ ≤ rmin ≤ rw < k.
Payoff of ru < k. For any node u ∈ Nw,β , if it chooses ru < k, let ε = k−ru (γ ≤ ε ≤ k).
Notice that c(v) ≥ c(rw) for any node v ∈ V \ {u}, so we have:

Pu,V>0(r) =
∑
v∈V>0

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑
v∈V \{u}

dM (u, v)−ru−rmin

c(ru)c(rw)
≤
∑nD
j=1 ξ

+
k j

ε−1−rmin

c(ru)c(rw)
.

If rmin + 1 ≤ ε, we have:

Pu,V>0(r) ≤ ξ+k
∫ nD+1

j=1

jε−rmin−1

c(ru)c(rw)
≤

ξ+k (nD + 1)ε−rmin

(ε− rmin)c(ru)c(rw)
≤
ξ+k (kn)ε−rmin

c(ru)c(rw)
.

If rmin + 1 > ε, we have:

Pu,V>0(r) ≤
ξ+k

c(ru)c(rw)

(
1 +

∫ nD

j=1

jε−1−rmin
)
≤


ξ+
k
((kn)ε−rmin+ε−rmin−1)

(ε−rmin)c(ru)c(rw)
if rmin 6= ε,

ξ+
k

ln(kn)

c(ru)c(rw)
if rmin = ε.

Combining the above bounds on reciprocity with bounds in inequalities (A.4) and
(A.1a), we have the payoff of node u gets from V>0:

D(ru)αuPu,V>0(r) ≤


D(ru)αu · ξ

+
k
(kn)ε−rmin

γc(ru)c(rw)
, if ε > rmin,

D(ru)αu · ξ
+
k

ln(kn)

c(ru)c(rw)
, if ε = rmin,

D(ru)αu · ξ+
k

γc(ru)c(rw)
, if ε < rmin.

≤


(ξ+
k
)αu+12(k+1)(αu+2)k(k+2)(αu+1)

(ξ−
k

)αu+2γ
nαu+rw−γ−k, if ε > rmin,

(ξ+
k
)αu+12(αu+2)(k+1)k(k+1)αu+2

(ξ−
k

)αu+2
nαu+rw−γ−k ln(kn), if ε = rmin,

(ξ+
k
)αu+12(αu+2)(k+1)k(k+1)αu+3

(ξ−
k

)αu+2γ
nαu+rw−γ−k, if ε < rmin.

(B.3)

We now consider the payoff of a node u from the set V=0. We have:

Pu,V=0(r) =
∑
v∈V=0

dM (u, v)−ru

c(ru)c(0)
≤

∑
v∈V \{u}

dM (u, v)−ru

c(ru)c(0)
=

1

c(0)
. (B.4)

It is easy to get:
c(0) = nk − 1 ≥ nk/2. (B.5)

Thus, combining with bound (A.4), we have the payoff of node u gets from V=0:

D(ru)αuPu,V=0(r) ≤
(

2k+1ξ+k k
2+k

ξ−k
n

)αu
· n

k

2
≤

2(k+1)αu+1k(2+k)αu(ξ+k )αu

(ξ−k )αu
nαu−k. (B.6)

Combining the above bounds in Eq.(B.3) and Eq.(B.6) with Eq.(B.2), we see the payoff
of ru < k in r is at most O

(
nαu+rw−γ−k ln(kn)

)
.

Payoff of ru > k. If node u chooses ru > k, let ε = ru − k ≥ γ. We have:

Pu,V>0 =
∑
v∈V>0

dM (u, v)−ru−rv

c(ru)c(rv)
≤
∑
v∈V>0

dM (u, v)−ru−rv

c(ru)c(rw)
<

∑
v∈V \{u} dM (u, v)−ru

c(ru)c(rw)
=

1

c(rw)
.
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Combining the above inequality with bounds (A.2c), (A.2d), (A.1c) and (A.1a) onD(ru),
c(ru) and c(rw), respectively, we have the payoff of node u gets from V>0:

D(ru)αuPu,V>0 ≤


(

ξ+
k
k

2γξ−
k

n1−γ
)αu

· 2k+1k

ξ−
k
nk−rw

=
2k+1−αukαu+1(ξ+

k
)αu

(ξ−
k

)1+αuγαu
nαu+rw−k−αuγ if ε < 1,(

ξ+
k

ξ−
k

ln(2kn)

)αu
· 2k+1k

ξ−
k
nk−rw

=
2k+1k(ξ+

k
)αu

(ξ−
k

)1+αu

lnαu (2kn)

nk−rw
if ε ≥ 1.

