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Abstract
We study the Combinatorial Pure Exploration prob-
lem with Continuous and Separable reward func-
tions (CPE-CS) in the stochastic multi-armed ban-
dit setting. In a CPE-CS instance, we are given sev-
eral stochastic arms with unknown distributions, as
well as a collection of possible decisions. Each de-
cision has a reward according to the distributions
of arms. The goal is to identify the decision with
the maximum reward, using as few arm samples as
possible. The problem generalizes the combinato-
rial pure exploration problem with linear rewards,
which has attracted significant attention in recent
years. In this paper, we propose an adaptive learn-
ing algorithm for the CPE-CS problem, and analyze
its sample complexity. In particular, we introduce
a new hardness measure called the consistent opti-
mality hardness, and give both the upper and lower
bounds of sample complexity. Moreover, we give
examples to demonstrate that our solution has the
capacity to deal with non-linear reward functions.

1 Introduction
The stochastic multi-armed bandit model is a predominant
model for characterizing the trade-off between exploration
and exploitation in a variety of application fields with stochas-
tic environments. In this model, we are given a set of stochas-
tic arms associated with unknown distributions. Upon each
play of an arm, the player can get a reward sampled from the
corresponding distribution. The most well studied objective
is to maximize the cumulative reward, or minimize the cumu-
lative regret, e.g., [Lai and Robbins, 1985; Auer et al., 2002b;
Auer et al., 2002a; Bubeck and Cesa-Bianchi, 2012]. An-
other popular objective is to identify the optimal arm with
high probability by adaptively sampling arms based on the
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feedback collected. This is called the pure exploration ver-
sion of the multi-armed bandit problem [Bubeck et al., 2010;
Audibert et al., 2010; Gabillon et al., 2012].

Instead of identifying the single optimal arm, there are a
class of extended problems identifying the optimal combina-
torial decision, e.g., top-k arm identification [Kalyanakrish-
nan and Stone, 2010; Kalyanakrishnan et al., 2012; Bubeck et
al., 2013; Kaufmann and Kalyanakrishnan, 2013; Zhou et al.,
2014], multi-bandit best arm identification [Gabillon et al.,
2011], and their extension, Combinatorial Pure Exploration
with Linear reward functions (CPE-L) [Chen et al., 2014;
Chen et al., 2016a], etc. In CPE-L [Chen et al., 2014], the re-
wards are linear functions on the means of underlying arms,
and the decision class is subsets of arms satisfying certain
combinatorial constraints.

In this paper, we further generalize CPE-L problems to
a large class of Combinatorial Pure Exploration with Con-
tinuous and Separable reward functions (CPE-CS) (see Sec-
tion 2 for the technical definition). We propose the Con-
sistently Optimal Confidence Interval (COCI) algorithm to
solve the CPE-CS problem. To analyze its sample com-
plexity, we define a new arm-level measure called consistent
optimality radius Λi of arm i and a new hardness measure
called consistent optimality hardness HΛ =

∑m
i=1 1/Λ2

i ,
where m is the number of arms. We prove that with prob-
ability at least 1 − δ, COCI finds the optimal solution in
O(HΛ log(HΛδ

−1)) rounds. We also show that CPE-CS
problems have a lower bound Ω(HΛ + HΛm

−1 log δ−1) in
expectation, indicating that the hardness HΛ is necessary.

We demonstrate the usefulness of CPE-CS by two appli-
cations. The first one is water resource planning [Bradley et
al., 1977]. The goal is to remove waste at water sources of
an area. One can first do some purification tests at differ-
ent sources to estimate the water quality responses, and then
determines the final allocation of purification powers among
different sources. One need to balance the trade-off between
the purification power and the cost, and usually the objective
function is non-linear. This application can be generalized
to other urban planning scenarios such as air pollution con-
trol, crime control, etc. The second application is partitioned
opinion sampling [Bethel, 1986; Ballin and Barcaroli, 2013;
Huang et al., 2017]. The opinion polling is done by partition-
ing people into groups and sampling each group separately
with different sample budget to improve the sample quality.



One can first do some tests in each group to estimate its opin-
ion variance, and then determines the sample size for each
group under the total sample budget for the formal sampling
process. In this case, the objective function is also non-linear.
Furthermore, we show that the COCI algorithm also solves
the CPE-L problem with the same sample complexity as the
CLUCB algorithm proposed by Chen et al. [2014].

In summary, our contributions include: (a) studying the
combinatorial pure exploration problem with continuous and
separable functions and proposing the COCI algorithm as its
solution, (b) analyzing the sample complexity of COCI and
providing both its lower and upper bounds with a novel hard-
ness measure, and (c) applying the CPE-CS framework to wa-
ter resources planning and partitioned opinion sampling with
non-linear reward functions to demonstrate the usefulness of
the CPE-CS framework and the COCI algorithm.

