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Abstract
Network embedding is a method of learning a
low-dimensional vector representation of network
vertices under the condition of preserving differ-
ent types of network properties. Previous stud-
ies mainly focus on preserving structural informa-
tion of vertices at a particular scale, like neighbor
information or community information, but can-
not preserve the hierarchical community structure,
which would enable the network to be easily ana-
lyzed at various scales. Inspired by the hierarchical
structure of galaxies, we propose the Galaxy Net-
work Embedding (GNE) model, which formulates
an optimization problem with spherical constraints
to describe the hierarchical community structure
preserving network embedding. More specifically,
we present an approach of embedding communities
into a low dimensional spherical surface, the center
of which represents the parent community they be-
long to. Our experiments reveal that the representa-
tions from GNE preserve the hierarchical commu-
nity structure and show advantages in several appli-
cations such as vertex multi-class classification and
network visualization. The source code of GNE is
available online.

1 Introduction
Network embedding is a method of learning a low-
dimensional representation of vertices in a complex network,
under the condition of preserving different types of structural
properties of the network. It enables effective applications of
many general machine learning methods to network analyses,
such as vertex classification, network clustering, network vi-
sualization and and social influence analysis [Bhagat et al.,
2011; He et al., 2012; Song et al., 2015].

Network embedding studies include structure-preserving
methods [Grover and Leskovec, 2016; Wang et al., 2017]
and property-preserving methods [Hu et al., 2017]. Our pa-
per belongs to the former. In terms of structure-preserving
methods, inspired by Skip-gram in word2vec [Mikolov et al.,
∗These authors contributed equally to the work.
†Corresponding Author

2013a], many methods consider the vertex context and rep-
resent a vertex with its nearby vertices [Perozzi et al., 2014;
Grover and Leskovec, 2016; Tang et al., 2015]. In addition
to preserving the microscopic structure, the community struc-
ture, one important mesoscopic description of network struc-
ture, is incorporated into network embedding in MNMF, of
which the learned embedding space can well reflect the orga-
nizational structures and functional components of networks
[Wang et al., 2017].

Essentially, these methods mainly focus on preserving
neighborhood information, or community structure at a par-
ticular scale. However, the community structures in complex
networks are often hierarchical [Clauset et al., 2006], and
many complex networks, such as social networks, air trans-
portation networks, and metabolic networks, exhibit explicit
hierarchical structures. Such a hierarchical structure greatly
enriches the community structure and connects the commu-
nity structure at different scales [Sales-Pardo et al., 2007].
For instance, in a social network among college students, the
hierarchical structure could include the university, the depart-
ment within the university, and the enrollment year within the
department, etc. Hierarchical network embedding aims at a
succinct vector representation of the network that encodes the
rich hierarchical structural information, which could make it
much easier to analyze the network at different scales.

It is challenging to formulate the hierarchical community
preserving network embedding. Not only the topological re-
lationship between the nodes1 in the same layer of the hi-
erarchical tree needs to be considered, but the relationship
between the nodes in different layers needs to be considered
as well. In addition, efficiently implementing the embedding
method is a challenge as well.

Conceptually, a hierarchical community network embed-
ding should preserve two types of relationship information:
One is the local information that represents the microscopic
structure (pairwise nodes similarity) in the same community
at a certain layer; the other is the hierarchical information.
Horizontally, the nodes in the same community are more sim-
ilar to each other. Vertically, a community in a lower level has
a greater cohesion degree than a community in a higher level

1In this paper, we consistently use the term “vertex” to represent
a node in the network, while using the term “node” to represent a
node in the hierarchical tree.
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Figure 1: Different display approaches of the network hierarchical
structure

(e.g. in the solar system, the earth is closer to the moon, far-
ther from the sun).