(B.7)

Combining the bounds (A.2c), (A.2d), (A.1c) and with bounds Eq.(B.4) and Eq.(B.5),
we have the payoff of node u gets from V=0:

D(ru)αuPu,V=0 ≤


(

ξ+
k
k

2γξ−
k

n1−γ
)αu

· 2
nk

= 21−αu
(
ξ+
k
k

ξ−
k
γ

)αu
nαu−k−αuγ if ε < 1,(

ξ+
k

ξ−
k

ln(2kn)

)αu
· 2
nk

= 2

(
ξ+
k

ξ−
k

)αu
lnαu (2kn)

nk
if ε ≥ 1.

(B.8)

Combining the above bounds in Eq.(B.7) and Eq.(B.8) with Eq.(B.2), we see the payoff
of ru > k is at most O

(
nαu+rw−k−αuγ

)
.

Payoff of ru = k. However, if the node u chooses the strategy ru = k, we have:

P (ru) > pu(v, ru)pw(u, rw) >
d(u,w)−k−rw

c(k)c(rw)
>

δ−2k

c(k)c(rw)
.

Combining the above inequality with the bounds (A.2b), (A.1b) and (A.1a) on D(ru),
c(k) and c(rw), we get:

π(ru = k, r−u) = D(ru)αuP (ru) >

(
ξ−k n

2c(k)

)αu
· δ−2k

c(k)c(rw)
=

(ξ−k )αuδ−2knαu

2αuc1+αu(k)c(rw)

≥
(ξ−k )αu−1k21+k−αuδ−2k

(ξ+k )1+αu
nαu+rw−k

ln1+αu(2kn)
. (B.9)

We see that the payoff of ru = k is in strictly higher order in n than the payoff of ru < k
or ru > k, thus there exists n0 ∈ N (which may depend on δ but do not depend on rw
since nαu+rw−k is a common term), for all n ≥ n0, ru = k is the best response to r−u for
any u ∈ Nw,δ.

Appendix C: PROOF OF RANDOM SMALL WORLD EQUILIBRIUM
THEOREM 3.1. For the DRB game in a k-dimensional grid, the following is true for

sufficiently large n: 4 For every node u ∈ V , every strategy profile r, and every s ∈ Σ, if
r−u ≡ s, then u has a unique best response to r−u ≡ s:

Bu(r−u ≡ s) =

{
k if s > 0,

0 if s = 0.

PROOF FOR Bu(r−u ≡ s) = 0 IF s = 0. When other players choose strategy r−u ≡ 0,
the reciprocity of the player u is constant:

Pu(ru, r−u ≡ 0) =
∑
∀v 6=u

pu(v, ru)pv(u, rv = 0) =
∑
∀v 6=u

pu(v, ru)

|V | − 1
=

1

|V | − 1
. (C.1)

4Technically, a statement being true for sufficiently large n means that there exists a constant n0 ∈ N that
may only depend on model constants such as k, γ and αu, such that for all n ≥ n0 the statement is true in
the grid with parameter n.
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Thus, the payoff of the player u is only determined by the link distance D(ru). Let
X(ru) be the random variable denoting the grid distance from u’s long-range contact
to u. Then we have D(ru) = E[X(ru)]. We want to show the following intuitive claim:

Claim 1. For any ru < r′u, X(ru) strictly stochastically dominates X(r′u), i.e., for all
1 ≤ ` < nD, Pr(X(ru) ≤ `) < Pr(X(r′u) ≤ `).

Proof of the claim. Let q(ru, j) be the probability that u’s long-range contact is a
particular node v at grid distance j from u. By definition, q(ru, j) = j−ru/c(ru). Then

we have q(ru,j+1)
q(ru,j)

=
(
j+1
j

)−ru
. Thus q(ru, j) is non-increasing in j, and the decreasing

ratio is faster when ru is larger. Since we know that
∑n
j=1 q(ru, j)bu(j) = 1, it must be

that q(ru, 1) < q(r′u, 1), q(ru, nD) > q(r′u, nD), and there exists a j̄ such that for all j ≤ j̄,
q(ru, j) ≤ q(r′u, j), and for all j > j̄, q(ru, j) > q(r′u, j).

By the definition of X(ru), we have Pr(X(ru) ≤ `) =
∑`
j=1 q(ru, j)bu(j). Thus, for any

1 ≤ ` ≤ j̄, Pr(X(ru) ≤ `) =
∑`
j=1 q(ru, j)bu(j) <

∑`
j=1 q(r

′
u, j)bu(j) = Pr(X(r′u) ≤ `).