Related Work. Pure exploration bandit studies adaptive
learning methods to identify the optimal solution. Best arm
identification [Bubeck et al., 2010; Audibert et al., 2010;
Gabillon et al., 2012], top-k arm identification [Kalyanakr-
ishnan and Stone, 2010; Kalyanakrishnan et al., 2012;
Bubeck et al., 2013; Kaufmann and Kalyanakrishnan, 2013;
Zhou et al., 2014], the multi-bandit best arm identifica-
tion [Gabillon et al., 2011] have been studied in the literature.
Chen et al.; Chen et al. [2014; 2016a] generalize these studies
to Combinatorial Pure Exploration with Linear reward func-
tions (CPE-L). Soare et al. [2014] also study the linear reward
functions, but the player is required to select a decision to
play instead of a single arm to sample in each round. A very
recent paper [Chen et al., 2017] studies the CPE problems be-
yond linear reward functions, but their model assumes arms
with Gaussian distributions and only works with the mean
estimator, while our CPE-CS only requires bounded distribu-
tions and also works for variance estimators. Moreover, for
efficient implementations, they need a pseudo-polynomial al-
gorithm for the exact query besides the maximization oracle,
but our solution only needs a maximization oracle.

A related online learning problem is multi-armed bandit
(MAB), e.g., [Lai and Robbins, 1985; Auer et al., 2002b;
Auer et al., 2002a; Bubeck and Cesa-Bianchi, 2012]. The
goal of MAB is to maximize cumulative rewards over multi-
ple rounds, and the key is to balance exploration and exploita-
tion during the learning process. In contrast, in pure explo-
ration, the key is the adaptive exploration in the learning pro-
cess to quickly find the optimal solution, and thus it is funda-
mentally different from MAB [Bubeck et al., 2010]. Combi-
natorial MAB is a popular topic in recent years [Cesa-Bianchi
and Lugosi, 2012; Gai et al., 2012; Chen et al., 2016c;
Chen et al., 2016b; Gopalan et al., 2014; Kveton et al., 2014;
Kveton et al., 2015; Combes et al., 2015], but their goals and
techniques are very different from ours.

2 Problem Definition
An instance of combinatorial pure exploration bandit prob-
lems consists of (a) a set of m arms [m] = {1, . . . ,m}, each
arm i being associated with an unknown distribution Di with
range [0, 1] and a key unknown parameter θ∗i ∈ [0, 1] of Di,
(b) a finite set of decisions Y ⊆ Rm, with each decision

y = (y1, . . . , ym) as a vector, and (c) a real-valued (expected)
reward function r(θ;y) with vector θ taken from the param-
eter space [0, 1]m and y ∈ Y . In each round t = 1, 2, . . . ,
a player selects one arm i ∈ [m] to play, and observes a
sample independently drawn from Di as the feedback. The
player needs to decide based on the observed feedback so
far if she wants to continue to play arms. If so, she needs
to decide which arm to play next; if not, she needs to out-
put a decision yo ∈ Y such that with high probability yo is
the optimal decision maximizing the reward r(θ∗;yo), where
θ∗ = (θ∗1 , . . . , θ

∗
m) is the vector of the true underlying param-

eters of the unknown distributionsD = (D1, . . . , Dm).
Definition 1. Given a combinatorial pure exploration in-
stance ([m],Y, r(·; ·),D,θ∗) and a confidence error bound
δ, the combinatorial pure exploration (CPE) problem requires
the design of an algorithm with the following components: (a)
a stopping condition, which decides whether the algorithm
should stop in the current round, (b) an arm selection compo-
nent, which selects the arm to play in the current round when
the stopping condition is false, and (c) an output component,
which outputs the decision yo when the stopping condition is
true. The algorithm could only use ([m],Y, r(·; ·)) and the
feedback from previous rounds as inputs, and should guaran-
tee that with probability at least 1 − δ the output yo is an
optimal decision, i.e., yo ∈ arg maxy∈Y r(θ

∗;y).
A standard assumption for CPE problems is that the op-

timal decision under the true parameter vector θ∗ is unique,
i.e., y∗ = arg maxy∈Y r(θ

∗;y). The performance of a CPE
algorithm is measured by its sample complexity, which is the
number of rounds taken when the algorithm guarantees its
output to be the optimal one with probability at least 1− δ.

