Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
Including leading scientists, renowned experts in
technology, book authors, and leading academics,
and makes videos of these lectures freely available.
2016 © Microsoft Corporation. All nghts reserved.

Scout: Using High-Level Design
Constraints to Automatically
Generate Design Variations

Amanda Swearngin, Andy Ko, James Fogarty

@‘Information School PAUL G.ALLEN SCHOOL = ﬂl =\ "

UNIVERSITY of WASHINGTON OF COMPUTERSCIENCE & ENGINEERING @ |27\ | —7 BUILD

M My OC Y003
O ———

anov\qvuoapwysaosv\nﬁguf

04

50

Version 1 Version 2 Version 3

A

*

B o *
B o

PackedRight

PackedRight

Executing Excallence In
Packaging

Executing Excellence

Pasaedfigm
In Packaging

{ Start
Get Started Get Started

Designing alternatives leads to better designs

(Lee et. al, Dow et. al.)

\\J
ﬁ Designer Usability &
Visual Design

Designing alternatives is difficult.

Scout: Using High-Level Design Constraints to
Automatically Generate Design Variations

* Can we generate many good design variations automatically to help
designers?

* Can we help designers follow design principles?

Scout: Inputs and Outputs

High-Level Design
Constraints

O
O
O

Scout: Inputs and Outputs

High-Level Design
Constraints

*
o

PackedRight

Executing Excellence In
Packaging

Get Started

Title text should be prominent

Scout: Inputs and Outputs

High-Level Design
Constraints

O
O
O

Scout

Interface Elements
*

B o

PackedRight
Executing Excellence In

Gat Stanted

Scout: Inputs and Outputs

High-Level Design

Constraints . o
N design variations that

satisfy the constraints

o

Scout —— [

crazeg

Interface Elements) o

* . ;
R Basic Design Constraints
. (e.g. non-overlapping)

PackedRight
Executing Excellence In

Visual/Graphic Design

Gat Stanted

Scout System Overview

Q

Designer

Scout System Overview

High-Level Design
Constraints

Designer

Scout System Overview

High-Level Design
Constraints

Designer

Scout System Overview

High-Level Design

Constraints ,
Design

Constraints

= —_— Design
— Synthesis
) =ess—— .
— Engine

Designer

Scout System Overview

High-Level Design
Constraints

Design
O — Constraints Design
) =—— .
o — Synthesis
— Engine
r'y

Designer

Scout System Overview

High-Level Design

Constraints ,
Design

— Constraints | Desi on
) =—— .
o — Synthesis

— Engine

Feedback

Q

Designer

Designs

Overview

* Scout System Overview
* High-Level Design Constraints
* Design Synthesis Engine

Structure/Proximity Principle?

Keep related things together

1. Constantine and Lockwood, 1999

Structure/Proximity Principle?

Keep related things together

Title and tagline text
are separate.

The user is less likely
to know what the
tagline is describing.

PackedRight

Executing Excellence
In Packaging

Bad

1. Constantine and Lockwood, 1999

Structure/Proximity Principle?

Keep related things together

Title and tagline text
are separate.

The user is less likely
to know what the
tagline is describing.

PackedRight

Executing Excellence
In Packaging

Bad

1. Constantine and Lockwood, 1999

Title and tagline text
are separate.

The user is less likely
to know what the
tagline is describing.

Executing Excellence

1. Constantine and Lockwood, 1999

Structure/Proximity Principle?

Keep related things together

PackedRight

In Packaging
o

Get Started

Bad

PackedRight

Executing Excellence In
Packaging

Get Started

Good

Title text and tagline
text appear together
with the icon.

The user will see them
as a cohesive unit.

A High-Level Grouping Constraint

* Designer can use them to
group a set of related
elements

* Two aspects: Order and
Type

A High-Level Grouping Constraint

* Designer can use them to
group a set of related
elements

* Two aspects: Order and
Type e ;

Email .
Contacts .
Messaging ;

A High-Level Grouping Constraint

Group, Order unimportant

.................. - NOU—
* Designer can use them to :
group a set of related g
elements g .
. Mailgram

The world’s fastest messaging app .

* Two aspects: Order and
Type :

Email
Contacts .
E Messaging :

A High-Level Grouping Constraint

Group, Order unimportant

.................. ER—
* Designer can use them to :
group a set of related g
elements g |
Mailgram

The world’s fastest messaging app .

.....................................

* Two aspects: Order and
Type e ' Variations

I |

' |

" I I | |

: Mailgram

E Contacts E : : : The world’s fastest messaging app |

[I : : I :
|

I) i
| " | | |
I | : . l i
| @ Messaging : Mailgram o
i e i . The world’s fastest messaging app | :
I - ' |

——

High-Level Feedback Constraints

¢
Bay o

PackedRight

Executing Excellence In
Packaging

Get Started

High-Level Feedback Constraints

Element

Keep this element here.

®
N~

PackedRight

Executing Excellence In
Packaging

Get Started

11

High-Level Feedback Constraints

®
B o

PackedRight

Executing Excellence In
Packaging

Get Started

Element

Keep this element here.

Relational

Subtitle should appear
underneath the tagline.

11

High-Level Feedback Constraints

*
B o
PackedRight

Executing Excellence In
Packaging

Get Started

Element

Keep this element here.

Relational

Subtitle should appear
underneath the tagline.

Global
Use the 10px layout grid.

11

Overview

* Scout System Overview
* High-Level Design Constraints
* Design Synthesis Engine

Design Synthesis Goals

* Encode high-level design constraints, and basic design constraints
(e.g. non-overlapping), and feedback constraints as a set of
constraints to generate designs.

* Generate good designs that respect usability and graphic design
principles (e.g. alignment, symmetry)

* Generate many designs quickly to make the system interactive.

Design Synthesis: Inputs and Outputs

High-Level Design

Constraints . o
N design variations that
O - satisfy the constraints
0 e—— . ;
— Scout
) =— .
— Synthesis ——
~ Engine
Interface Elements P — , ' -
- Basic Design Constraints
| g, - lappi :
(€.g. non-overlapping) For each design,
PackedRight High-Level Constraints for all elements
_ - Semantic Groups, Labels, X, Y coordinates,
Prominence Levels, Feedback height, width

Design Variables
- Alighment, proximity, arrangements

14

Design Synthesis - Encoding the
Constraints

* Basic design constraints
* Non-overlapping
* Ul elements stay inside containers and design canvas

* High level constraints
* Semantic Groups
* Prominence Levels (e.g. increase or decrease visual salience)
* Feedback constraints

Design Synthesis - Finding Solutions

Variables — modify different Searching

properties of design °
* Alighment .