For any j̄ < ` < nD, Pr(X(ru) ≤ `) =
∑`
j=1 q(ru, j)bu(j) = 1 −

∑nD
j=`+1 q(ru, j)bu(j) <

1 −
∑nD
j=`+1 q(r

′
u, j)bu(j) = Pr(X(r′u) ≤ `). Therefore, we have the claim that X(ru)

strictly stochastically dominates X(r′u).
With this claim, we immediately have E[X(ru)] > E[X(r′u)]. As a consequence,

D(0) = E[X(0)] > E[X(r′u)] = D(r′u) for any r′u > 0. Therefore, ru = 0 is the player
u’s unique best response to r−u ≡ 0.

Appendix D: PROOF OF THEOREM 3.3
THEOREM 3.3. For the DRB game in the k-dimensional grid, the navigable small-

world network (r ≡ k) is a strong Nash equilibrium for sufficiently large n.

PROOF. We actually prove a slightly stronger result: any node u in any strategy
profile r with ru 6= k is strictly worse off than its payoff in the navigable equilibrium,
when n is large enough. With the Lemma A.4, we see that a player u has the payoff
at least Ω

(
nαu

ln2+αu (2kn)

)
before derivation. Suppose that a coalition C deviates, and

the new strategy profile is r. Then some node u ∈ C must select a new ru 6= k. By
Lemma A.3, there is a constant κ such that for all sufficiently large n, π(ru, r−u) ≤
κnαu−min{1,αu}γ . Thus we see that the payoff of u before the deviation is in strictly
higher order in n than its payoff after the deviation. Therefore, for all sufficiently large
n, u is strictly worse off, which means no coalition could make some member strictly
better off while others not worse off. Hence, navigable small-world network (r ≡ k) is
a strong Nash equilibrium.

Appendix E: PROOF OF THEOREM 3.4
THEOREM 3.4. For the DRB game in a k-dimensional grid, the random small-world

NE r ≡ 0 is not a 2-strong Nash equilibrium for sufficiently large n.

PROOF. Given a pair of grid neighbors (u, v), if they both choose the strategy k, we
have:

P (ru, r−u) > pu(v, ru)pv(u, ru) ≥ dM (u,w)−2k

c(k)2
≥ 1

c(k)2
.

Combining the above inequality with the bounds (A.2b) and (A.1b), we get:

π(ru = k, r−u) = D(ru)αuP (ru, r−u) >

(
ξ−k n

2

)αu
1

c2+αu(k)
≥

(ξ−k )αu

2αu(ξ+k )αu+2

nαu

lnαu+2(2kn)
. (E.1)
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However, if node u chooses ru 6= k, by Lemma A.3 we know that there is a constant
κ such that for all sufficiently large n, π(ru, r−u) ≤ κnαu−min{1,αu}γ . We see that the
payoff of ru = k is in strictly higher order in n than its original payoff. Notice that the
proof for the increase of node v’s payoff is similar to that of node u, so both colluding
nodes get strictly higher payoff. The theorem is proved.

Appendix F: PROOF OF THEOREM 3.6
FACT 1. (Chernoff bound). Let X be a sum of n independent random variables {Xi},

with E[Xi] = µ; Xi ∈ {0, 1} for all i ≤ n. For any 0 < ε < 1,

P r[X ≤ (1− ε)µ] ≤ e−
µε2

2 , P r[X ≥ (1 + ε)µ] ≤ e−
ε2

2+εµ.

Based on the Chernoff bound, we have the following lemma. Let Yu(j, s) be the num-
ber of players with grid distance j to u and a strategy of s.

LEMMA F.1. In the k-dimensional DRB game (k > 1), for any η > 0, if each player
chooses a strategy s independently with probability ps ≥ η from a finite strategy set
S ⊆ Σ, then for all n ≥ |S|, with probability 1− 1/n, the following property holds:

Yu(j, s) >
ηbu(j)

2
,∀u ∈ V,∀s ∈ S, ∀j ∈ N ∩

[
ρ

(
lnn

η

) 1
k−1

,
n

2

]
,

where ρ =
(

24+8k
ξ−k

) 1
k−1

is a constant.

PROOF. Since individual players choose strategy of s independently with probability
ps, E[Yu(j, s)] = psbu(j) ≥ ηbu(j). Based on the Chernoff bound, we have:

P (Yu(j) ≤ (1− ε)E[Yu(j, s)]) ≤ exp

(
− ε

2E[Yu(j, s)]

2

)
≤ exp

(
− ε

2ηbu(j)

2

)
.

Note that bu(j) ≥ ξ−k jk−1 for 0 < j ≤ bnc/2. Let m = |S|. Let % =
(

(16+8k) lnn+8 lnm

ηξ−k

) 1
k−1

For % ≤ j ≤ bnc/2, we have:

P

(
Yu(j) ≤ ηbj(u)

2

)
≤ 1

mnk+2
.