We say that a reward function r(θ;y) is continuous if
r(θ;y) is continuous in θ for every y ∈ Y , and (ad-
ditively) separable if there exist functions r1, . . . , rm such
that r(θ;y) =

∑m
i=1 ri(θi, yi). We use CPE-CS to de-

note the class of CPE problems with Continuous and Sep-
arable reward functions and each parameter θ∗i of arm i
can either be mean EX∼Di

[X] or variance VarX∼Di
[X].1

We use ESTi(Xi,1, Xi,2, . . . , Xi,s) to denote the unbi-
ased estimator for parameter θ∗i from s i.i.d. observations
Xi,1, Xi,2, . . . , Xi,s of the i-th arm. In particular, for the
mean estimator, ESTi(Xi,1, Xi,2, . . . , Xi,s) = 1

s

∑s
j=1Xi,j ,

and for the variance estimator, ESTi(Xi,1, Xi,2, . . . , Xi,s) =
1
s−1

(∑s
j=1X

2
i,j − 1

s (
∑s
j=1Xi,j)

2
)

. Notice that the vari-
ance estimator needs at least two samples. We also define
φ : [0, 1]m → Y to be a deterministic tie-breaking maxi-
mization oracle such that for any θ ∈ [0, 1]m, φ(θ) =
(φ1(θ), . . . , φm(θ)) ∈ arg maxy∈Y r(θ;y) and it always
outputs the same optimal solution, called the leading optimal
solution, under the same parameter θ.

CPE-CS encompasses the important CPE problems with
Linear reward functions (CPE-L). In CPE-L, parameter θ∗i is
the mean of arm i for each i ∈ [m]. Each decision is a subset
of [m], which can be represented as an m-dimensional binary

1Other parameter θ∗i ofDi is also acceptable if it has an unbiased
estimator from the samples of Di. Only a minor change is needed
in the formula of confidence radius in COCI (Algorithm 1).



Algorithm 1: COCI: Consistently Optimal Confi-
dence Interval Algorithm for CPE-CS

Input: Confidence error bound δ ∈ (0, 1),
maximization oracle φ.

Output: yo = (y1, y2, . . . , ym) ∈ Y .
1 t← τm; // τ = 1 for the mean estimator and τ = 2 for the

variance estimator
2 for i = 1, 2, . . . ,m do
3 observe the i-th arm τ times Xi,1, . . . , Xi,τ ;
4 Ti,t ← τ ;
5 estimate θ̂i,t ← ESTi(Xi,1, . . . , Xi,Ti,t

);

6 radi,t ←
√

1
2Ti,t

ln 4t3

τδ ; // confidence radius

7 Θ̂t← {θ ∈ [0, 1]m : |θi−θ̂i,t| ≤ radi,t,∀i ∈ [m]};
8 for t = τm+ 1, τm+ 2, τm+ 3, . . . do
9 Ct ← ∅;

10 for i = 1, 2, . . . ,m do
11 if maxθ∈Θ̂t−1

φi(θ) 6= minθ∈Θ̂t−1
φi(θ) then

12 Ct ← Ct ∪ {i};

13 if Ct = ∅ then
14 return yo = φ(θ) for an arbitrary θ ∈ Θ̂t−1;
15 j ← arg maxi∈Ct

radi,t−1;
16 Tj,t ← Tj,t−1 + 1; Ti,t ← Ti,t−1 for all i 6= j;
17 play the j-th arm and observe the outcome Xj,Tj,t

;
18 update θ̂j,t ← ESTj(Xj,1, . . . , Xj,Tj,t

);
19 update θ̂i,t ← θ̂i,t−1 for all i 6= j;

20 update radi,t ←
√

1
2Ti,t

ln 4t3

τδ for all i ∈ [m];

21 Θ̂t← {θ ∈ [0, 1]m : |θi−θ̂i,t| ≤ radi,t,∀i ∈ [m]};

vector. Thus, the decision space Y is a subset of {0, 1}m,
and each vector y = (y1, . . . , ym) ∈ Y represents a subset
of arms Sy = {i ∈ [m] : yi = 1}. Moreover, the reward
function r(θ;y) =

∑m
i=1 θi · yi is continuous and separable.

3 Solving CPE-CS
In this section, we propose the Consistently Optimal Confi-
dence Interval (COCI) Algorithm for CPE-CS, and analyze
its sample complexity. En route to our sample complexity
bound, we introduce a new concept of arm-level consistently
optimal radius Λi of each arm i, which leads to a new hard-
ness measure HΛ. We first introduce the components and
notations which will be used in the algorithm.