* Margins
. Proximity*Z 3

* Label position
* Arrangement
(e.g. horizontal, rows)

Randomly order variables
Backtracking/Branch and
bound to assign variables
iteratively

Check and discard invalid
solutions

Generate N designs

z3

Design Synthesis - Getting Good Designs

* Visual Cost Variables
* Whitespace
* Balance & symmetry
* Alignment

Design Synthesis - Getting Good Designs

* Visual Cost Variables
* Whitespace
* Balance & symmetry
* Alignment

Version 1,
Cost: 20

Version 2,
Cost: 50

* Approach
* Generate a bunch of designs
* Rank them by cost
* Return lowest cost first

Version 3,
Cost: 60

17

Challenges

* Generating good designs
* Ranking function
* Bias the search to choose good combinations of variables

* Diversity
* Lots of spatially different designs

e Scalable and interactive
* Can’t overwhelm the solver

*
s

PackedRight

Scout: Using High-Level Design Constraints to
Automatically Generate Design Variations

HlEE® i‘lPLSE

Amanda Swearngin amaswea@cs.washington.edu PAUL G. ALLEN SCHOOL

Andrew J. Ko ajko@uw.edu OF COMPUTER SCIENCE & ENGINEERING

James Fogarty jfogarty@cs.Washington.edu D Information School
Q/ UNIVERSITY of WASHINGTON:

«/8%

Platform-Independent Migration of Stateful
JavaScript loT Applications

Workshop on Programming Languages and Software
Engineering Research in the Pacific Northwest (PNWPLSE)

ThingsJS: loT Runtime Middleware
®000

Motivation

@ World of loT growing at a
very fast pace!

ThingsJS: loT Runtime Middleware
®000

Motivation

@ World of loT growing at a
very fast pace!

@ Traditionaly, processing was
done in the cloud

ThingsJS: loT Runtime Middleware
@000

Motivation

@ World of loT growing at a
very fast pace!

@ Traditionaly, processing was
done in the cloud

@ Emerging trend: running
applications on the loT
devices themselves (edge)

e Performance, costs,
reliability

ThingsJS: loT Runtime Middleware
0800

Goals and Motivation

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)

ThingsJS: loT Runtime Middleware
0800

Goals and Motivation

@ ThingsJS: a framework for
developing and deploying
high-level applications on loT
devices (edge computing)

\

JavaScript

ThingsJS: loT Runtime Middleware
0800

Goals and Motivation ;

@ Programmers are typically
more productive in

@ ThingsJS: a framework for .
higher-level languages

developing and deploying
high-level applications on loT

devioes (s Eomputing) JavaScript VMs on loT

) @ Samsung loT.js
e Intel XDK

@ DukServer

@ JavaScript: strong user base

JavaScript

@ Smart.js

@ Node.js on loT devices

ThingsJS: loT Runtime Middleware
00e0

Scenario: Videosurveillance / Motion Detection 4

ThingsJS: loT Runtime Middleware
0080

Scenario: Videosurveillance / Motion Detection 4

ThingsJS: loT Runtime Middleware

0080

Scenario: Videosurveillance / Motion Detection

s

Raspberry Pi O

TH 4

- _

Things|S:

Executing High-Level
Applications on
loT/Edge devices.

ThingsJS: loT Runtime Middleware
0080

Scenario: Videosurveillance / Motion Detection

Raspberry Pi O

A
N
.0.0.‘

Raspberry Pi 3

i
I 4

- _

Things|S:

Executing High-Level
Applications on
loT/Edge devices.

ThingsJS: loT Runtime Middleware
0080

Scenario: Videosurveillance / Motion Detection 4

ThingsMigrate:

Transparently migrating
' JS applications between

loT/edge devices.
D) li\@ @“I

T -
-

ThingsJS: loT Runtime Middleware
0080

Scenario: Videosurveillance / Motion Detection

2 S |
o000 0 00000
Raspberry Pi 3
20000

-

f

TI gJSlTR e Middlew

Migrating loT Apps

TI gJSlTR e Middlew

Migrating loT Apps

TI gJSITR e Middlew

Migrating loT Apps

ThingsMigrate: Migrating JavaScript loT Apps
80

Challenges .

Wide heterogeneity of devices, OS and JavaScript VMs!

ThingsMigrate: Migrating JavaScript loT Apps
80

Challenges 6

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript app

Q Closures / data encapsulation in functions

function Counter() {
var value = 0;

return function() {
value T 1;
return value;

}
b

var ¢ = Counter();
console.log(c()); // print

NNEOOONOOTHEWN -

[-

console.log(c()): // print

ThingsMigrate: Migrating JavaScript loT Apps

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript app

@ Closures / data encapsulation in functions
Q@ Timers

Challenges

function Counter() {
var value = 0;

return function() {
value T 1;
return value:

}
}i

var ¢ = Counter();
console.log(<()); // 1
console.log(<c()): // prints 2
setinterval(function() <(); ,1000)

ThingsMigrate: Migrating JavaScript loT Apps
80

A,

Challenges

Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript app

@ Closures / data encapsulation in functions

Q@ Timers
© Classes and prototypes

function Counter() {
var value = 0;

return function() {
value T 1;
return value;

}
}

var ¢ = Counter(). // value in ¢ is O

console.log(<()); // prints 1
console.log(<()): // p
setinterval (function() { c();

R R '—
Fi1NLE

}.1000);

ThingsMigrate: Migrating JavaScript loT Apps
900«

Challenges .
Wide heterogeneity of devices, OS and JavaScript VMs!