Since there are nk players in the k dimensional grid, by union bound, we have ∀u,∀s,
for any % ≤ j ≤ bnc/2,

P

(
Yu(j) >

ηbj(u)

2

)
≥ 1− 1

n
,

As m is a constant, we can rewrite % as:

% =

(
(16 + 8k) lnn+ 8 lnm

ηξ−k

) 1
k−1

≤
(

24 + 8k

ξ−k

) 1
k−1

(
lnn

η

) 1
k−1

,

holds for all n ≥ m.

THEOREM 3.6. Consider the navigable small-world equilibrium r ≡ k for the DRB
game in a k-dimensional grid (k > 1). Suppose that with probability pu each node u ∈ V
independently perturbs ru to an arbitrary strategy r′u ∈ Σ, and with probability 1 − pu
r′u = ru. Let αmin = minu∈V αu, then for any constant ε with 0 < ε < min{1, αmin}γ/4,
there exists n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0, if pu ≤ 1− n−ε, with
probability at least 1−1/n, the perturbed strategy profile r′ moves back to the navigable
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small world (r ≡ k) in one synchronous step, or as soon as every node takes at least one
asynchronous step in the best response dynamics.

PROOF. Given a deviation probability pu ≤ 1− n−ε for node u, we know that node u
still uses the original strategy k with a probability of 1 − pu ≥ n−ε. By Lemma F.1 we
know that, with probability 1− 1

n , the following property holds:

Yu(j, k) >
n−εbu(j)

2
,∀u ∈ V, ∀j ∈ N ∩

[
ρ

(
lnn

n−ε

) 1
k−1

,
n

2

]
. (F.1)

When the above property holds, we fix any node u and examine its payoff. In the case
of ru = k, the reciprocity that u gets from those still choosing strategy of k is:

Pu,V=k (r) ≥ n−ε

2

∑n/2

j=ρ
(

lnn
n−ε

) 1
k−1

bu(j) · j−2k

c2(k)
≥
ξ−k n

−ε

2

∑n/2

j=ρ
(

lnn
n−ε

) 1
k−1

j−k−1

c2(k)

≥
ξ−k n

−ε

2

ρ
−(k+1)
k−1

(
lnn
n−ε

)−(k+1)
k−1

c2(k)
≥

ξ−k n
−4ε

2c2(k)ρ3 ln3 n
.

The last inequality holds as k ≥ 2.
Combing with the above bound with bounds (A.2b) and (A.1b), we get:

πu(ru = k, r) ≥ D(ru)αuPu,V=k (r) ≥
(
ξ−k n

2c(k)

)αu
·

ξ−k n
−4ε

2c2(k)ρ3 ln3 n

≥
(ξ−k )αu+1

2αu+1(ξ+k )αu+2ρ3
nαu−4ε

ln2+αu(2kn) · ln3(n)
≥

(ξ−k )αu+1

2αu+1(ξ+k )αu+2ρ3
nαu−4ε

ln5+αu(2kn)
. (F.2)

By Lemma A.3, there is a constant κ such that for all sufficiently large n, π(ru 6=
k, r−u) ≤ κnαu−min{1,αu}γ . Comparing with Eq. (F.2), since αmin ≤ αu for any node u
and ε < min{1, αmin}γ/4, the payoff of u with strategy ru = k is in strictly higher order
in n than its payoff after the deviation. Therefore, when the property Eq. (F.1) holds,
for all sufficiently large n, u get strictly better payoff than any other strategy choice by
choosing ru = k after the deviation.

Therefore, when the property Eq. (F.1) holds, the perturbed strategy profile r′ moves
back to the navigable small world (r ≡ k) in one synchronous step, as every player u
moves from its current strategy to its best response ru = k. Also, it is clear that the
property Eq. (F.1) consistently holds as any player takes one asynchronous step. This
is because the asynchronous move only increases the number of nodes choosing the
strategy of k, so the best response of every player is always k after every asynchronous
step. Thus, the perturbed strategy profile moves back to the navigable small world
as soon as every node takes at least one asynchronous step. Notice that the property
Eq. (F.1) holds with a probability of 1− 1/n, so the theorem is proved.

