
Beyond SmartNICs:
Towards a Fully Programmable Cloud

(Invited Paper)

Adrian Caulfield
Microsoft Research

acaulfie@microsoft.com

Paolo Costa
Microsoft Research

pcosta@microsoft.com

Monia Ghobadi
Microsoft Research

mgh@microsoft.com

Abstract—FPGA-based SmartNICs and programmable
switches have been recently introduced to leverage hardware
acceleration and custom pipelines inside the cloud infrastructure.
These devices are capable of handling the per-packet processing
needs at line rate, including load balancing, encapsulation,
congestion management, and security. We argue, however, that
the benefits provided by these new devices could extend beyond
software-defined networking use cases and they prompt a shift
towards a fully programmable cloud, which would enable
hardware-software co-design across all layers, ranging from
application to hardware and networks. In this paper, we focus
on the potential of FPGA-based SmartNICs and programmable
switches to realize this vision and illustrate some of the research
challenges that need to be addressed to fully unleash its benefits.

I. INTRODUCTION

The continuous growth of cloud applications [1] is driving
a steady increase in network infrastructure’s bandwidth [2].
However, the compute cycles—measured by the number of
CPU cycles required to process each packet—are falling
behind the massive acceleration in available network band-
width [3]. As a result, CPU time is increasingly becoming a
contributor to the per-packet latency in high-speed cloud data
centers. To make matters more challenging, modern clouds
are embracing a fully software-defined network (SDN) and
are increasingly expected to perform complex network policies
such as regular expression matching and encryption [4]. Such
policies drive up the per-packet CPU cycles, which in turn
increases the cloud costs and adds unpredictable latency to
the cloud services.

Traditionally, this has been addressed by offloading various
networking functions to the Network Interface Cards (NICs)
such as TCP Segmentation Offload [5] and Generic Receive
Offload [6]. However, these techniques are not flexible enough
to support complex policies. Techniques such as SR-IOV en-
able VMs to bypass the hypervisor and send packets directly to
the NIC [7]. PCIe Process Address Space ID (PASID) reduces
the hardware resource requirements of SR-IOV, enabling it
to scale to support containers or even individual processes.
But, these techniques bypass the hypervisor, making it hard to
enforce SDN-like policies.

Recently, FPGA-based SmartNICs have been introduced
as a new platform that enables network operators a flexible
environment to offload complex network policies and maintain

bandwidth growth in the coming years [4], [8]–[11]. Today’s
FPGA-based SmartNICs are capable of tracking user-defined
state, conducting basic integer arithmetic, and rate limiting
at line rate [10]. Moreover, FPGAs organize computation
spatially, hence data flows through the computation in a
pipeline. This minimizes or eliminates latency jitter and pro-
vides strong guarantees about throughput. Consequently, the
research community has turned its attention towards building
platforms and programming languages around FPGA-based
SmartNICs [4], [12]–[14].

Most prior work treats the FPGA and the NIC domains
separately by either focusing on the FPGA capabilities as a
generic device or focusing on the NIC functions. In this paper,
we turn our attention into the combined domains and argue
that an FPGA-based SmartNIC should be thought of as both
a programmable FPGA-based accelerator and a networking
device. When combined with recently proposed programmable
switches, e.g., [15], [16], this opens up exciting opportunities
to rethink the way in which we design and deploy applications
and network functions. We argue that we should move away
from the traditional strict boundary between network and
application functions towards a fully programmable cloud,
in which application logic can be distributed across multiple
accelerators and network devices.

A fully programmable cloud provides significant benefits to
applications that run in it. These benefits include application
specific control of network flows, the ability to run code
at precisely the right location in the network hierarchy, and
direct, low latency access to the network. For example, in
a large-scale machine learning workload, a neural network
running on a distributed set of SmartNICs would benefit from
the direct interface to the network to reduce inference and
training latencies. Further, programmable switches running
custom flow management code can reduce latency and opti-
mize bandwidth by scheduling flows in an application-specific
way, improving efficiency. Finally, the switch could even host
a parameter server, directly performing aggregation of the
training weights from the SmartNICs below it.

After summarizing the key technology underpinning Smart-
NICs in Section II, we describe our vision underlying the fully
programmable cloud in Section III. Implementing this vision,
however, requires solving a number of novel and exciting
research questions, which we outline in Section IV.