Challenge: capturing the state of the JavaScript app ‘

@ Closures / data encapsulation in functions
@ Timers
© Classes and prototypes

@ Asynchronous Model (Event-Based)

function Counter() {
var value = 0;

return function() {
value += 1,
return value,

f
i

var ¢ = Counter(); // value in ¢ is 0
console.log(<()); // prints 1
console.log(<()); // prints 2
setinterval (function() { c(): },1000);

ThingsMigrate: Migrating JavaScript loT Apps
ce

Approach: Code Instrumentation & Reconstruction [

function Counter() {
var value = 0:

return function ()
value += 1;
return value;

h

i

var ¢ = Counter ()

console.log(c()
c()

console.log(cf
setinterval (function() { c(); }.,1000);

)
)

ThingsMigrate: Migrating JavaScript loT Apps
ce

Approach: Code Instrumentation & Reconstruction [

4 L - f/ 1 I
var global new Scope("global™)

\ o

function Counter() {

counter new Scopelglobal,
var value = 0;

ounter.addVar("value”, value)

var anonl = function() {
anonl new 5.('.'..):)' (Creat
value += 1,

: | J | "
anonl.setVar("value

return value:

' n
counter.addFunction("anonl”,

return anonl;

ThingsMigrate: Migrating JavaScript loT Apps

@00

ThingsJS / ThingsMigrate: Open-Source on GitHub

8

Pull requests Issues Marketplace Explore

ThingsMigrate: Migrating JavaScript loT Apps
ol 1o

Summary of Results g

@ Devices: Raspberry Pi 3, Raspberry Pi 0, “Cloud” server

@ Several benchmarks

o Execution time (CPU): ~30%
@ Memory: significant overhead
@ Support for multiple migrations without additional overhead

@ Implementation could be further optimized!

ThingsMigrate: Paper accepted at ECOOP 2018

ThingsMigrate: Migrating JavaScript loT Apps
coe

E4
N
=

'M VirtualBox

~ ThingsMigrateArtifactl (Working Things)S Setup 3) [En fonction] - Oracle V

Fichier Machine Ecran Entrée Périphériques Aide

Pubsub Dashboard - Mozilla Firefox i B = o 10am 3%
§ Pubsub Dashboard x s
. & C i) localhost oo O W mn o =
E . ThingsJS |
, Nodes Nodes engine-loT Device 00 -l Status @ Graph Console |
é Codes '
engine-loT_Device_00 IDLE CPU Memory |
%’ Debug engine-loT_Device 01 IDLE 100%,
engine-loT_Device 02 IDLE
. 50 % |
é |
ol R === - , ol =
&"1 11:09:52 110955 11:10.00 111005 1110:10 1111015 11:10:21
[5S-X43
6 Raw | Motion Video Stream - engine-loT Device 01 "l Status = Graph Console
. CPU Memory
L_JH 100 %
S09%|
0% — — — — —
11:09:52 110955 11.10.00 11:1005 1110:10 11:10:15 11:10:21

engine-loT Device 02 'l Status | Graph | Console

CPU Memory

L
5
.

g @y W% OGO Ctrl droite

@ -/Documents/Acade ThingsMigrate-pnwpl B Oracl VirtuaiBox - ¥ ThingsMigrateArtifact = Ecrans

Resources
£y

Team and Resources .

Research Team

@ Julien Gascon-Samson, PhD — NSERC Post-Doctoral Fellow

e Kumseok Jung — Master's Student |
|

@ Professor Karthik Pattabiraman — co-Pl

Collaboration with Shivanshu Goyal and Armin Rezaiean-Asel (now |
at Microsoft) |

J

Resources:
@ ThingsJS: http://thingsjs.juliengs.com

e GitHub Repository:
https:/ /github.com /karthikp-ubc/ThingsJS

Work done in collaboration with Intel

PGo

Compiling Distributed Systems
Specifications into Implementations

Matthew Do, Renato Costa, Brandon Zhang

Finn Hackett, Stewart Grant, lvan Beschastnikh

UB
Networks, Systems =re=

and Security COUb T

SCIENCE

®

’)
1)

PNW PLSE 2018

Distributed Systems are Hard

® Distributed systems are
hard to design and
build

* Non-deterministic
sequence of events

® Components can fail Google’s data center, Council Bluffs, 1A

PGo: Compiling Distributed Systems Specifications into Implementations
2

PNW PLSE 2018

Distributed Systems are Everywhere

® Distributed systems are amazon
widely deployed | |]

X
® Failures can be very costly ,/ \
| 4 \

web services

® DynamoDB’s outage in 2015 caused Q 8

downtime on Netflix, Reddit, etc | 2] 5
7 reddit NETFLIX

® S3’s outage in 2017 caused loss of
millions of dollars | 3]

PGo: Compiling Distributed System; Specifications into Implementations PNW PLSE 2018

Distributed Systems are Everywhere

e Distributed systems are v?e'ps%?e'g
widely deployed | |]

£%

® We need a better way to build reliable systems

@ bynamoDB’s outage in 2015 caused ';, - ';9

downtime on Netflix, Reddit, etc 2] "
7 reddit NETFLIX

e S3’s outage in 2017 caused loss of
millions of dollars | 3]

PGo: Compiling Distributed S)'Stem:s3 Specifications into Implementations PNW PLSE 2018

Related Work

® Verdi reduces proof burden by automatically
handling failures [PLDI'I5]

® IronFleet provides a framework to write
specifications and implementations [SOSP'|5]

® MODIST checks the implementation rather
than a specification [NSDI'09]

PGo: Compiling Distributed Systems Specifications into Implementations
4

PNW PLSE 2018

Related Work

® Verdi reduces proof burden by automatically
handling failures [PLDI'I5]

specifications and implementations [SOSP'|5]

® MODIST checks the implementation rather
than a specification [NSDI'09]

Hard to scale to large systems,
or require a lot of work from developers

PGo: Compiling Distributed Systems Specifications into Implementations
4

4 LA |

MODEST Backend

Dep l'raamg

PNW PLSE 2018

PGo: Compiling Distributed Systems

S
—»_—» e 3

Developer writes PGo compiles it to a Source is Verified
specification matching implementation compiled Distributed System!

PGo: Compiling Distributed Systems Specifications into Implementations

PNW PLSE 2018

5

PGo: Compiling Distributed Systems

—»_—» _’E} E

Developer writes PGo compiles it to a Source is Verified
specification matching implementation compiled Distributed System!

Q- Q-

PGo: Compiling Distributed Systems Specifications into Implementations

PNW PLSE 2018

5

PGo: Compiling Distributed Systems

Developer writes
specification

Q-

l
—»_—» g

PGo compiles it to a Source is Verified
matching implementation compiled Distributed System!