In this paper, inspired by the natural hierarchical structure
of a galaxy with its stars, planets, and satellites, we propose
the Galaxy Network Embedding (GNE) model. In particu-
lar, several properties of the galactic hierarchical structure
influence our modeling and implementation, as we now ex-
plain. As most network embedding schemes, we formulate
network embedding as an optimization task, with constraints
on both the local community structure and the global hier-
archical structure. For preserving pairwise similarity in lo-
cal communities, we extend the LINE method [Tang et al.,
2015]. For global hierarchical structure constraints, we draw
inspiration from the galactic hierarchy where celestial bodies
belonging to the same subsystem have much shorter distance
than (a) their distance to the same level celestial bodies in
another subsystem, and (b) their distance to the center of a
higher level system (e.g. satellites of one planet are much
closer to one another than they are to satellites of a different
planet, and than they are to the sun of their planet). We turn
the first observation as a horizontal constraint and the second
one as a vertical constraint and impose them for hierarchical
network embedding. Moreover, when implementing the em-
bedding, for the set of sibling nodes of the same parent node
in the hierarchy, we embed them on a sphere with the parent
at the center (Fig.1 (c)). This also resembles the galaxy struc-
ture, for example satellites of the same planet are at similar
distance scale to the planet (thus on an approximate sphere
centered at the planet), comparing to the distance scale be-
tween planets, and similar situation can be said for planets
surrounding their sun. The spherical embedding of a subsys-
tem in the hierarchy makes our embedding implementation
efficient.

To summarize, we make the following contributions:

• We propose the Galaxy Network Embedding (GNE)
model with horizontal and vertical constraints to pre-
serve the hierarchical community structure at any scale.

• We present a novel spherical embedding method that
leads to an efficient and effective implementation in the
GNE model.

• We conduct extensive experiments on three real-world
networks and four synthetic networks with explicit hier-
archical structures, and the results demonstrate that our
model can integrally preserve the hierarchical commu-
nity structure and is significantly superior to other mod-
els on vertex classification and network visualization.

2 Related Work
Network Embedding. Network embedding maps the ver-
tices or edges of a network into a low-dimensional vector
space, which is beneficial to vertex classification and net-
work visualization. It is well recognized that network rep-
resentation has two goals: reconstructing the original net-
work and supporting network inference. Manifold learning
aims to reconstruct all the links, causing overfitting and lim-
iting the network inference ability seriously [Tenenbaum et
al., 2000]. In order to support network inference, structure-
preserving method and property-preserving method are pro-
posed. In terms of structure-preserving methods, inspired by
the word2vec in NLP [Mikolov et al., 2013a], some meth-
ods consider the vertex context and represent a vertex with its
nearby vertices [Perozzi et al., 2014; Grover and Leskovec,
2016; Tang et al., 2015]. In addition to preserving the mi-
croscopic structure, the community structure, one important
mesoscopic description of network structure, is incorporated
into network embedding in MNMF [Wang et al., 2017]. All
the methods above mainly focus on preserving the pairwise
proximity or community structure on a particular resolution,
while the community structure at different scales are not con-
sidered.
Hierarchical Network. Many complex networks in the real
world have hierarchical community structures. [Newman,
2003] introduces the community structure of the network,
and summarizes that complex networks have the small-world
property and the scale-free property. [Song et al., 2005] find
that a large number of real networks have the self-similar
property. Besides, the works on detection of hierarchial com-
munities for networks with implicit hierarchical structure at-
tract more attentions [Shen et al., 2009]. Recently, there are
few researches on network embedding taking into account the
hierarchical structures of networks. [Nickel and Kiela, 2017]
uses the hyperbolic space to study the hierarchical structure
of the network. The learned representation vectors are in the
hyperbolic space, which are difficult to be converted into the
Euclidean vectors. However, most of machine learning algo-
rithms require the input vectors to be in the Euclidean space.
Thus, it is necessary to study hierarchical structure preserving
network embedding in the Euclidean space.

3 Galaxy Network Embedding Model
In this section, we introduce our notation, and formulate hier-
archical preserving network embedding to preserve the pair-
wise proximity between communities and the hierarchical
structure properties. Inspired by the galaxy structure, we in-
troduce the Galaxy Network Embedding.

3.1 Notation
An undirected network G is denoted as (V,E), where V is
the set of vertices and E is the set of edges. The hierarchical
clustering tree of G is denoted as T with a depth of L. C
denotes the node set and cli denotes the i-th node at the l-th
level of T . Ch(c) denotes the child node set of the node c
and pa(c) denotes the parent node of c. Meanwhile, cli also
represents the i-th community while recursively dividing G



at the l-th level. For the l-th level of T ,

∀cli, clj ∈ Cl cli ∩ clj = ∅,⋃
i

cli = V.

Especially, c11 is the root node of T and also the node set of
G (i.e. c11 = V ) and cLi = {vi}, where vi is the i-th vertex of
the G.

In order to preserve the hierarchical structure property of
the network explicitly, we embed not only the vertices but
also the communities of all layers. Due to cLi = {vi}, for
brevity, we use the community representation instead of the
vertex representation in the model.