Appendix G: PROOF OF THEOREM 3.7
THEOREM 3.7. For the DRB game in a k-dimensional grid (k > 1) with the initial

strategy profile r ≡ 0 and a finite perturbed strategy set S ⊂ Σ with at least one non-
zero entry (0 < maxS ≤ β), for any constant ε with 0 < ε < γ/2, there exists n0 ∈ N
(depending only on k, γ, and ε), for all n ≥ n0, if for any u ∈ V , with independent
probability of p ≥ n−

(k−1)ε
k+β , ru ∈ S \ {0} after the perturbation, then with probability at

least 1 − 1/n, the network converges to the navigable small world in one synchronous
step, or as soon as every node takes at least one asynchronous step in the best response
dynamics.
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PROOF. Fix any node u ∈ V . Let r be the strategy profile after perturbation. We
partition nodes in V \ {u} into sets Vs, s ∈ S ∪ {0}, where Vs = {v ∈ V \ {u} | rv = s}.
Let Pu,Vs(r) be the reciprocity u obtained from subset Vs. Then we have

π(ru, r−u) = D(ru) ·
∑

s∈S∪{0}

Pu,Vs(r). (G.1)

For any node u and any given s ∈ S ∪ {0}, we now compare the payoff it gets from Vs
when using ru = k and ru = s′ 6= k, respectively.

(
D(ru = s′)

D(ru = k)

)αu
· Pu,Vs(r)

Pu,Vs(r)
=

(
D(ru = s′)

D(ru = k)

)αu
·
∑
v∈Vs

d(u,v)−s
′−s

c(s′)c(s)∑
v∈Vs

d(u,v)−k−s

c(k)c(s)

.

For a given node u and a subset of nodes Γ, let define dmin,Γ and dmax,Γ be the min-
imum and maximum grid distances between node u and any node v ∈ Γ, respectively.
In other words, dmin,Γ ≤ dM (u, v) ≤ dmax,Γ,∀v ∈ Γ. With this definition, for any v ∈ Vs,
we have:

d(u,v)−s
′−s

c(s′)c(s)

d(u,v)−k−s

c(k)c(s)

=
c(k)

c(s′)
d(u, v)k−s

′
≤

{
c(k)
c(s′)d

k−s′
max,Vs

if s′ < k,
c(k)
c(s′)d

k−s′
min,Vs

if s′ > k.
.

Combing the above inequality, we have:(
D(ru = s′)

D(ru = k)

)αu
· Pu,Vs(r)

Pu,Vs(r)
≤


(
D(ru=s

′)
D(ru=k)

)αu
· c(k)
c(s′)d

k−s′
max,Vs

if s′ < k,(
D(ru=s

′)
D(ru=k)

)αu
· c(k)
c(s′)d

k−s′
min,Vs

if s′ > k.
. (G.2)

We first show that π(ru = k, r−u) > π(ru = s′, r−u) when s′ > k. In the case of s′ > k,
as dmin,Vs ≥ 1, combining the above inequality with the bounds (A.2c), (A.2b), (A.1c)
and (A.1b) on D(s′), D(k), c(s′) and c(k), we get:(

D(ru = s′)

D(ru = k)

)αu
· Pu,Vs(r)

Pu,Vs(r)
= O

((
n1−γ

n

)αu
· c(k)αu+1

)
= O

(
lnαu+1(2kn)

nαuγ

)
. (G.3)

Therefore, we can find a constant σ such that:

π(ru = k, r−u)− π(ru = s′, r−u) =
∑

s∈S∪{0}

[
D(ru = k)αuPu,Vs(r)−D(ru = s′)αuPu,Vs(r)

]
=

∑
s∈S∪{0}

D(ru = k)αuPu,Vs(r)

(
1− D(ru = s′)αuPu,Vs(r)

D(ru = k)αuPu,Vs(r)

)

≥
∑

s∈S∪{0}

D(ru = k)αuPu,Vs(r)

(
1− lnαu+1(2kn)

nαuγ

)
> 0, (G.4)

for sufficiently large n.
We next show that π(ru = k, r−u) > π(ru = s′, r−u) when s′ < k. Note here we

require the constant ε < γ/2 in the theorem. We first find a distance threshold to
partition nodes into nodes nearby to u and nodes far away from u. We want to prove
that π(ru = k, r−u)− π(ru = s′, r−u) is dominated by the nearby nodes.

In the case of s′ < k, we can find a constant ν = 1− γ−2ε
2k such that, for any s ∈ S, the

set Vs can be partitioned into two subsets: (i) V −s = {v ∈ V | rv = s ∧ dM (u, v) ≤ nν},
and (ii) V +

s = {v ∈ V | rv = s ∧ dM (u, v) > nν}. Notice that dmax,V −s
is at most nν .