II. BACKGROUND

Network accelerators and SmartNICs cover a spectrum from
completely CPU-based designs to fully customized hardware.
CPU-based programmable NICs provide one or more generic
processors on which algorithms can be run. Flow-state and
packet-data are brought into the CPU core via load/store
instructions and a memory hierarchy, and a sequence of
instructions is executed serially to implement the algorithm.
Inspecting a single packet may take many instructions, and so
often the only way to achieve high throughput is to dedicate
multiple cores to the task. Many programmable, CPU-based
NICs offer some hardware specialization that optimizes packet
data-copying or accelerates common functions like Cyclic
Redundancy Check (CRC) calculations or segmentation in
their ASICs. Such approaches can help conserve CPU cycles
for more irregular algorithms, but increasing line-rates will
continue to drive computational demand up.

At the other end of the spectrum, network protocols can
be implemented with fully customized hardware, realized as
ASICs or FPGAs, with little or no general purpose CPU. Such
designs leverage the ability to spatially map the computation
they require across an area of silicon. Rather than having
a fixed instruction or cycle budget per packet, these NICs
have an area budget into which all of the circuitry must fit.
Customized hardware typically has little trouble hitting a given
throughput target since packet processing can be extensively
pipelined and memory access patterns and latencies are more
controllable, leading to predictable latencies.

FPGAs and custom chips exploit spatial execution. In
essence, they take a sequence of instructions, map them into
hardware constructs and lay them out in a pipeline on the
chip, with each instruction occupying a unique physical area
of the chip. Data then streams through the pipeline and all in-
structions can execute at once. This is generally good for data
paths since it provides much higher throughput because each
instruction has dedicated resources and is “always running.” In
contrast, a typical processor uses temporal execution, the trans-
pose of the above, where instructions are streamed through a
small working set of data. A small number of instructions
execute on a slice of data and then more instructions or more
data must be swapped in. This model provides great flexibility,
but limits throughput, and so works better for complex control
paths.

A fully customized architecture could be implemented either
as an ASIC or mapped onto a programmable accelerator,
such as an FPGA. Both provide spatial computation, but once
manufactured, the ASIC can’t be changed, so only the latter
provides the flexibility to implement new algorithms, fix bugs,
and adapt to changing protocols and network requirements.
FPGAs provide a unique design point for programmable NICs
because they provide many of the benefits of general purpose
CPUs in their ability to be reprogrammed and the efficiency
and throughput characteristics of fully customized hardware.

Figure 1 illustrates the conceptual integration of the FPGA
with the host server in a SmartNIC such as [4]. The CPUs of

Server

CPU

FPGANIC

PCIe

Top-of-Rack Switch

Net

Fig. 1. FPGA NIC integration with data center servers. The FPGA sits
inline between the NIC and the top of rack switch, but also has direct PCIe
connectivity to the CPU. The network links are typically 40-100 Gbps.

the host system can interact with the FPGA directly using PCIe
or by sending packets through the NIC. Unlike conventional
server deployments, the NIC is not directly connected to the
top-of-rack switch (TOR) and instead is wired to the FPGA
card. The FPGA card is the only component connected to the
TOR and is responsible for forwarding NIC-to-TOR traffic on
behalf of the server.

The key motivation behind this so-called “Bump in the
Wire” architecture is to allow the FPGA to perform line-
rate computation of in-bound and out-bound network traffic
without interrupting the CPUs, thereby saving significant CPU
cycles [4] (network acceleration). This same architecture lends
itself well to accelerate applications for use in an application
acceleration role as well. The direct PCIe attachment allows
software to exchange data at high bandwidth with simple,
non-packetized protocols and allows the accelerator to access
system memory for large working sets. The architecture has
been used in this capacity to great effect, doubling Bing’s
page ranking throughput while at the same time reducing tail
latencies [10]. Rather than relatively simple packet-by-packet
processing as in the SmartNIC case, higher-level application
processing can implement full microservices directly in the
hardware [17]–[19]. Tight integration of the microservice
and network effectively allows an extension of the spatial
computation across the network.

Traditionally, these two FPGA-based acceleration use cases
(application and network) have remained isolated, but the com-
bination of compute accelerator with SmartNIC is powerful,
enabling applications to run on and migrate between CPUs and
FPGA-based SmartNICs directly at the edge of the network,
or even in the network core, to get the best efficiency. We
elaborate more on this vision in the next section.