We denote Φ(c) ∈ Rm as the representation of the commu-
nity c, where m� |C|. The problem of the hierarchical pre-
serving network embedding is to learn the low-deminsional
representations Φ of communities that can preserve the pair-
wise proximity between communities and the hierarchical
structure properties.

3.2 Hierarchical Preserving Network Embedding
In our scenario, the community representation can preserve
two kinds of properties of G. One is the local information,
i.e. the pairwise proximity between sub-communities in the
same community at a certain layer. The other is the hierarchi-
cal structure property, i.e. horizontal relationship and vertical
relationship.

Pairwise Proximity Preservation
In order to preserve the local information between com-
munities, we first define the community proximity Ski,j ex-
tended from the definition of the common neighbor similarity
[Libennowell and Kleinberg, 2007]:

Sli,j =
1

|cli||clj |
∑
u∈cli

∑
v∈clj

ATuAv√
||Au||1||Av||1

, (1)

which means the average common neighbor similarity be-
tween the community cli and clj , where A is the adjacency
matrix of G and Au is the u-th column of the A.

We extend LINE with Second-order Proximity [Tang et al.,
2015] to define a local objective for the communities deriving
from the same parent node cl−1

k , namely,

min
Φ,Φ′

O
(l−1)
k = −

∑
cli,c

l
j∈Ch(cl−1

k )

Sli,j logP (Φ′(clj) |Φ(cli)), (2)

which minimizes the KL-divergence between the distribu-
tion of community proximity from the ground truth and from
the learned representation respectively. P (Φ′(clj) |Φ(cli)) is
modeled by the softmax function, i.e.

P (Φ′(clj) |Φ(cli)) =
exp(Φ′(clj) · Φ(cli))∑

clt∈Ch(cl−1
k ) exp(Φ′(clt) · Φ(cli))

,

where Φ(c) is the representation of c and Φ′(c) is an auxiliary
vector defined in LINE. Considering the computational effi-
ciency, we approximate the softmax function using negative
sampling [Mikolov et al., 2013b].

Hierarchical Structure Preservation
Besides the pairwise proximity, the community representa-
tions should preserve the hierarchical structure property. In
detail, two relationships should be preserved in the hierarchi-
cal tree:
Horizontal relationship: nodes belonging to the same com-
munity should be closer to each other than those belonging to
different communities in a certain layer, which can be illus-
trated with the following equation in Euclidean space: For all
l = 1, . . . , L, for all clu, c

l
v ∈ Cl with pa(clu) = pa(clv), for

all clw ∈ Cl with pa(clu) 6= pa(clw), we have

‖Φ(clu)− Φ(clv)‖ <‖Φ(clu)− Φ(clw)‖, (3)

where ‖·‖ means 2-norm.
Vertical relationship: the cohesion degree of shallower layer
communities should be smaller than that of deeper layer ones
in T . Naturally, the cohesion degree of a community can be
represented by the average representations distance between
the sub-communities in it. Thus, the parent-child relationship
can be described with the following equation: For all l =
1, . . . , L− 1, for all cl−1

k ∈ Cl−1, for all cl+1
i ∈ Ch(clj) and

all clj ∈ Ch(cl−1
k ), we have

‖Φ(cl+1
i )− Φ(clj))‖ < ‖Φ(clj)− Φ(cl−1

k )‖. (4)

Considering the pairwise proximity preservation (Eq.(2))
and hierarchical structure preservation (horizontal Eq.(3),
vertical Eq.(4)), we introduce Galaxy Network Embedding
to learn the representations of nodes in hierarchical tree.
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Figure 2: Structure of GNE

3.3 Galaxy Network Embedding
As discussed in the introduction, we resemble the galactic hi-
erarchical structure to use sphere embedding for sibling nodes
in the hierarchical structure. This leads to the following GNE
optimization formulation:

min
Φ,Φ′

O
(l−1)
k (Φ,Φ′)

s.t. ∀cli ∈ Ch(cl−1
k ), ‖Φ(cli)− Φ(cl−1

k )‖2 = rl−1
k .