Q-

Transition from design (specification)
to implementation is automated

PGo: C iling Distributed Syst Specifications into Impl tations
o: Compiling Distributed Systems Specifications into Implementatio PNW PLSE 2018

5

PGo Workflow: (1) Example System

Round-Robin Resource Sharing

Developer writes
specification

Shared
Resource

PGo: Compiling Distributed Systems Specifications into Implementations
6

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

Developer writes
specification

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

Developer writes
specification

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {

variables counter = 0,

Developer writes

specification token = 0;

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {
variables counter = 0,

Developer writes

specification token = 0;
fair process (P \in 0..procs-1)

variable 1 = 0;

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {

variables counter = 0,

Developer writes

specification token = 0;
fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while (1 < iters) {
inc: awalit token = self;

counter := counter + 1;

token := (self + 1) % procs;
1;

1 := 1

1}

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {

variables counter = 0,

Developer writes

specification token = 0;
fair process (P \in 0..procs-1)
variable 1 = 0;
{
while (1 < iters) {
inc: awalit token = self;

counter := counter + 1;

token := (self + 1) % procs;
1;

1 := 1

1}

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {

variables counter = 0,

Developer writes

specification token = 0;
fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while (1 < iters) {
inc: awalit token = self;

counter := counter + 1;

token := (self + 1) % procs;
1;

1 := 1

1}

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {

variables counter = 0,

Developer writes

specification token = 0;
fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while (1 < iters) {
inc: awalit token = self;

counter := counter + 1;

token := (self + 1) % procs;
1;

1 := 1

1}

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1) PlusCal Spec

CONSTANTS procs, iters

algorithm RoundRobin {

variables counter = 0,

Developer writes

specification token = 0;
fair process (P \in 0..procs-1)
variable 1 = 0;
{
while (1 < iters) {
inc: awalt token = self;

counter := counter + 1;

token := (self + 1) % procs;
1;

i = 1i

1}

PGo: Compiling Distributed Systems Specifications into Implementations
7

PNW PLSE 2018

PGo Workflow: (1)
Properties of our System

Invariants

: Token is .
Developer writes N token \ 1n Ve prOCS—l
specification within bounds

Properties

Counter Termination =>
Converges (counter = procs * iters)

Processes \A p \in \ProcSet
Get the Token <>(token = p)

PGo: Compiling Distributed Systems Specifications into Implementations
8

PNW PLSE 2018

PGo Workflow: (1) Verifying

Model Checked with TLC!

Developer writes
specification t= Model Checking Results

o &#
=1 General

Start time: Fri May 04 01:45:30 PDT 2018
End time: Fri May 04 01:45:37 PDT 2018

TLC mode: Breadth-first search

Last checkpoint time:
Current status: Not running

Errors detected: NO errors

PGo: Compiling Distributed Systems Specifications into Implementations
9

PNW PLSE 2018

PGo Workflow: (2) Compilation

® counter is global:
semantics need to be
maintained

Runtime manages state
across processes

e | abels are

Processes coordinate
access to atomic blocks

® High-level concepts
such as

Lock and check predicate

- -
. go

PGo generates Source code can be

s » » Y T | ™ b 1wenianl
mn.chlng In‘p't-n‘cn‘a‘,(,n u);ﬂp‘.;t (1 w ltln GO as usual

fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while (1 < iters) {
inc: await token = self;
counter := counter + 1;
token := (self + 1) % procs;

i =1 + 1;

PGo: Compiling Distributed Systems Specifications into Implementations

PNW PLSE 2018

PGo Workflow: (2) Compilation

® counter is global:
semantics need to be -_—) GO
maintained - =

. compiled with Go as usual
Runtime manages state |
across processes

matching implementation

® Labels are - 1 fair process (P \in 0..procs-1)
variable 1 = 0;

Processes coordinate {
w: while (i < iters) {

access to atomic blocks | |
inc: await token = self;

counter := counter + 1;

= High-level Concepts token := (self + 1) % procs;

such as tamds
Lock and check predicate

PGo: Compiling Distributed SyStem1SOSpeCiﬁC3ti0f‘5 into Implementations PNW PLSE 2018

PGo Workflow: (2) Compilation

® counter is global:
semantics need to be
maintained

Runtime manages state
across processes

® | abels are

Processes coordinate
access to atomic blocks

® High-level concepts
such as

Lock and check predicate

- -
. go

PGoO generates Source code can be

* » » ~y T Ha A 3 ial
mnlchlng In‘p'tumcn‘a"('n u).‘n]):.-\ (1 w lﬂ. GO as usual

fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while (1 < iters) {
inc: await token = self;
counter := counter + 1;
token := (self + 1) % procs;

I qm 4% + 1;

PGo: Compiling Distributed Systems Specifications into Implementations

PNW PLSE 2018

PGo Workflow: (2) Compilation

® counter is ¢lobal:
semantics need to be
maintained

Runtime manages state
across processes

e | abels are

Processes coordinate
access to atomic blocks

® High-level concepts
such as

Lock and check predicate

PGo: Compiling Distributed Systems Specifications into Implementations

-
.go

PGo generates Source code can be

* * » 15 { o7, Bi140
matching implementation compile d with Go as usual

fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while (i < iters) {
inc: await token = self;
counter := counter + 1;
token := (self + 1) % procs;

i :=1 + 1;

PNW PLSE 2018

PGo Workflow: (3) Using Compiled Code

¢ Generated Go code can run as D. .

any of the processes defined in

PlusCal ’

Verified
Distributed System!
S ./counter

Usage: ./counter process(argument) ip:port 0

$./counter ‘P(1l)’ 192.168.1.80:2222

PGo: Compiling Distributed Systems Specifications into Implementations
11

PNW PLSE 2018

Current Status

®* PGo is currently able to compile concurrent and
distributed systems

e Support for different strategies to deal with global
state in a distributed system

® Compiles simple distributed applications

e Example: ~30 lines of PlusCal generates ~80 lines of Go
source code

PGo: Compiling Distributed Systems Specifications into Implementations
12

PNW PLSE 2018

Work in Progress

® Support a larger subset of
PlusCal/TLA+

¢ Generating distributed systems
that are fault tolerant

e Make it easy for developers to
change generated code

PGo: Compiling Distributed Systems Specifications into Implementations
13

PNW PLSE 2018

Limitations

® Specifications are very high level: not everything
can be compiled efficiently

® May require developers to insert an ons when

PGo cannot infer required information (e.g., types)

® Both the PGo compiler and the associated runtime
in order to claim correctness

PGo: Compiling Distributed Systems Specifications into Implementations
14

PNW PLSE 2018

Conclusion — PGo:
Compiling Verified Distributed Systems

o &
—El—- T =5 5

Developer writes PGo compiles it to a Source is Verified
specification matching implementation compiled Distributed System!