III. A FULLY PROGRAMMABLE CLOUD

Applications and networks have generally been separated by
a strict boundary as dictated by the end-to-end principle [20].
Network switches and interface cards are responsible for
executing relatively simple functionality in hardware, e.g.,
forwarding or queuing packets, while more complex functions,
such as congestion control or application logic, are offloaded
to the CPU or hardware accelerators located at the network
end points. While this principle has served us well in the
development of the Internet, it is also the source of several
inefficiencies observed in today’s data centers. First, ASICs
found in NICs and switches are usually bloated with several



DNN Model TOR TOR

Core Switch

Model Parallelism

TOR TOR

Core Switch

Data Parallelism

Fig. 2. A DNN model is partitioned across multiple nodes in a model-
parallelism case, and the whole model is replicated in the data-parallel case.

features that are not needed and, at the same time, adding
new features may require a few years lead time and a tight
interaction with hardware manufactures due to the complexity
and cost of designing a new chip. Second, black-box conges-
tion control like TCP struggle to achieve high performance and
fairness due to the lack of a fine-grain visibility on the network
status. Third, applications often experience sub-optimal per-
formance due to a mismatch between network and application
routing. Finally, some applications, e.g., coordination services
like ZooKeeper [21] or partition/aggregation frameworks such
as MapReduce [22], would benefit from the ability to run at
vantage points within the network.

The availability of programmable network devices is chal-
lenging this status quo. Network designers can now easily
customize packet processing and forwarding with almost the
same flexibility as software while still retaining hardware
speeds. For example, SDN policies can be offloaded from the
hypervisor to the NIC [4], new load-balancing protocols could
be entirely implemented within the switch ASIC [23], and new
features, e.g., header trimming, could be easily deployed to
improve end-host congestion control [24].

Albeit very useful, improving the performance of network
functions is just the first step. Looking ahead, we argue that the
flexibility and programmability offered by network devices has
the potential to completely revolutionize the way we deploy
and design applications in data centers by allowing the appli-
cation logic to be distributed across the entire network. The
same way in which today an application is split across the CPU
and different accelerators (e.g., GPGPUs or FPGAs [19]), we
envision that SmartNICs and programmable switches should
be seen as just one additional class of accelerators to which
critical applications components can be offloaded.

As a concrete example, let’s consider a large-scale train-
ing of a deep neural network (DNN), spanning multiple
hosts. This is typically achieved using either data- or model-
parallelism [25], as shown in Figure 2. In the former, DNN
replicas are trained on different servers using different samples
of data. After each iteration, their weights are aggregated
together and the resulting values are used for the next training
iteration. In model-parallelism, instead, a single DNN is dis-
tributed across multiple servers (e.g., one layer per server) and
servers exchange the intermediate states. In both approaches,
a training step consists of computation heavy matrix mul-
tiplications, followed by some communication exchanges of

the results over the network. The computation-heavy part of
the application can be accelerated by offloading it to the
FPGA. By having the FPGA next to the NIC, this design
drastically improves the IO-intensive part by completely by-
passing the network stack. This can be further improved in
a fully programmable cloud by taking advantage of the NIC
and switch programmability together. For example, leveraging
the regularity and long execution time of these applications,
we could design a TDMA-based scheme to orchestrate these
exchanges so as to minimize network contention and ensure
predictable latency, which would drastically improve the per-
formance compared to the traditional black-box approaches
like TCP. Further, the aggregation step could be offloaded to
the network switch, thus reducing the overall network traffic
and end-to-end latency.

While we are already beginning to see some proposals
exploiting these new opportunities offered by programmable
network devices, e.g., [26]–[29], they are mostly ad hoc solu-
tions, which are hard to generalize. In contrast, we believe that
fully unleashing the potential of this vision requires a complete
redesign of the software, hardware, and network stack, which
in turn poses some stimulating research challenges as we detail
in the next section.

IV. FUTURE RESEARCH DIRECTIONS

In this section we identify and discuss key research oppor-
tunities for FPGA-based SmartNICs and the programmable
cloud, focusing on programming abstractions, resource man-
agement, network predictability, and the FPGA hardware
itself.