Combining the above inequality Eq. (G.2) with the bounds (A.2a), (A.2b), (A.1a) and
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(A.1b) on D(s′), D(k), c(s′) and c(k), we get:(
D(ru = s′)

D(ru = k)

)αu
·
Pu,V −s (r)

Pu,V −s (r)
= O

(
c(k)αu+1

n(k−s′)(1−ν)

)
= O

(
lnαu+1(2kn)

n(1−ν)γ

)
, (G.5)

where ν < 1.
Notice that Pu,Vs = Pu,V −s + Pu,V +

s
. Based on the bound in Eq. (G.5), we can find a

constant σ′ such that:
π(ru = k, r−u)− π(ru = s′, r−u)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V−s

(r)−
∑

s∈S∪{0}

D(ru = s′)αuPu,Vs(r)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V−s

(r)

(
1−

D(ru = s′)αuP
u,V−s

(r)

D(ru = k)αuP
u,V−s

(r)

)
−

∑
s∈S∪{0}

D(ru = s′)αuP
u,V +

s
(r)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V−s

(r)

(
1− σ′ lnαu+1(2kn)

n(1−ν)γ

)
−

∑
s∈S∪{0}

D(ru = s′)αuP
u,V +

s
(r)

≥
∑

s∈S∪{0}

D(ru = k)αuP
u,V−s

(r)

2
−

∑
s∈S∪{0}

D(ru = s′)αuP
u,V +

s
(r) (G.6)

for sufficiently large n.
We now give the lower bound of the first term D(ru = k)αuPu,V −s (r). Let Uj = {v |

dM (u, v) = j ∧ rv > 0}. By Lemma F.1, with probability 1− 1/n,

|Uj | >
ηbu(j)

2
,∀u ∈ V, ∀j ∈ N ∩

[
ρ

(
lnn

η

) 1
k−1

,
n

2

]
. (G.7)

For j =

⌈
ρ
(

lnn
η

) 1
k−1

⌉
, we have:

Pu,Uj (r) =
∑
v∈Uj

pu(v, ru) · pv(u, rv) =
∑
v∈Uj

j−k

c(k)
· j
−rv

c(rv)
≥
∑
v∈Uj

j−k

c(k)
· j
−β

c(γ)
≥ η · bu(j) · j−k−β

2c(k)c(γ)

≥
η · ξ−k j

k−1 · j−k−β

2c(k)c(γ)
≥
ηξ−k ρ

−(β+1)
k−1

(
lnn
η

)−(β+1)
k−1

2c(k)c(γ)
.

We now fix η = 1/n
(k−1)ε
k+β (0 < ε < γ/2), and have:

Pu,Uj (r) ≥
ξ−k

2ρ
β+1
k−1 c(k)c(γ)

· 1

(lnn)
(β+1)
k−1 nε

. (G.8)

Note that Uj ⊆ ∪s∈S\{0}V −s , since j =

⌈
ρ
(

lnn
η

) 1
k−1

⌉
=
⌈
ρ ln

1
k−1 n · n

ε
k+β

⌉
<

n
k−γ/2+ε

k = nν for sufficiently large n. Combining with the bounds (A.2b), (A.1a) and
(A.1b) on D(k), c(γ) and c(k), we get:

D(ru = k)αu
∑

s∈S\{0}

P
u,V−s

≥ D(ru = k)αuPu,Uj (ru = k, r−u)

= Ω

(
nαu

lnαu(2kn)
· 1

ln(2kn) · nk−γ ·
1

(lnn)
(β+1)
k−1 nε

)
= Ω

(
nαu−k−ε+γ

lna(2kn)

)
,

(G.9)
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where a = αu + 1 + β+1
k−1 is constant.

We next give the upper bound of the second term D(ru = s′)αuPu,V +
s

. Notice that
dM (u, v) > nν for any v in V +

s , so for any s, we have:

P
u,V +

s
(r) =

∑
v∈V +

s

dM (u, v)−s
′−s

c(s′)c(s)
≤
∑
v∈V +

s

n−ν(s
′+s)

c(s′)c(s)
. (G.10)

In the case of s < k, combining the above inequality with the bound (A.1a) on c(s′) and
c(s), we get:

P
u,V +

s
(r) ≤

∑
v∈V +

s

22k+2k2

(ξ−k )2
n(s+s′)(1−ν)−2k ≤

∑
v∈V +

s

22k+2k2

(ξ−k )2
n2k(1−ν)−2k = |V +

s |
22k+2k2

(ξ−k )2
n−2kν .