@ @

Bridging the gap between
design and implementation of
a distributed system

Writing verified distributed
systems easier to build

O https://github.com/ubc-nss/pgo

PGo: Compiling Distributed Systems Specifications into Implementations
15

PNW PLSE 2018

Which bugs and tests should
we use In experiments?

René Just and Michael Ernst
PNW PLSE meeting
May 14, 2018

Joint work with Spencer Pearson,
José Campos, Gordon Fraser,
Rui Abreu, Deric Pang, Benjamin
Keller, Chris Parnin, lan Drosos

Fault localization: where is the defect?

Defective program i
double avg(double[] nums) { [\ ‘
int n = nums.length; FaU|t
e localization
or(int i=0; i<n; ++i) { 2
sum += nums[i]; teChnlque
}
return sum * n;
}

Test suite
=

Passing{;\)

|
1

Failing
tests

Fault localization: where is the defect?

Defective program

double avg(double[] nums) { [N

Statement ranking

double avg(double[] nums) { [\

Qi
&

int n = nums.length; FaU't > i int n = nums.length;

double sum = ©; - - > double sum = 9;

for(int i=0@; i<n; ++i) { Iocallz.atlon //// for(int i=0; i<n; ++i) {
i 'v= mms{a); technique P sum += nums[i];

}

return sum * n;

}

}

return sum * n;

}

Least
_ suspicious

Test suite

[Most j
suspicious

Evaluating fault localization

Defective program

double avg(double[] nums) { [\
int n = nums.length;

double sum = 9;

for(int i=0; i<n; ++i) {
sum += nums[i];

}

return sum * n;

}

Test suite

Passmg
tests <\/

Fa|||ng
tests

Fault

e
o

Statement ranking

localization
technique

double avg(double[] nums) { [\

int n = nums.length;
. double sum = 9;
for(int i=0; i<n; ++i) {
| sum 4= nums[i];

}
return sum * n;

}

~ Compare to
— known location
of defect

Evaluating fault localization

Defective program !éir Statement ranking

double avg(double[] nums) { D\ | double avg(double[] nums) {B
int n = nums.length; FaUIt - int n = nums.length;
double sum = ©; - - double sum = ©;
> > 2
for(int i=0; i<n; ++i) { Iocallzatlon for(int i=0; i<n; ++i) {
sum += nums[i]; teChnlque 1 l sum += nums[i];
} }
return sum * n; return sum * n;
} }
: 1 [, Compare to
Test suite — known location
W e ' | of defect
PaSSing l double avg(double[] nums) { D\
tests <\/ int n = nums.length; '
—— % - - double sum = 9; |
: localization > : |
i for(int i=0; i<n; ++i) {
Failing technique 2 | sum += nums[i];
tests }
return sum * n;
}

Evaluating fault localization

Defective progra

Statement ranking

L £Y oF
&

Failing
tests

technique 2

- double avg(double[] nums) { [\
int n = nums.length; FaU|t int n = nums.length; |
double sum = ©; - — double sum = 9; V

) >. >
for(int i=0; i<n; ++i) { locallzatlon for(int i=0; i<n; ++i) {
sum += nums[i]; technlque 1 sum += nums[i];
} }
return sum * n; return sum * n;
} }
7 . Compare to
— ’ known location
I ’ of defect
F)535555ir]£] l I double avg(double[] nums) { [\
tests (\/ int n = nums.length; '
_/.\ . 3 = - i
, localization g I |

for(int i=0; i<n; ++i) {

|

sum += nums[i];

}

return sum * n;

Evaluating fault localization

Defective programd [Previous work
e R — e Artificial defects ("mutants”)

o Change sum * n
to sum + n

: . Advantages:
- e Easy to create lots of defects
_® Known locations

7] . Compare to
— > known location

int n = nums.length;

double sum = @;

for(int i=0@; i<n; ++i) {

sum += nums[i];

}

'3 ~: of defect
PaSSIng l II Q‘ double avg(double[] nums) { [\
teStS 4\/ FaU|t . int n = nums.length; '
— - . double sum = @;
, localization o
A - or(int i=0; i<n; ++i) {
Failing technique 2 | sum += nums(i];
}

tests

return sum * n;

Defective programd_

int n = nums.length;

double sum = ©;

for(int i=0; i<n; ++i) {

e Artificial defects (“mutants”)
) i Advantages:
— e 310 real defects

Evaluating fault localization
o Change sum * n
e Easy to create lots of defects
e 2995 artificial defects
= | o Each fixed by developers
Failing | o 5x Z previous studies
tests | o Several person-years

[/ Previous work
o sum + n
sum += nums[i];
) _® Known locations
Passingi/ II o > Z previous studies
tests o,
O https://github.com/rjust/defects4j

[ICSE 2017]

Comparison of fault localization techniques

Prior studies
(winner > loser)

Ochiair > Tarantula
Barinel > Ochiai

SBFL .
e Barinel > Tarantula
. ,) . .
SBFL Op2 > Ochiai
Op2 > Tarantula
DStar > Ochiai
DStar > Tarantula

MBFL Metallaxis > Ochiai
VS. MUSE> Op2
SBFL MUSE > Tarantula

[ICSE 2017]

Comparison of fault localization techniques

Prior studies 611‘5 (artificial fau@

(winner > loser) Replicated Effect

Ochiai > Tarantula yes small

Barinel > Ochiai no small

SBFL . g
e Barinel > Tarantula yes negligible
: 5 » st
SBFL Op2 > Ochiai yes negligible

Op2 > Tarantula yes small
DStar > Ochiai yes negligible

DStar > Tarantula yes small
MBFL Metallaxis > Ochiai yes negligible
VS. MUSE > Op2 no negligible

SBFL MUSE > Tarantula \ no nw'/i“i/?/y

Results agree with most prior studies on artificial faults
but only 3 effect sizes are not negligible.