A. Programming Abstractions

A key challenge to realizing the vision outlined in the
previous section is to identify the right programming abstrac-
tions and tools for developers. Today’s SmartNIC platforms
are largely programmed using hardware description languages
(HDLs) such as Verilog and VHDL. These languages enable
tight control of hardware resources but they also bring a barrier
to wider adoption as (i) most developers are often unfamiliar
to them; (ii) they force to think in terms of a constrained
hardware pipeline rather than a high-level algorithm; and (iii)
it is difficult to port the code from one platform to another.

To date, many proposals have been made to address this
shortcoming. At the high level, these can be grouped into
two main classes. On the one hand, there are frameworks
such as P4 [30], ClickNP [31], and Emu [32], which focus
on providing a packet-based API to process network streams.
While these greatly alleviate the effort of deploying network
functions and enforcing network policies, their packet-based
interface is too low-level for the kind of applications that
we have envisioned in Section III. At the other hand of the
spectrum, there are several efforts to bring full C/C++ and
OpenCL support to these new devices, e.g., [33], [34]. While
promising, it is difficult for the state-of-the-art compilers to
generate efficient hardware code. This is because there are
subtle intricacies of the C programming and memory model,



DNN

on GPGPU

Search 

Indexing

on FPGA

MapReduce

on CPU

DNN MapReduce
Search 

Indexing

Data flow 

graph
… …

CPU FPGA GPGPU

Building 

blocks

Applications /

services

AcceleratorsProgrammable 

switch

Fig. 3. Programming abstractions: from a vertical to a horizontally integrated
stack. Examples are taken from [10], [22], [35].

and a fundamental mismatch between a standard x86 platform
(or GPGPU in the case of OpenCL) and these new devices
such as the SmartNIC or programmable switches.

In contrast, rather than targeting a general-purpose language
we argue that a more suitable approach would be to restrict
the focus to the applications of interest and identify the set
of common building blocks underpinning them. As shown in
Figure 3, the intermediate layer comprising the building blocks
decouple the application logic from the underlying implemen-
tation of these blocks, shifting from a vertically-integrated
stack to an horizontally-integrated one. This is reminiscent
of the IP hourglass design where the IP layer decouples the
higher-layer protocols from the variety of underlying physical
networks, enabling independent innovation and optimizations.

The ultimate goal is to allow application developers to
program in a platform-independent fashion, using high-level
abstractions and their preferred language, while allowing
hardware designers to efficiently implement these building
blocks onto a variety of different platforms, e.g., SmartNICs,
GPGPUs, and programmable switches, as well as traditional
x86 architectures. While a proper investigation of the most
suitable building blocks is beyond the scope of this paper,
one promising example of building blocks is the data-flow
graph abstraction. This allows building different classes of
applications with relatively limited effort, e.g., MapReduce,
Search [10], and neural networks [29], as they share a similar
abstraction. At the same time, the data-flow graph abstraction
also matches well with the spatial programming model of the
FPGA (§ II) and should be easy to port to other accelerators
too. Finally, by making the relationships between different
component explicit, this abstraction makes it easy for the
compiler to reason about and to optimize the resulting code.

B. Resource Management

Another advantage of decoupling the application code from
the low-level implementation is that this can enable efficient
deployment optimizations at runtime. Given an application,
the data center operators can decide the best location to exe-
cute the code. We expect that SmartNICs and programmable
switches have limited resources so it would be hard to imagine
that all user code can be deployed and execute concurrently.
Instead, we envision that at runtime, depending on the current
resource utilization and the criticality of the task at hand (e.g.,
core vs. background services or premium vs. standard tenants),
the runtime system can decide which applications should
be given access to these accelerators. For example, critical

machine-learning jobs could be deployed on the SmartNICs
with an optimized network stack while non-critical ones could
be executed onto the GPUs using standard TCP or RDMA
stacks or even run entirely in software.

Since the application code is transparent to the specific
hardware technology, we can defer the choice of the platform
to the runtime without requiring any effort to the developer.
This is in contrast to current approaches in which code that
is written for one platform (e.g., Verilog code for SmartNIC
or P4 code for the switch) cannot be easily executed on a
different platform. Also, by constraining the programmer to
use well-defined abstractions with clear semantics, the task
of the runtime system is greatly simplified as the application
structure and the communication between nodes is explicit
rather than opaque as in most of today’s applications. For
example, based on the expected traffic within the application
components (possibly estimated based on prior executions)
and the current network utilization, the runtime can decide
whether it makes sense to host within the same rack (high
bandwidth at the cost of fragmentation) or spread them around
(lower bandwidth but more efficient packing). Similarly, it can
decide whether a service would benefit from running on a
programmable switch or on a SmartNIC.