(5)

The rl−1
k in the above formulation denotes the sphere radius

of the community cl−1
k , to reflect the spherical embedding



where all children nodes of cl−1
k are embedded at a sphere of

radius rl−1
k centered at cl−1

k . The radius rli of the community
cli is obtained by the following strategy:

rli = η · dl−1
k , (6)

where,

dl−1
k = min

cli,c
l
j∈Ch(cl−1

k ),i6=j
Dist

(
Φ(cli),Φ(clj)

)
,

Dist(x, y) = ‖x− y‖,
(7)

and pa(cli) = cl−1
k , η is an arbitrary positive real number less

than 1
6 . Especially，dl−1

k is determined when calculating rli.
In this way, we can optimize the objective Eq.(5) recur-

sively from top to bottom in hierarchy to preserve the pair-
wise proximity and the hierarchical structure. The whole
embedding procedure is illustrated in Fig.2. Obviously, the
pairwise proximity can be preserved with the GNE objective
Eq.(5). Next, we introduce Lemma.1 to prove the hierarchical
structure can be preserved with Eq.(5).
Lemma 1. The community representations learned from re-
cursively optimizing the Objective Eq.(5) with the strategy
Eq.(6) preserve the constraints Eq.(3) and Eq.(4).

Proof. According to Eq.(5) and Eq.(6): for any cli ∈ C,

rli <
1

6
dl−1
k ≤ 1

6
· 2rl−1

k =
1

3
rl−1
k , (8)

where pa(cli) = cl−1
k .

For any nodes clu, c
l
v and clw at layer l, where pa(clu) =

pa(clv) and pa(clu) 6= pa(clw). cτ−1
k is the common ancestor

of clu and clw. Besides, the cτ−1
k ’s children cτi and cτj are an-

cestors of the clu and clw, respectively. Thus, according to the
constraints in Eq.(5) and Eq.(8):

Dist(Φ(clu),Φ(cτi )) ≤
∑

cγe∈P (cτi ,c
l
u)

rγe < rτi

l−1∑
γ=τ

(
1

3
)γ−τ

< rτi

∞∑
γ=τ

(
1

3
)γ−τ =

3

2
rτi <

3

2

(
1

6
dτ−1
k

)
=

1

4
dτ−1
k ,

where, P (cτi , c
l
u) is a set of nodes in all paths from cτi to clu

in the hierarchical tree, cτi ∈ P (cτi , c
l
u) and clu /∈ P (cτi , c

l
u)

Dist(Φ(clw),Φ(cτj )) <
1

4
dτ−1
k .

According to Eq.(7)：

Dist(Φ(cτi ),Φ(cτj )) ≥ dτ−1
k .

Thus,

Dist(Φ(clw),Φ(clu)) ≥ Dist(Φ(cτi ),Φ(cτj ))

−Dist(Φ(cτi ),Φ(clu))−Dist(Φ(cτj ),Φ(clw))>
1

2
dτ−1
k .

Further, we can obtain the following relationship according
to Eq.(6) and Eq.(8)：

Dist(Φ(clu),Φ(clv)) ≤ 2rlpa(clu) <
1

3
dτ−1
k .

Finally, we can obtain

Dist(Φ(clw),Φ(clu)) > Dist(Φ(clu),Φ(clv)).

Thus, we prove the community representations learned from
GNE can preserve the horizontal relationship in hierarchy.
Similarly, we can prove that the vertical relationship can be
also preserved and we don’t repeat it in the paper.

4 Learning Procedure of GNE
In this section, we introduce the learning algorithm of GNE,
including how to solve the optimization problem Eq.(5) layer
by layer and the pseudocode of GNE. Compared with the op-
timization objective of the classic neural embedding method,
we just add an extra spherical constraint in Eq.(5). The neu-
ral embedding method can be directly optimized using SGD,
which is efficient and the effect of which has been verified.
Considering these advantages, we transform Eq.(5) into a
two-step optimization procedure. First, we use the Adam op-
timizer to optimize Eq.(2) without constraint based on neural
networks, and obtain the intermediate representation Ω(cli) of
communities that preserves the pairwise relationship of com-
munities. Second, we map Ω(cli) to a spherical surface to get
the final representation Φ(cli) of communities. Next, we in-
troduce the spherical projection method.

4.1 Spherical Projection
To preserve the relative distances in spherical projection, we
formally define the following optimization objective:

min
Φ
J

(l−1)
k =

∥∥∥∥ D

‖D‖F
− B

‖B‖F

∥∥∥∥
F

+ µ exp(−γ‖B‖F )

s.t.‖Φ(cli)− Φ(cl−1
k )‖ = rl−1

k ,
(9)

where,

cli, c
l
j ∈ Ch(cl−1

k ),

Dij = ‖Ω(cli)− Ω(clj)‖ and Bij = ‖Φ(cli)− Φ(clj)‖.
The first term is to preserve the relative distances, and the
second term is a penalty term to make the distances between
each pair of points after projection are as large as possible.
µ and γ are hyper parameters. As the overall optimization
procedure is top-down, Φ(cl−1

k ), rl−1
k andD are all constants.