(G.11)

In the other case of s ≥ k, combining the inequality Eq. (G.10) with the bounds (A.1a),
(A.1c) on c(s′) and c(s), respectively, we get:

P
u,V +

s
(r) ≤

∑
v∈V +

s

n−ν(s
′+k)

c(s′)ξ−k
≤
∑
v∈V +

s

2k+1k

(ξ−k )2
n(1−ν)s′−(1+ν)k ≤

∑
v∈V +

s

2k+1k

(ξ−k )2
n(1−ν)k−(1+ν)k

= |V +
s |

2k+1k

(ξ−k )2
n−2kν . (G.12)

Combining the above inequalities Eq. (G.11) and Eq. (G.12) with the bound (A.2b)
on distance D(s′), we know that for any s:

D(ru = s′)αuP
u,V +

s
= O

(
|V +
s |nαu−2kν

)
. (G.13)

We are now ready to combine the above bounds and show that π(ru = k, r−u) >
π(ru = s′, r−u) when s′ < k. More specifically, combining the inequalities in Eq. (G.6),
Eq. (G.9) and Eq. (G.13), we get:

π(ru = k, r−u)− π(ru = s′, r−u)

≥
∑

s∈S\{0}

D(ru = k)αuP
u,V−s

2
−

∑
s∈S∪{0}

D(ru = s′)αuP
u,V +

s
,

≥ ρnαu−k+γ−ε

2 lna(2kn)
− ρ′| ∪s∈S∪{0} V +

s | · nαu−2kν ≥ ρnαu−k+γ−ε

2 lna(2kn)
− ρ′nk · nαu−2k+γ−2ε

≥ ρnαu−k+γ−ε

2 lna(2kn)
− ρ′nαu−k+γ−2ε, (G.14)

where σ, ρ, ρ′, a are all constants.
As 0 < ε < γ/2, the first term in Eq. (G.14) is in strictly higher order in n than

the second term in Eq. (G.14), we know that for sufficiently large n, π(ru = k, r−u) >
π(ru = s′, r−u) for any s′ < k.

Therefore, when the property in Eq. (G.7) holds, the perturbed strategy profile r
moves to the navigable small world (r′ ≡ k) in one synchronous step, as every player
u moves from its current strategy to its best response r′u = k. Also, it is clear that
the property Eq. (G.7) consistently holds as any player takes one asynchronous step.
This is because the asynchronous move only increases the number of nodes choosing
a non-zero strategy, so the best response of every player is always k after every asyn-
chronous step. Thus, the perturbed strategy profile moves to the navigable small world
as soon as every node takes at least one asynchronous step. Notice that the property
in Eq. (G.7) holds with a probability of 1− 1/n, so the theorem is proved.
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Appendix H: PROOF OF THEOREM 4.1
THEOREM 4.1. In the k-dimensional homogeneous DRB game, the optimal social

welfare is Θ
(

nα+k

lnα+1 n

)
for sufficiently large n.

PROOF. Given the strategy profile r, we partition the nodes V into three sets: V<k =
{v ∈ V | rv < k}, V>k = {v ∈ V | rv > k}, V=k = {v ∈ V | rv = k}. So we have:

πu(r) = D(ru)α
(
Pu,V<k (r) + Pu,V>k (r) + Pu,V=k (r)

)
. (H.1)

For any node u ∈ V=k, we have:

Pu,V<k (r) =
∑
v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑
v∈V<k

dM (u, v)−ru

c(ru)c(k − γ)
≤
∑
∀v 6=u dM (u, v)−ru

c(ru)c(k − γ)
=

1

c(k − γ)
.

Combining the above inequality with bounds (A.2b), (A.1b) and (A.1a) on D(k), c(k)
and c(k − γ), we get the upper bound on the payoff obtained from the set V<k:

D(ru = k)αPu,V<k (r) ≤ (
2ξ+k n

ξ−k lnn
)α · 2k+1k

ξ−k n
γ
≤

(ξ+k )α2k+1+αk

(ξ−k )α+1

nα−γ

lnα n
. (H.2)

For the set V>k, we have:

Pu,V>k (r) =
∑
v∈V>k

dM (u, v)−ru−rv

c(ru)c(rv)
≤
∑nD
j=1 bu(j) · j−ru · j−k−γ

ξ−k c(ru)
=
ξ+k
∑nD
j=1 j

−1−ru−γ

ξ−k c(ru)

≤
ξ+k (1 +

∫ nD
1

x−1−ru−γdx)

ξ−k c(ru)
≤

ξ+k (1 + ru + γ)

ξ−k (ru + γ)c(ru)
≤
ξ+k (k + 1)

ξ−k γc(ru)
.