The algorithm we propose for CPE-CS (Algorithm 1) is
based on the confidence intervals of the parameter estimates.
The algorithm maintains the confidence interval space Θ̂t for
every round t to guarantee that the true parameter θ∗ is always
in Θ̂t for all t > 0 with probability at least 1 − δ. After the
initialization (lines 1–7), in each round t, the algorithm first
computes the candidate set Ct ⊆ [m] (lines 9–12). Accord-
ing to the key condition in line 11, Ct contains the i-th arm if
maxθ∈Θ̂t−1

φi(θ) 6= minθ∈Θ̂t−1
φi(θ) (this is a logical con-

dition, and its actual implementation will be discussed in Sec-

tion 3.1). The stopping condition is Ct = ∅ (line 13), which
means that within the confidence interval space, all leading
optimal solutions are the same. In this case, the algorithm
returns the leading optimal solution under any θ ∈ Θ̂t−1 as
the final output (line 14). Notice that if the true parameter
θ∗ is in Θ̂t−1, then the output is the true optimal solution
yo = φ(θ∗) = y∗. If Ct 6= ∅, then the algorithm picks
any arm j with the largest confidence radius (line 15), plays
this arm, observes its feedback, and updates its estimate θ̂j,t
and confidence radius radj,t accordingly (lines 16–21). In-
tuitively, arm j is the most uncertain arm causing inconsis-
tency, thus the algorithm picks it to play first. Since the key
stopping condition is that the leading optimal solutions for
all θ ∈ Θ̂t−1 are consistently optimal, we call our algorithm
Consistently Optimal Confidence Interval (COCI) algorithm.

Before analyzing the sample complexity of the COCI algo-
rithm, we first introduce the (arm-level) consistent optimality
radius for every arm i, which is formally defined below.

Definition 2. For all i ∈ [m], the consistent optimality radius
Λi for arm i is defined as:

Λi = inf
θ:φi(θ)6=φi(θ∗)

‖θ − θ∗‖∞ .

Intuitively, Λi measures how far θ can be away from θ∗ (in
infinity norm) while the leading optimal solution under θ is
still consistent with the true optimal one in the i-th dimension,
as precisely stated below.

Proposition 1. ∀i ∈ [m], if |θj − θ∗j | < Λi holds for all
j ∈ [m], then φi(θ) = φi(θ

∗).

The following lemma shows that the consistent optimality
radii are all positive, provided by that the reward function is
continuous and the true optimal decision y∗ is unique.

Lemma 1. If the reward function r(θ;y) is continuous on θ
for every y ∈ Y , and the optimal decision y∗ under the true
parameter vector θ∗ is unique, then Λi is positive for every
i ∈ [m].

Given that the consistent optimality radii are all positive,
we can introduce the key hardness measure used in the sample
complexity analysis. We define consistent optimality hard-
ness as HΛ =

∑m
i=1

1
Λ2

i
. The following theorem shows our

primary sample complexity result for the COCI algorithm.

Theorem 1. With probability at least 1 − δ, the COCI algo-
rithm (Algorithm 1) returns the unique true optimal solution
yo = y∗, and the number of rounds (or samples) T satisfies

T ≤ 2m+ 12HΛ ln 24HΛ + 4HΛ ln
4

τδ

= O

(
HΛ log

HΛ

δ

)
. (1)

Theorem 1 shows that the sample complexity is positively
related to the consistent optimality hardness, or inversely pro-
portional to the square of consistent optimality radius Λ2

i . In-
tuitively, when Λi is small, we need more samples to make
the optimal solutions in the confidence interval consistent on
the i-th dimension, and hence higher sample complexity.



We remark that if we do not compute the candidate set Ct
and directly pick the arm with the largest radius among all
arms in line 15, every arm will be selected in a round-robin
fashion and COCI becomes a uniform sampling algorithm. In
the extended version, we show that the sample complexity up-
per bound of the uniform version is obtained by replacing HΛ

in Eq. (1) by HU
Λ = m

mini∈[m] Λ2
i

, and the factor HU
Λ is tight for

the uniform sampling. This indicates that the adaptive sam-
pling method of COCI would perform much better than the
uniform sampling when arms have heterogeneous consistent
optimality radii such that HΛ � HU

Λ .
Due to the space constraint, we only provide the key lemma

below leading to the proof of the theorem. We define a ran-
dom event ξ = {∀t ≥ τm, ∀i ∈ [m], |θ̂i,t − θ∗i | ≤ radi,t},
which indicates that θ∗ is inside the confidence interval space
of all the rounds. Then we have the following lemma.

Lemma 2. Suppose event ξ occurs. For every i ∈ [m] and
every t > τm, if radi,t−1 < Λi/2, then the i-th arm will not
be played in round t.

Proof. Suppose, for a contradiction, that the i-th arm
is played in round t, namely, i ∈ Ct, and i =
arg maxj∈Ct

radj,t−1. Thus for each j ∈ Ct, we have
radj,t−1 ≤ radi,t−1 < Λi/2.

We claim that for all θ ∈ Θ̂t−1, φi(θ) = φi(θ
∗). If so,

maxθ∈Θ̂t−1
φi(θ) = minθ∈Θ̂t−1

φi(θ), then by line 11 i 6∈
Ct, a contradiction.