[ICSE 2017]

Comparison of fault localization techniques

Prior studies Ours (artificial faults) (Ours (real faults'm

(winner > loser) Replicated Effect Replicated Effect
Ochiai > Tarantula yes small insignificant negligible
SBEL Barinel > Ochiai no small insignificant negligible
Ve, Barinel > Tarantula yes negligible | insignificant negligible
SBFL Op2 > Ochiai yes negligible no negligible
Op2 > Tarantula yes small insignificant negligible
DStar > Ochiai yes negligible | insignificant negligible
DStar > Tarantula yes small insignificant negligible
MBFL Metallaxis > Ochiai yes negligible no small
VS. MUSE > Op2 no negligible no large
SBFL MUSE > Tarantula no negligible K no largc/

Results disagree with all prior studies on real faults.

What design decisions matter on real faults?

Defined and explored a design space for FL techniques

e 4 design factors
(e.g., ranking formula)

What design decisions matter on real faults?

Defined and explored a design space for FL techniques

e 4 design factors
(e.g., ranking formula)

e 156 FL techniques

What design decisions matter on real faults?

Defined and explored a design space for FL techniques

e 4 design factors < D
(e.g., ranking formula) s

e 156 FL techniques

Results
e Most design decisions don’t matter
e Barinel, D*, Ochiai, and Tarantula are indistinguishable

Existing FL techniques perform best.
No breakthroughs in the explored design space.

New hybrid technique

In practice, only the top results matter
e Top-10 useful for practitioners’.
e Top-200 useful for automated program repair?.

il Technique Top-5 Top-10 Top-200 h
Hybrid 36% 45% 83%
DStar (best SBFL) 30% 39% 82%
Metallaxis (best MBFL) 29% 39% 17%

o w

[Hybrid technique performs well on the metric that matters.]

'Kochhar et al., Practitioners’ Expectations on Automated Fault Localization, ISSTA'16
°’Long and Rinard, An analysis of the search spaces for generate and validate patch
generation systems, ICSE’16

Evaluating fault localization

Defective program

double avg(double[] nums) { [\
int n = nums.length;
double sum = 9;
for(int i=0; i<n; ++i) {
sum += nums[i];

}

return sum * n;

}

Test suite

Passnng ﬁ—w
tests <\/

Falllng
tests

Fault

(£ oF
&

Statement ranking

double avg(double[] nums) { [\

int n = nums.length;

double sum = 9;

localization
technique 1

for(int i=0; i<n; ++i) {

|

sum += nums[i];

}

return sum * n;

\ _ Compare to

of defect

double avg(double[] nums) { D\

int n = nums.length;

double sum = 9;

localization
technique 2

for(int i=0; i<n; ++i) {

|

sum += nums[i];

}

return sum * n;

}

~~ known location

Evaluating fault localization

Defective program® ' New standard methodology: 9
O Use real defects from Defects4J

.! (mined from version control)

int n = nums.length;
double sum = ©;
for(int i=0; i<n; ++i) {

sum += nums[i];

}

return sum * n;

}

s]

" Defects4 provides real tests
e \Written by developers
e Committed with the fix

Test suite
Passung(;\) II
tests

Falllng
tests

on

Evaluating fault localization

Defective program — - New standard methodology: g
; e Use real defects from Defects4J

.! (mined from version control)

int n = nums.length;

double sum = @;

for(int i=@; i<n; ++i) {
sum += nums[i];

}

} T =1
i [Defects4d provides real tests
> e \Written by developers a

e Committed with the fix

Passmg\) II
tests : :
Written before or after the fix?

Fa|||ng |
tests | |
z{\.‘ ‘ ‘;;j

Evaluating fault Iocallzatlon

Defective program® — New standard methodology: g
i == Use real defects from Defects4J

.! (mined from version control)

int n = nums.length;

double sum = 9;

for(int i=0@; i<n; ++i) {
sum += nums[i];

}

return sum * n;

}

Testsuite N/\ Defect.s4J provides real tests
I e \Written by developers

pass,ni/ | e Committed with the fix
tests
Written before or after the fix?

Failing | _ -
\te}m%J In practice, fault localization is
_run on tests from bug reports. Y

on

[ISSTA 2018]

User-provided tests in the bug report
vs. developer-provided tests committed with the fix

Developer-provided tests have:

More tests

More lines of test code

Less coverage (more focused)
More assertions

Stronger assertions

Effect on tools
(applied to user-provided vs. developer-provided tests)

Fault localization:

e Better EXAM score with developer-provided tests
e Better top-N score by 5-14%

Automated program repair:

e Developer-provided tests: repair 5/100 defects
e User-provided tests: repair 1/100 defects

(For that defect, user-submitted test = developer-provided!)
o Fewer generated patches (irrelevant measure)

o Fewer correct patches

o Longer run time

o Partly due to worse fault localization

The right way to evaluate fault localization

Defective program

double avg(double[] nums) { [\
int n = nums.length;
double sum = 9;
for(int i=0; i<n; ++i) {
sum += nums[i];

}

return sum * n;

}

Test suite

Passnng
tests <\/

Falllng
tests

Fault

£ oF
&

Statement ranking

double avg(double[] nums) { [\

int n = nums.length;

double sum = 9;

localization
technique 1

for(int i=0; i<n; ++i) {

|

sum += numsfi];

}

return sum * n;

17 _ Compare to

~ known location

of defect

double avg(double[] nums) { [\

int n = nums.length;

double sum = 9;

localization
technique 2

for(int i=0; i<n; ++i) {

|

sum += nums[i];

}

return sum * n;

}

The right way to evaluate fault localization

Defective program}

int n = nums.length;

double sum = ©;

for(int i=0; i<n; ++i) {
sum += nums[i];

}

return sum * n;

Test suite

Passing l II

tests \/ i

_/"'\

Failing
tests

" YES: real defects

.
©

. NO: artificial defects (mutants)

\

| S—
)
sy

ing
D

}

return sum * n;

}

a \ NO: developer-provided tests

| YES: user-provided tests

for(int i=0; i<n; ++i) {

|

sum += nums[i];

}

return sum * n;

}

The right way to evaluate any research

Focus on results, not ideas
Evaluate using realistic artifacts

Evaluate in end-user context

The right way to evaluate any research

Focus on results, not ideas
Evaluate using realistic artifacts

Evaluate in end-user context

Is fault localization research especially bad?