Extracting the best performance out of the combination
of these programmable parts requires careful placement of
instances to account for network locality, tools for manage-
ment and scheduling workloads, and handling of failures. This
shares many challenges with other job and resource scheduling
frameworks but it also introduces new ones. Service instances
should be located close to their dependencies and dependants,
minimizing network latency and making the best use of band-
width. Resources are constrained on these platforms, hence
schedulers must make prioritization decisions about what jobs
to run, or what fraction of the FPGA is available for a given
service. As an example, a microservice could run on a top-of-
rack switch and perform parameter aggregation for a collection
of nodes under it. The service can allocate resources on the
switch proportionate to the number of ports running the DNN
operations.

One of the key design decisions is the trade-off between
ephemeral and stateful services. Ephemeral services, or those
which can be quickly re-initialized with a small dataset and
torn down without saving state, make ideal hardware microser-
vices. Their ephemeral nature allows a resource manager to
rapidly scale up or down the number of instances to account
for varying load or to relocate services to optimize network
utilization. A DNN inferencing engine is a good example of
this type of service. Instances can be brought online, initialized
with a set of model weights and then begin serving. Stateless
services may call out to stateful ones to query databases
or access storage. The direct network connectivity keeps the
latency of these external calls low.

Beside investigating new scheduling policies, a key chal-
lenge is also how to efficiently share a single resource among
different applications. This is in stark contrast to today’s
practice of assigning each resource exclusively. One solution



could be to use time division multiplexing (TDM) and dedicate
the entire FPGA to one application at a time. Another approach
is to use space division multiplexing (SDM) and share the
FPGA across multiple microservices. TDM requires including
support for saving and restoring application state, equivalent to
saving process state during a CPU context switch. FPGAs do
not inherently support this, but it could be implemented using
reconfigurable logic. Partial reconfiguration allows reprogram-
ming a pre-defined section of the FPGA without interfering
with other running logic. This technique can be used to effec-
tively combine TDM and SDM, but many challenges remain
for its effective adoption. For example, logic must be compiled
targeting a particular region while the resource allocations are
fixed. Ultimately, the goal is to create a virtualization layer for
SmartNICs and programmable switches that would seamlessly
allow sharing resources among different applications without
compromising on security and performance isolation.

C. Network predictability

Besides improving the performance of next-generation ap-
plications, a programmable cloud infrastructure could also
improve the performance of existing cloud applications by
allowing a custom control of the network. This opens up
interesting research opportunities to enable elements in the
network to be programmed to enforce latency bounds. Tra-
ditionally, one of the main challenges of providing latency
Service Level Agreements (SLA) has lied in the lack of
a programmable infrastructure. FPGA-based SmartNICs and
programmable switches give us an opportunity to solve this
problem head-on, as it is possible to track connection state on
the FPGA and perform rate limiting and traffic management
of a large number of queues.

The larger goal is to offload flow scheduling, congestion
control, and other factors that affect application’s latency
in the FPGA-based SmartNICs and programmable switches.
This, in turn, enables the network controller to reason about
the latency of packets as well as to prioritize packets that
are close to violating their latency SLAs. Doing so has the
potential of enabling cloud providers to provide latency bounds
for applications and cloud customers to purchase latency
according to their needs.

The first step to realize network predictability is to find the
right abstractions that map network functions into hardware
capabilities (such as rate limiters and priority queues) in
a programmable fashion. Using these abstractions, the next
step is to build scalable network functions on the FPGA by
determining proper control loops for marking traffic (such as
ECN marks) and for reacting to signals from the network
(such as ACK packets). Approaches such as PIFO [36] and
pFabric [37] are great examples of network abstractions that
can be implemented in hardware. However, these proposals
have focused on programmable network switches thus far.