We now prove the claim. For any vector x ∈ Rm and
any index subset C ⊆ [m], we use xC to denote the sub-
vector of x projected onto C. For vector-valued functions
such as φ(θ), we use φC(θ) for φ(θ)C . For any θ ∈ Θ̂t−1,
we construct an intermediate vector θ′ = (θCt ,θ

∗
−Ct

), i.e.,
the j-th component θ′j is θj when j ∈ Ct, or θ∗j when j /∈ Ct.
Since event ξ occurs, we have |θ̂j,t−1−θ∗j | ≤ radj,t−1 for j ∈
[m]. Thus for all j ∈ Ct, |θ′j−θ∗j | ≤ |θj− θ̂j,t−1|+ |θ̂j,t−1−
θ∗j | ≤ 2 radj,t−1 < Λi, and for all j /∈ Ct, |θ′j−θ∗j | = 0. This
means that ‖θ′ − θ∗‖∞ < Λi. According to Proposition 1,
φi(θ

′) = φi(θ
∗). We next prove that φi(θ) = φi(θ

′), which
directly leads to φi(θ) = φi(θ

∗).
Since event ξ occurs and θ∗ ∈ [0, 1]m, θ∗ is in Θ̂t−1.

By the definition of θ′ and θ ∈ Θ̂t−1, θ′ is also in Θ̂t−1.
According to Algorithm 1, for each j /∈ Ct, we have
maxθ∈Θ̂t−1

φj(θ) = minθ∈Θ̂t−1
φj(θ), thus φ−Ct(θ) =

φ−Ct
(θ′) = φ−Ct

(θ∗).
Note that the reward function is separable, we have

r(θ;y) =
∑
j∈Ct

rj(θj , yj) +
∑
j /∈Ct

rj(θj , yj).

Let YCt
(θ) = {yCt

: y ∈ Y ∧ y−Ct
= φ−Ct

(θ)}. It is
straightforward to verify that φCt

(θ) is the leading optimal
solution for the following problem:

max
∑
j∈Ct

rj(θj , zj),

subject to z ∈ YCt(θ). (2)

Similarly, we have

r(θ′;y) =
∑
j∈Ct

rj(θj , yj) +
∑
j /∈Ct

rj(θ
∗
j , yj),

and φCt(θ
′) is the leading optimal solution for

max
∑
j∈Ct

rj(θj , zj),

subject to z ∈ YCt
(θ∗). (3)

Since φ−Ct
(θ) = φ−Ct

(θ∗), optimization problems (2) and
(3) are identical, thus they have the some leading optimal so-
lution φCt(θ) = φCt(θ

′). Notice that i ∈ Ct, therefore,
φi(θ) = φi(θ

′) holds.

The above lemma is the key connecting consistent optimal-
ity radius Λi with confidence radius radi,t−1 and the stopping
condition. Its proof relies on both the definition of consis-
tent optimality radius and the assumption of separable reward
functions. With this lemma, the sample complexity can be
obtained by considering the first round when every arm satis-
fies the condition radi,t−1 < Λi/2.

Borrowing a lower bound analysis in [Chen et al., 2017],
we can further show that the hardness measure HΛ is neces-
sary for CPE-CS, even CPE-L, as shown below.
Theorem 2. Given m arms and δ ∈ (0, 0.1), there exists
an instance such that every algorithm A for CPE-L which
outputs the optimal solution with probability at least 1 − δ,
takes at least

Ω(HΛ + HΛm
−1 log δ−1)

samples in expectation.

3.1 Implementing the Condition in Line 11
The key condition in line 11 of Algorithm 1 is a logical
one revealing the conceptual meaning of the stopping con-
dition, but it does not lead to a direct implementation. In
many CPE-CS instances, the condition can be translated to
a condition only on the boundary of Θ̂t−1, and further due
to the bi-monotonicity of φ introduced below, it has an effi-
cient implementation. Such instances include best-arm iden-
tification, top-k arm identification, water resources planning
(Section 4.1), partitioned opinion sampling (Section 4.2), etc.

We say that the leading optimal solution φ(θ) satisfies
bi-monotonicity, if for each i ∈ [m], φi(θ) is monotoni-
cally non-increasing (or non-decreasing) in θi, and mono-
tonically non-decreasing (or non-increasing) in θj for all
j 6= i. For convenience, we use θi,t = maxθ∈Θ̂t

θi and
θi,t = minθ∈Θ̂t

θi to denote the upper and lower confidence
bound of arm i in round t. We also use θ−i,t and θ−i,t to
denote the upper and lower confidence bounds of all arms ex-
cluding arm i.
Theorem 3. If the leading optimal solution φ(θ) satisfies bi-
monotonicity, the condition in line 11 of Algorithm 1 can be
efficiently implemented by

φi(θ−i,t−1, θi,t−1) 6= φi(θ−i,t−1, θi,t−1).