It's no worse than other research, and better than much

It has found its conscience; other areas are still seeking

Cassius: Verifying Web Pages

Pavel Panchekha, Adam Geller, Michael
Kamil, Zachary Tatlock

D.

Ernst, Shoaib

V -

PL/SE

V -

PL/SE

Preview 2018 plans & prices nqw A

Gol Covwmnge Bowp i Update Your Pien Sow Tepios -

=

0w e Y by

J 3 </
O A =

FIRST TAME AFPLYINGY RENEWAL QUESTIONS? STILL NETO A YT PLANT DATES & ODEADLINES

Websites

Server-side

nnn

React
N ~

Server-side Client-side

nnnnn

HTML

~ EH
“ %

e
f_ ",”

JReact

Server-side Client-side

2

nnnnn

This Talk
HTML

EE

ﬁn.s <.
CXeXOReact e
FA Y 4 > B >

Server-side Client-side

2

nnnnn

< o reasT oM g

HealthCare Individuals & Families Small Businesses

Gt Coveragw Keep or Update Your Man Sew Topees » Get Anawery - Q

Preview 2018 plans & pnces
now!

.
-
or renew from November 1 10 December 15 k “

k-
~

PREVIEW 2018
PLANS & PRICES

‘ﬂ Which bugs and tests s x Which bugs and tests & x PNW PLSE Cassius - Go X PNW PLSE Cassius - Ge x Get 2018 health covera x

&« C @ O & https weww healthcare.gov

HeOIthCOI’e gov Espafiol Log In

Get Coverage Keep or Update Your Plan See Topics ~ Get Answers _ SEARCH

2018 Open Enrollment is over.
Still need health insurance?

You can enroll in or change plans if you have certain life changes, or qualify for Medicaid or CHIP

SEE IF | CAN ENROLL SEE IF | CAN CHANGE

Looking for coverage for a small business? Learn more >

E. NEED TO SUBMIT DOCUMENTS? SEE HOW

H A B $

FIND LOCAL HELP GET CONTACTED 1095 & TAX INFO INCOME/LIFE CHANGE?
SEARCH NOW HELP FROM AGENT/BROKER SEE NOW SEE HOW TO REPORT
GET IMPORTANT NEWS & UPDATES $8 HEALTHCARE.GOV BLOG

Sign up for emall and text updates Lo get deadling reminders and other important information
May 10
L

Which bugs and tests 51 X Which bugs and tests 52 X PNW PLSE Cassius - Goc X PNW PLSE Cassius - Goo X Get 2018 health coverao X

o cC @ & M google.com /! tat 139N . " A = RMk /D \C4 KOiN 1 NIA 152 I6ABD0E . - e @ O

Web Pages as Programs

o 3 w bealtcarn gov

HealthCare.go. Individuals & Families Small Businesses Espofol

Get Coverage Keep or Update Your Plan See Topics - Get Answers

Preview 2018 plans & prices nowfk"

r
Check out plans now. Enroll or renew from November 1 to December 15 4

PREVIEW 2018 PLANS & PRICES

o

FIRST TIME APPLYING? RENEWAL QUESTIONS? STILL NEED AL?W PLAN? DATES & DEADLINES

HealthCare.go

Get Coverage Keep or Update Your Plan See Topics =

Check out plans now. Enroli or renew from November 1 to December 15

PREVIEW 2018 PLANS & PRICES

FIRST TIME APPLYING? RENEWAL QUESTIONS?

[

STILL NEED A™17 PLAN?

DATES & DEADLINES

Specifications
No text overlap

Suttons on screen
High contrast
Heading hierarchy

No horizontal scroll

@ P google.com /i tat 139N : " A s RMk/prs \C4 XO§M ' NIATS 2 1648905 , - v @ O

Specifications
No text overlap

Suttons on screen

Check out plans now. Enroll or renew from November 1 toc December 15

PREVIEW 2018 PLANS & PRICES | ‘ , H i g h CO n t ra St

Heading hierarchy

FIRST TIME APPLYING? RENEWAL QUESTIONS? STILL NEED AL';‘17 PLAN? DATES & DEADLINES

No horizontal scroll

ADA Bect Practicec /‘

Which bugs and tests 51 X Which bugs and tests X PNW PLSE Cassius - Goo X PNW PLSE Cassius - Ge X E Get 2018 health cover X

< C @ O google.com 13 ‘ : v =R - XOjN ‘ H3IAT52 648905 v O w Fo

PL/SE for web pages?

st V-

-1 L T R T L R

’ E— Preview 2018 plans & prices '}c»v& "
. —] — l b > .

Preview 2018 plans & prices nowiy

" ®n

* ey R LT

Preview 2018 plans & prices nowF*' ‘

4§3'

-nc»r mal

1. semantics of web pages

c. Logic for visual properties

3. Compositional reasoning

1. semantics of web pages

c. Logic for visual properties

3. Compositional reasoning

@ " google.com » ! ! KON ‘ ' : e O O

Semantics of web pages
r
o/

—nglish-language

Informal

AMmbIguous

Semantics of web pages

War

English-language —xecutable

Informal 1M+ lines of C++

Ambiguous 23 years of cruft

Semantics of web pages
M 4
o/

English-language —xecutable

Informal 1M+ lines of C++

Ambiguous 23 years of cruft

0 e google.com p tat . " A = RMk e ACA ' N T WIAI5263107 JOE. { ; e @ O

Semantics of web pages
4
o/

Conformance tests —xecutable

1M+ lines of C++

23 years of cruft

Vhich bugs and tests s X Which bugs and tests &2 X PNW PLSE Cassius - Goc X PNW PLSE Cassius - Goo X Get 2018 health cover x

Semantics of web pages
M 4
o/

Conformance tests Deslired behavior

Semantics of web pages
M 4
o/

Conformance tests Deslired behavior

Describes behavior of complex web pages

35 pages of text — 1000 lines of formalization

1. semantics of web pages

c. Logic for visual properties

3. Compositional reasoning

1. semantics of web pages

e, Logic for visual properties

3. Compositional reasoning

] i & google.com ‘ . i , e @

Logic of Visual Properties

¥ b': Box, b € S(button) = b C root

Logic of Visual Properties

V b : Box, b € S(button) = b C root

Qaan f/ﬂ/ /

over éoxer

@ g & google.com : : 63187¢ - v O 0

Logic of Visual Properties

YV b : Box, b € S(button) = b C root
- / HTMC A

Properties
over boxes

@ ™ google.com ! ! ‘ - : e @ O

Logic of Visual Properties

V b : Box, b € S(button) = b C root
TM(Geometric
Qaant}ﬂ/ / il /‘ K :