Another advantage of hardware-based services is the ability
to understand the data pipeline and reason about delays in each
hardware module. This, in turn, enables network operators
to profile and predict the runtime latency of programs that

run in hardware. Further, the compiler can automatically find
possible microservice candidates in the code and provide the
predicted latency for that microservice. For example, consider
an application with a heavy duty matrix multiplication in
its code, the compiler can tag hardware acceleration for the
matrix multiplication function. The network scheduler then
observes the state of the network, along with application’s
SLA on latency and decides on the distribution of tasks across
available resources. Doing so bridges the traditional separation
between applications and networks and opens doors to have
applications with end-to-end latency bounds.

D. FPGA Hardware

The FPGAs in use today for SmartNIC and data center
acceleration tasks are descendants of hardware designed for
different problem domains. Large FPGAs have generally found
use in low volume signal processing and ASIC prototyping
scenarios, while small ones are commonly used as “glue-
logic” between other components. This heritage gives FPGAs
a solid grounding to tackle line-rate network and acceleration
tasks because of their ability to map computation spatially.
Advances in FPGA logic resources, memory capacity, and
clock rates have made the devices attractive targets for data
center acceleration tasks. However, only the latest FPGA
generation have been adopted in data centers, hence ample
opportunity remains to evolve their hardware architecture to
better suit this use case. One example could be incorporating
associative memories (CAMs) to aid in implementing fast
searches, or narrow bit-width multipliers for neural network
computations.

With the end of Moore’s law, chip designers and computer
architects must be more selective in deciding which functions
are included in a chip. A good example of this cost trade-
off is the split between the NIC and FPGA in the SmartNIC
architecture (Figure 1). The separation of NIC and FPGA
in the architecture was a conscious choice since the whole
design could be implemented in soft-logic on the FPGA if
desired. However, the protocol offload, host interfaces, and
other functionality of the NIC remain constant, and so it
is “cheaper” (from a transistor count stand-point) to harden
that functionality. The PCIe and network bandwidths do not
change over time in a given system. This reserves the relatively
expensive reconfigurable logic for parts of the design that will
need to change frequently.

Over time, some parts of the FPGA-based logic will sta-
bilize enough and be universally useful enough to consider
hardening. The FPGAs of tomorrow will effectively be hybrids
– part ASIC, part reconfigurable fabric. In fact, this trend has
already started in today’s FPGAs. PCI Express, network MAC
and PHY layers, memory controllers and math units already
exist as “hardened” sub-components in the FPGA fabric. Often
the data path is hardened with small, likely to change control
paths left to the reconfigurable logic. These devices start to
look a lot like system on chips (SoCs) or coarse-grained
reconfigurable architectures. Some FPGAs even have CPUs
built in and tightly connected to the fabric. An ongoing and



iterative research process will be required to identify the best
set of building blocks and kernels to harden and the correct
abstractions to expose them.

In the context of the DNN example and vision, the rapid
pace of evolution in DNN algorithms means its currently
better to spend the transistors on a flexible FPGA fabric so
the algorithms and computation can rapidly evolve as needed.
Eventually, if DNNs remain popular and a stable algorithm
emerges, it may be hardened.

While new generations of FPGAs will continue to evolve
and incorporate new hardened functionality, there may be
transformational shifts coming in how reprogrammable chips
are designed and used. Support for rapid context switching
between two or more circuits on an FPGA would allow
better virtualization but requires saving and restoring the state
of the chip. Finally, non-traditional FPGA implementation
technologies such as those using asynchronous logic [38] may
provide better performance, logic density, or power usage, but
are not widely in use yet.

V. CONCLUSION

The continuous growth of modern cloud networking has
driven huge increases in the per-packet processing complex-
ity and performance requirements for workloads. However,
CPU based approaches have reached the throughput limits
of generic processor architectures. The recent introduction
of FPGA-based SmartNICs and programmable switches have
provided a flexible and scalable platform with promising
results on packet-level processing. The FPGA-based SmartNIC
architecture is suitable for both packet processing as well as
application-level acceleration, and in combination, presents
an opportunity to deploy full applications that can tightly
integrate with, and extend spatial computation across, the
network. In this paper, we lay out a number of research direc-
tions covering programming abstractions, ability to share and
schedule tasks throughout the network, and future directions
for hardware improvements.

ACKNOWLEDGMENT

The authors would like to thank Doug Burger, Eric Chung
and the Catapult and Project BrainWave teams at Microsoft.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 20162021,”
https://bit.ly/2wmdZJb.