The above theorem indicates that, when bi-monotonicity
holds for φ(θ), we only need two calls to the offline oracle
φ(θ) to implement the condition in line 11, and thus the COCI
algorithm has an efficient implementation in this case.



4 Applications
4.1 Water Resource Planning
Water resource systems benefit people to meet drinking water
and sanitation needs, and also support and maintain resilient
biodiverse ecosystems. In regional water resource planning,
one need to determine the Biological Oxygen Demand (BOD,
a measure of pollution) to be removed from the water system
at each source. Online learning techniques proposed in recent
years make adaptive optimization for water resource planning
possible.

Let yi be the pounds of BOD to be removed at source i.
One general model (adapted from [Bradley et al., 1977]) to
minimize total costs to the region to meet specified pollution
standards can be expressed as:

max
m∑
i=1

θ∗i yi −
m∑
i=1

fi(yi),

subject to
m∑
i=1

yi ≥ b, 0 ≤ yi ≤ ci,∀i ∈ [m], (4)

where θ∗i is the quality response caused by removing one
pound of BOD at source i, and fi(yi) is the cost of remov-
ing yi pounds of BOD at source i. Each yi is constrained
by ci, the maximum pounds of BOD that can be removed at
source i. Moreover, the total pounds of BOD to be removed
are required to be larger than a certain threshold b.

The above model formulates the trade-off between the ben-
efit and the cost of removing the pollutants. The cost function
fi is usually known and non-linear, which may depend on
the cost of oxidation, labor cost, facility cost, etc., while the
quality response θ∗i is unknown beforehand, and needs to be
learned from tests at source i. In each test, the tester measures
the quality response at a source i and gets an observation of
θ∗i , which can be regarded as a random variable θi derived
from an unknown distribution with mean θ∗i . The goal is to
do as few tests as possible to estimate the quality responses,
and then give a final allocation (yo1, . . . , y

o
m) of BOD among

sources as the plan to be implemented (e.g., building BOD
removal facilities at the sources).

The above problem falls into the CPE-CS framework. The
i-th source corresponds to the i-th arm. Each quality response
at source i is the unknown parameter θ∗i associated with the
arm i, and τ = 1. Each allocation (y1, . . . , ym) satisfying the
constraints corresponds to a decision. We discretize {yi}’s
so that the decision class Y is finite. The reward function is
r(θ,y) =

∑m
i=1 θiyi−

∑m
i=1 fi(yi), which is continuous and

separable. Suppose the offline problem of Eq. (4) when θ∗ is
known can be solved by a known oracle φ(θ∗). Then, the
COCI algorithm can be directly applied to the water resource
planning problem. The following lemma gives a sufficient
condition for the bi-monotonicity of φ.
Lemma 3. When {dfi/dyi}’s are all monotonically increas-
ing or decreasing, and the constraint

∑m
i=1 yi ≥ b is tight at

the leading optimal solution φ(θ) for all θ, then φ(θ) satisfies
bi-monotonicity.

By Theorem 3, when the offline oracle for the water
resources planning problem satisfies bi-monotonicity, we

can instantiate the condition in line 11 of Algorithm 1 as
φi(θ−i,t−1, θi,t−1) 6= φi(θ−i,t−1, θi,t−1).

Although this application is set up in the context of water
resource planning, we can see that the formulation in Eq. (4)
is general enough to model other applications, especially ones
in the urban planning context. For example, for planning air
quality control for a city, we need to target a number of air
pollution emission sources (e.g., factories), and do adaptive
testing at the sources to determine the optimal pollution re-
move target at each sources which maximizes the total utility
of the planning. Other applications, such as crime control,
may also be modeled similarly as instances of our CPE-CS
framework and solved effectively by our COCI algorithm.

4.2 Partitioned Opinion Sampling
Public opinion dynamics has been well studied, and there
are a number of opinion dynamic models proposed in the
literature, such as the voter model [Clifford and Sudbury,
1973], and its variants [Yildiz et al., 2011; Li et al., 2015;
Huang et al., 2017]. In these models, people’s opinions
f

(t)
1 , f

(t)
2 , . . . , f

(t)
n ∈ [0, 1] change over time t, and will con-

verge to a steady state after sufficient social interactions in
which the joint distribution of people’s opinions no longer
changes. Thus, they are regarded as Bernoulli random vari-
ables derived from the steady-state joint distribution, and
sampling at time t can be considered as observing part of a
realization of f (t)

1 , f
(t)
2 , . . . , f

(t)
n . In partitioned opinion sam-

pling, the population is divided into several disjoint groups
V1, V2, . . . , Vm with ni = |Vi|. When we draw yi sam-
ples (with replacement) from group Vi at time t, we obtain
yi i.i.d. random variables f (t)

vi,1 , f
(t)
vi,2 , . . . , f

(t)
vi,yi

, where vi,j is
the j-th sample from group Vi. Partitioned sampling uses
f̂ (t) =

∑m
i=1

ni

n ·
(

1
yi

∑yi
j=1 f

(t)
vi,j

)
as the unbiased estima-

tor for the mean population opinion at time t, and the task is
to find the optimal allocation (yo1, . . . , y

o
m) with sample size

budget
∑m
i=1 y

o
i ≤ k which minimizes the sample variance

Var[f̂ (t)], a common sample quality measure [Bethel, 1986;
Ballin and Barcaroli, 2013; Huang et al., 2017].