Properties Predicates
over boxes

@ v google.com ' - : ‘ ' ‘ v O w

Logic of Visual Properties

¥ b': Box, b € S(button) = b C root
TM(Geometric
Qaant/ﬁ/ / i) K :

Properties Predicates
over boxes

EXpressed 14 accessipility guidelines

Compiles to decidable queries (in QFLRA)

1. semantics of web pages

e, Logic for visual properties

3. Compositional reasoning

1. semantics of web pages

c. Logic for visual properties

3- Compositional reasoning

Which bugs and tests 51 X Which bugs and tests 7 X PNW PLSE Cassius - Goc X PNW PLSE Cassius - Goo X Get 2018 health coverag X

“— C 0 o google.com /! tat 139N : M A = RMk /i \C4 ‘ XO0iN s NIATSE20 64890 . - e @ O

Compositional Reasoning

o “ Pasthcarn gov

HealthCare.gov Individuals & Families Small Businesses Espadiol

Get Coverage Keep or Update Your Plan See Topics - Get Answers — SEARCH

Preview 2018 plans & prices novv;“-f;

Check out plans now. Enroll or renew from November 1 to December 15

PREVIEW 2018 PLANS & PRICES

O

[

FIRST TIME APPLYING? RENEWAL QUESTIONS? STILL NEED A '17 PLAN? DATES & DEADLINES

Which bugs and tests 510 X Which bugs and tests 52 X PNW PLSE Cassius - Goc X PNW PLSE Cassius - Ge X Get 2018 health coverad X

< C @ O M google.com/p tat 139N : " A1 , CA ‘ XOiN - Y3A152¢ ' EAROOL : . v @ O

Compositional Reasoning

o - Pasthcarn gov

HealthCare JOV Individuals & Families Small Businesses Espafiol Log in

Get Coverage Keep or Update Your Plan See Topics - Get Answers _ SEARCH

Preview 2018 plans & prices now;“-f’:

A

Check out plans now. Enroll or renew from November 1 to December 15

PREVIEW 2018 PLANS & PRICES

‘OI

FIRST TIME APPLYING? RENEWAL QUESTIONS? STILL NEED A '17 PLAN? DATES & DEADLINES

Which bugs and tests 51 X Which bugs and tests 2 X PNW PLSE Cassius - Goo X PNW PLSE Cassius - Goo X Get 2018 health coverao X

— C @ i google.com /! tat . M , = RMk e \C4 KOIN ' 548908 . - e @ O

Compositional Reasoning

o “ rasthcarn goy

HealthCare.gov Individuals & Families Small Businesses Espadiol Log in

Get Coverage Keep or Update Your Plan See Topics - Get Answers _ SEARCH

C omponents

Check out plans now. Enroll or renew from November 1 to December 15

PREVIEW 2018 PLANS & PRICES

FIRST TIME APPLYING? RENEWAL QUESTIONS? STILL NEED A "17 PLAN? DATES & DEADLINES

Which bugs and tests 51 X Which bugs and tests &2 X PNW PLSE Cassius - Goc X PNW PLSE Cassius - Gt X Get 2018 health coverao X

o C 0 & M google.com /! tat 139N : M , =R1 ~ \C4 XOiN] N3N 52 BABDO0E, . ' e @ O

Compositional Reasoning

o o w Paslthcarn gov

HealthCare JOV Individuals & Families Small Businesses Espadieol Log in

Get Coverage Keep or Update Your Plan See Topics - Get Answers _ SEARCH
Components

-

Preview 2018 plans & prices now@-,."’:

Check out plans now. Enroll or renew from November 1 to December 15

PREVIEW 2018 PLANS & PRICES > | /V ecte 67/

Companen t¢

ce

FIRST TIME APPLYING?

@ i google.com . (i v e @ o

Compositional Proofs

V b . b € S(button) = b C root

Compositional Proofs

V c:Component, ¢ C root=
V b €E€c beE S(button) = b C root

@ i google.com ! ! ‘ i : e @ O

Compositional Proofs

V c:Component, ¢ C root=
V b E€c,beE S(button) = b C root

\ Per-component

reasonin i

@ J & google.com ' : 63187¢ - v O 0

Compositional Proofs

Co:»npazaent

(lbrecmaa/iz‘/an
V c:Component, ¢ C root=

V b €E€c beE S(button) = b C root

‘\ Per-component

reasoning

@

Compositional Proofs

Compauent

(lb)’eCOhc//‘ﬁah
V c:Component, ¢ C root=

V b E€cbeE S(button) = b C root

\ Per-component

reasoning

Reuse across versions, pages, websites

Much faster: small problem size, parallelism

1. semantics of web pages

c. Logic for visual properties

3- Compositional reasoning

1. semantics of web pages

c. Logic for visual properties

3. Compositional reasoning

Cassius

Semantics of web pages
Logic for visual properties

Compositional reasoning

https://cassius.uwplse.org

1 Semantics of web pages

c. L ogic for visual properties

3. Compositional reasoning

1. Semantics of web pages

e Logic for visual properties

3. Compositional reasoning

4- Client-server reasoning

. = React

Server-side Client-side

The Future
HTML

React
l\l

Server-side Client-side

Which bugs and tests s > Which bugs and tests w® PNW PLSE Cassius - Goo X PNW PLSE Cassius - Ge X E Get 2018 health cover

@ e google.com 1a ; . ' | KOIN ‘ 2 ' ‘ - O w

Client-server reasoning a5y
1qé

(conditiong

T $icon URL(Sicon)
RENEWAL QUESTIONS? $LABEL len(Slabel) <40

K Back-end

variables

@ i M google.com ia ' ! : KOIN ! 1526 t . | | v O w

Client-server reasoning -
1qé

(conditiong

c $icon URL(Sicon)
RENEWAL QUESTIONS? $LABEL len(Slabel) <40

K Back-end

variables

Abstract page content into template

Prove properties of all pages a back-end can produce

Cassius

Semantics of web pages
Logic for visual properties

Compositional reasoning

https://cassius.uwplse.org