Combining the above inequality with the bounds (A.2b), (A.1b) on D(k), c(k), we get
the upper bound on the payoff obtained from the set V>k:

D(ru = k)αPu,V>k (r) ≤ (
2ξ+k n

ξ−k lnn
)α ·

2ξ+k (k + 1)

(ξ−k )2γ lnn
≤

2α+2(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
. (H.3)

For the set V=k, by Lemma A.4 we know that:

D(ru = k)Pu,V=k\{u}(r) ≤ π(ru = k, r−u ≡ k) ≤
2α+3(ξ+k )α+1

(ξ−k )2+α
· nα

lnα+2 n
(H.4)

Then, for any node u ∈ V=k and sufficiently large n, we have
πu(r) = D(ru)α

(
Pu,V<k (r) + Pu,V>k (r) + Pu,V=k\{u}(r)

)
≤

(ξ+k )α2k+1+αk

(ξ−k )α+1

nα−γ

lnα n
+

2α+2(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
+

2α+3(ξ+k )α+1

(ξ−k )2+α
· nα

lnα+2 n

<
2α+3(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
. (H.5)

By Lemma A.3, for any node u /∈ V=k, there is a constant κ such that for all sufficiently
large n, π(ru, r−u) ≤ κnα−min{1,α}γ .

So we have, for sufficiently large n, the social welfare of the profile is:

SW (r) =
∑
u∈V

π(ru, r−u) < |V |
(

2α+3(ξ+k )α+1k

γ(ξ−k )α+2

nα

lnα+1 n
+ nα−min{1,α}γ

)

<
2α+4(ξ+k )α+1k

γ(ξ−k )α+2

nα+k

lnα+1 n
. (H.6)
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The above inequality shows that the social welfare of the profile is at most
O
(

nα+k

lnα+1 n

)
.

Next, we construct the profile r as follows: for any node with location (i, j), we set its
strategy as k if j mod 2 = 0, otherwise, we set its strategy as k + γ.

Notice that for any node u with ru = k, it has at least one neighbor v with rv > k. We
get:

Pu,V > pu(v, ru)pv(u, rv) >
1

c(k)c(k + γ)
. (H.7)

Combining with bounds in (A.2b), (A.1b) and (A.1c) on D(k), c(k) and c(k + γ), for
any node u with ru = k,

πu(r) > D(ru)αPu,V (r) >
(ξ−k )αγ

2α(ξ+k )2+α(1 + γ)

nα

lnα+1(2kn)
>

(ξ−k )αγ

22α+1(ξ+k )2+α(1 + γ)

nα

lnα+1(kn)
.

(H.8)

So we have, for sufficiently large n, the social welfare of the profile is:

SW (r) =
∑
u∈V

π(ru, r−u) >
|V |
2

(ξ−k )αγ

22α+1(ξ+k )2+α(1 + γ)

nα

lnα+1(kn)
>

(ξ−k )αγ

22α+2(ξ+k )2+α(1 + γ)

nα+k

lnα+1(kn)
.

(H.9)

The above inequality shows that the optimal social welfare is at least Ω
(

nα+k

lnα+1 n

)
.

Combining the results of Eq.(H.6) and Eq.(H.9), the theorem is proved.

Appendix I: PROOF OF THEOREM 4.2
THEOREM 4.2. In the k-dimensional homogeneous DRB game, for sufficiently large

n, the PoS is Θ(lnn) and the PoA is Θ
(

nk

lnα+1 n

)
.

PROOF. According to Lemma A.4, the payoff of each player in navigable NE r ≡ k

is π(ru = k, r−u ≡ k) = Θ
(

nα

lnα+2 n

)
, so the social welfare of navigable NE is Θ( nα+k

lnα+2 n
).

Combining with Theorem 4.1, the price of stability (PoS) is Θ(lnn).
For random small world r−u ≡ 0, we have:

Pu(ru, r−u ≡ 0) =
∑
v∈V

dM (u, v)−ru

c(ru)c(0)
=

1

c(0)
. (I.1)

It is easy to get:

c(0) = nk − 1 ≥ nk/2. (I.2)

Thus, combining the above inequality with the distance bound (A.2a), we have the
payoff of node u gets from V=0:

π(ru, r−u ≡ 0) ≤
2(k+1)α+1kα(2+k)(ξ+k )α

(ξ−k )α
nα−k. (I.3)

According to the above inequality, it is easy to get that the social welfare of r ≡ 0 is at
most O(nα). We now examine its lower bound. To do so, we first get the lower bound
on distance.

D(ru = 0) ≥
∑n/2
j=1 bu(j) · j
c(0)

≥
ξ−k
∫ n/2
1

xkdx

c(0)
≥
ξ−k (n/2− 1)1+k

(1 + k)c(0)
>
ξ−k (n/4)1+k

(1 + k)c(0)
, (I.4)
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Combining the above inequality with Eq.(I.2) and Eq. (I.1), so we can get

π(ru = k, r−u ≡ 0) >
(ξ−k )α

4α(1+k)2α−1k
nα−k. (I.5)

Therefore, the social welfare of the random small-world network (r ≡ 0) is Θ(nα).
Combining with Theorem 4.1, the price of anarchy (PoA) is Θ

(
nk

lnα+1 n

)
.
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