One way to achieve best estimate quality for a future time
t is to do adaptive sampling to quickly estimate the opinion
variance of each group, and then decide the optimal sample
size allocation for the real sample event at time t. This cor-
responds to certain opinion polling practices, for instance,
polling after each presidential debates, and preparing for a
better sample quality at the election day. We remark that in
this setting, past samples are useful to estimate opinion vari-
ance within groups, but cannot be directly use to estimate the
mean opinion at a future time t, since f̂ (t) is time-based and
using historical samples directly may lead to biased estimates.

More specifically, let Xi be the result of one random sam-
ple from group Vi in the steady state. Note that the random-
ness ofXi comes from both the sampling randomness and the
opinion randomness in the steady state. One can easily ver-
ify that Var[f̂ (t)] =

∑m
i=1

n2
i

n2yi
Var[Xi], where Var[Xi] is

the variance of group Vi, and referred to as the within-group
variance. The goal is to use as few samples as possible to es-
timate within-group variances, and then give the final sample



size allocation which minimizes Var[f̂ (t)].
This falls into the CPE-CS framework. In particular,

each group Vi corresponds to an arm i, and each within-
group variance Var[Xi] corresponds to the unknown param-
eter θ∗i of arm i. The decision space Y is {(y1, . . . , ym) ∈
Zm+ :

∑m
i=1 yi ≤ k}. The reward function r(θ;y) is set to be

−
∑m
i=1

n2
i θi
n2yi

, where the negative sign is because the parti-
tioned opinion sampling problem is a minimization problem.
It is non-linear but continuous and separable. Therefore, the
problem is an instance of CPE-CS. The oracle for the offline
problem can be achieved by a greedy algorithm, denoted as
φ(θ), and it satisfies the bi-monotonicity (the design and the
analysis of the offline oracle is non-trivial, see the extended
version). Thus, the COCI algorithm can be directly applied
as follows: 1) ESTi is set to be the variance estimator, i.e.,
ESTi(Xi,1, . . . , Xi,s) = 1

s−1 (
∑s
j=1X

2
i,j − 1

s (
∑s
j=1Xi,j)

2),
and τ = 2; 2) the condition in line 11 of Algorithm 1 is in-
stantiated by φi(θ−i,t−1, θi,t−1) 6= φi(θ−i,t−1, θi,t−1).

5 Applying COCI to CPE-L
In Section 2, we already show that the linear class CPE-L is a
special case of CPE-CS. In this section, we discuss the impli-
cation of applying COCI algorithm to solve CPE-L problems,
and compare the sample complexity and implementation ef-
ficiency against the CLUCB algorithm in [Chen et al., 2014].
Since the parameter θ∗ is the vector of means of arms, we use
the mean estimator and set τ = 1 in COCI.

Recall that for a binary vector y ∈ Y , Sy is defined as
{i ∈ [m] : yi = 1}. Chen et al. [2014] use the term reward
gap in the formulation of sample complexity. For each arm
i ∈ [m], its reward gap ∆i is defined as:

∆i =

{
r(θ∗;y∗)−maxy∈Y,i6∈Sy r(θ

∗;y), if i ∈ Sy∗ ,
r(θ∗;y∗)−maxy∈Y,i∈Sy r(θ

∗;y), if i 6∈ Sy∗ .
Chen et al. [2014] also define a (reward gap) hardness mea-

sure H∆ =
∑m
i=1

1
∆2

i
. Moreover, for each decision class Y ,

Chen et al. [2014] define a key quantity width, denoted as
width(Y), that is needed for sample complexity. Intuitively,
width(Y) denotes the minimum number of elements that one
may need to exchange in one step of a series of steps when
changing the current decision S ∈ Y into another decision
S′ ∈ Y , and for every step of exchange in the series, the re-
sulting decision (subset) should still be in Y . The technical
definition is not very relevant with the discussion below, and
thus is left in the supplementary material. We remark that
width(Y) = O(m).