[2] Y. Sverdlik, “Private Data Exchange is Outpacing Internet’s Growth,”
https://bit.ly/2wJBk8N.

[3] F. Kruger, “CPU Bandwidth The Worrisome 2020 Trend,” https://bit.
ly/2rKhjtL.

[4] D. Firestone et al., “Azure Accelerated Networking: SmartNICs in the
Public Cloud,” in NSDI’18, 2018.

[5] G. W. Connery, W. P. Sherer, G. Jaszewski, and J. S. Binder, “Offload
of TCP segmentation to a smart adapter,” 1999, uS Patent 5,937,169.

[6] “net: Generic receive offload,” https://lwn.net/Articles/358910/, 2008.
[7] D. Firestone, “VFP: A Virtual Switch Platform for Host SDN in the

Public Cloud.” in NSDI, 2017.
[8] “Netronome SmartNICs,” https://bit.ly/2iFcoEs.
[9] Will Chu, “Intelligent networks by Cavium,” http://www.cavium.com/

newsevents Caviumnetworks CoredgeNetworks.html.
[10] A. Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services,” in ISCA, 2014.

[11] “Mellanox Innova-2 Flex Programmable Network Adapter,” https://bit.
ly/2rIIZim.

[12] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker, “Hotcocoa:
Hardware congestion control abstractions,” in HotNets, 2017.

[13] K. Olukotun, “Scaling Machine Learning Performance with Moore’s
Law,” https://bit.ly/2rIHiS2.

[14] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17, 2017, pp. 85–98.

[15] “SONiC, the network innovation powerhouse behind Azure,” https://bit.
ly/2GNiy1z.

[16] “Barefoot Technology,” https://www.barefootnetworks.com/technology/.
[17] D. Burger, “A New Era of Hardware Microservices in the Cloud,” https:

//bit.ly/2Ir9nE8.
[18] M. Branscombe, “FPGAs and the New Era of Cloud-based Hardware

Microservices,” https://thenewstack.io/developers-fpgas-cloud/.
[19] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-

man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A Cloud-Scale Acceleration Architecture.” IEEE Computer
Society, October 2016.

[20] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end Arguments in
System Design,” TOCS, vol. 2, no. 4, 1984.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
Coordination for Internet-scale Systems,” in ATC, 2010.

[22] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004.

[23] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
Stateful Layer-4 Load Balancing Fast and Cheap Using Switching
ASICs,” in SIGCOMM, 2017.

[24] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, and M. Wójcik, “Re-architecting Datacenter Networks and Stacks
for Low Latency and High Performance,” in SIGCOMM, 2017.

[25] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
Scale Distributed Deep Networks,” in NIPS, 2012.

[26] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch,
and A. L. Wolf, “NetAgg: Using Middleboxes for Application-specific
On-path Aggregation in Data Centres,” in CoNEXT, 2014.

[27] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“NetChain: Scale-Free Sub-RTT Coordination,” in NSDI, 2018.

[28] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “KV-Direct: High-Performance In-Memory Key-Value Store
with Programmable NIC,” in SOSP, 2017.

[29] E. Chung et al., “Accelerating Persistent Neural Networks at Datacenter
Scale,” in HotChips, 2017.

[30] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” CCR’14.

[31] B. Li, K. Tan, L. Luo, R. Luo, Y. Peng, N. Xu, Y. Xiong, and P. Cheng,
“Clicknp: Highly flexible and high-performance network processing with
reconfigurable hardware,” in SIGCOMM, 2016.

[32] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton, R. G. Clegg,
L. Mai, P. Bressana, R. Soule, R. Mortier, P. Costa, P. Pietzuch,
J. Crowcroft, A. W. Moore, and N. Zilberman, “Emu: Rapid Prototyping
of Networking Services,” in ATC, 2017.

[33] “Intel HLS Compiler,” https://bit.ly/2ImqR8s.
[34] “Vivado High-Level Synthesis,” https://bit.ly/2vcBwee.
[35] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke, “The

Microsoft 2017 Conversational Speech Recognition System,” Microsoft
Research, Tech. Rep., August 2017.

[36] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proceedings of the
2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: ACM, 2016, pp. 44–57.

[37] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 435–446.

[38] C. LaFrieda, B. Hill, and R. Manohar, “An Asynchronous FPGA with
Two-Phase Enable-Scaled Routing,” in ASYNC, 2010.