Given the above setup, Chen et al. [2014] show that with
probability 1 − δ, their CLUCB algorithm achieves sample
complexity bound

T ≤ 2m+ 499width(Y)2H∆ ln(4mwidth(Y)2H∆/δ)

= O
(
width(Y)2H∆ log(mH∆/δ)

)
. (5)

When applying the COCI algorithm to solve CPE-L prob-
lems, we are able to obtain the following key connection be-
tween consistent optimality radius and the reward gap:
Lemma 4. For the CPE-L problems, we have ∀i ∈ [m], Λi ≥
∆i/width(Y), and thus HΛ ≤ H∆ · width(Y)2.

Combining with Theorem 1, we have that COCI could
achieve the following sample complexity bound for CPE-L:

T ≤ 2m+ 12width(Y)2H∆ ln(24width(Y)2H∆)

+ 4width(Y)2H∆ ln(4δ−1)

= O
(
width(Y)2H∆ log(mH∆/δ)

)
.

The above result has the same sample complexity2 as in
Eq. (5) (with even a slightly better constant). However, with
our analysis, we only need the complicated combinatorial
quantity width(Y) and the linear reward assumption in the
last step. This also suggests that our consistent optimality ra-
dius Λi and its associated consistent optimality hardness HΛ

are more fundamental measures of problem hardness than the
reward gap ∆i and its associated reward gap hardness H∆.

Next we discuss the implementation of the condition in
line 11 of COCI for CPE-L. First, because linear functions are
monotone, it is easy to see that we only need to check param-
eters θ on the boundaries of Θ̂t−1 (at most 2|Y| calls to the
oracle φ). For simple constraints such as any subsets of size
k, it is easy to verify that φ(θ) is bi-monotone in this case,
and thus we have efficient implementation of the condition
as given in Theorem 3. For more complicated combinatorial
constraints, it is still an open question on whether efficient
implementation of the condition in line 11 exists when oracle
φ is given. The CLUCB algorithm, on the other hand, does
have an efficient implementation for all CPE-L problems as
long as the oracle φ is given.

Therefore, compared with CLUCB in terms of efficient
implementation, COCI can be viewed as taking the trade-
off between the complexity of the reward functions and the
complexity of combinatorial constraints. In particular, COCI
could handle more complicated nonlinear reward functions
on real vectors, and allow efficient implementation (due to bi-
monotonicity) under simple constraints, while CLUCB deals
with complicated combinatorial constraints but could only
work with linear reward functions on binary vectors.

6 Future Work
There are a number of open problems and future directions.
For example, one can consider the fixed budget setting of
CPE-CS: the game stops after a fixed number T of rounds
where T is given before the game starts, and the learner needs
to minimize the probability of error Pr[yo 6= y∗]. One may
also consider the PAC setting: with probability at least 1 − δ
the algorithm should output a decision with reward at most
ε away from the optimal reward. This setting may further
help to eliminate the requirement of finite decision class Y .
Another direction is to combine the advantage of COCI and
CLUCB to design a unified algorithm that allows efficient im-
plementation for all CPE-CS problems. How to incorporate
approximation oracle instead of the exact oracle into the CPE
framework is also an interesting direction.

2CPE-L in [Chen et al., 2014] assumesR-sub-Gaussian distribu-
tions. Our analysis can be adapted to R-sub-Gaussian distributions
as well, with the same R2 term appearing in the sample complexity.
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Gábor Lugosi. Combinatorial bandits. JCSS, 2012.

[Chen et al., 2014] Shouyuan Chen, Tian Lin, Irwin King,
Michael R Lyu, and Wei Chen. Combinatorial pure ex-
ploration of multi-armed bandits. In NIPS-14, 2014.

[Chen et al., 2016a] Lijie Chen, Anupam Gupta, and Jian Li.
Pure exploration of multi-armed bandit under matroid con-
straints. In COLT-16, 2016.

[Chen et al., 2016b] Wei Chen, Wei Hu, Fu Li, Jian Li,
Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit
with general reward functions. In NIPS-16, 2016.

[Chen et al., 2016c] Wei Chen, Yajun Wang, Yang Yuan, and
Qinshi Wang. Combinatorial multi-armed bandit and its
extension to probabilistically triggered arms. Journal of
Machine Learning Research, 2016.

[Chen et al., 2017] Lijie Chen, Anupam Gupta, Jian Li,
Mingda Qiao, and Ruosong Wang. Nearly optimal sam-
pling algorithms for combinatorial pure exploration. In
COLT-17, 2017.

[Clifford and Sudbury, 1973] Peter Clifford and Aidan Sud-
bury. A model for spatial conflict. Biometrika, 1973.

[Combes et al., 2015] Richard Combes, M. Sadegh Talebi,
Alexandre Proutiere, and Marc Lelarge. Combinatorial
bandits revisited. In NIPS-15, 2015.

[Gabillon et al., 2011] Victor Gabillon, Mohammad
Ghavamzadeh, Alessandro Lazaric, and Sébastien
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