Spherical Projection Optimization Procedure
The constraints of Eq.(9) are for arbitrary spherical surfaces.
We can perform scaling and translation transformations on
the coordinate system to turn them into the unit sphere con-
straints, namely the following conversion :

Ψ(cli) =
Φ(cli)− Φ(cl−1

k )

rl−1
k

and ‖Ψ(cli)‖ = 1. (10)

Combining with Eq.(10), the Euclidean distance between
Ψ(cli) and Ψ(clj) can be expanded as follows:

B′ij = ‖Ψ(cli)−Ψ(clj)‖
= ‖Ψ(cli)‖2 + ‖Ψ(clj)‖2 − 2Ψ(cli)

TΨ(clj)

= 2− 2 cos(Ψ(cli),Ψ(clj)).

(11)



It can be seen that B′ij is not related to the length of vector
Ψ(cli) and Ψ(clj), but only the cosine distance between them.
Therefore, the vector length constraint in the objective can be
removed. The final optimization objective on the unit sphere
is:

min
Ψ

H
(l−1)
k =

∥∥∥∥ D

‖D‖F
− B′

‖B′‖F

∥∥∥∥
F

+ µ exp(−γ‖B′‖F ).

(12)
We use Ψ∗(c

l
i) to denote the minimum point after optimiza-

tion. After normalization, translation, and scaling, the final
results are obtained:

Φ(cli) =
Ψ∗(c

l
i)

‖Ψ∗(cli)‖
× rl−1

k + Φ(cl−1
k ). (13)

Obviously, the unconstrained objective has a lower bound that
can be found using Gradient Descent algorithm.

4.2 The GNE Algorithm
The pseudocode for GNE, is given in Algorithm 1. The whole
embedding process is executed from top to down. For all chil-
dren nodes of a certain node cli, i.e. the nodes in Ch(cli), the
learned representation Ψ(Ch(cli)) on the unit sphere can be
obtain after two-step optimization procedure with Adam, the
optimization Eq.(2) is used first and the optimization Eq.(12)
follows. The final representation Φ(cl+1

j ) can be obtained
by the transformation in Eq.(13). Besides, the correspond-
ing rl+1

j can be calculated with the minimum distance dj,∗.
The constant η less than 1

6 (see Lemma 1), so η = 1
7 in our

experiments.

Algorithm 1 The GNE algorithm

function LEARNFEATURES(Network G, Hierarchical
Clustering Tree T )

Initialize Φ(c11) = 0 and r11 = 1
Φ = RecursiveOptimization (c11, G, T , r, Φ)

return Φ

function RECURSIVEOPTIMIZATION(Current node cli,
Network G, Hierachical Clustering Tree T , Radius Set r,
Reresentation Set Φ)

if l = L then return Φ
Ω(Ch(cli)) = minimize O(l)

i with Adam (see Eq.(2))
Ψ(Ch(cli)) = minimize H(l)

i with Adam (see Eq.(12))
for all cl+1

j ∈ Ch(cli) do
Φ(cl+1

j ) = Ψ(cl+1
j )/‖Ψ(cl+1

j )‖ × rli + Φ(c1i )

rl+1
j = η · dj,∗

for all cl+1
j ∈ Ch(cli) do

Φ = RecursiveOptimization (cl+1
j , G, T , r, Φ)

return Φ

Time Complexity Analysis
For brevity of description, we assume that the hierarchi-
cal clustering tree of network G = (V,E) is a k-ary
tree T with depth logK |V |. The number of nodes N in

T is KlogK |V |+1−1
K−1 . Spherical embedding should be done

on each tree node layer by layer. Especially, the embed-
ding procedures on the same layer tree nodes can be paral-
lelized. For spherical embedding, the complexity of comput-
ing Ω(Ch(cli)) is O(EKQ). More precisely, E is the number
of training epoch, K is the size of community to be embed-
ded and Q is the neural network computing complexity of
skip-gram model, i.e. Q = O(C(D +DM)), where C is the
skip window size, D is the embedding size and M is the neg-
ative sampling size; the complexity of computing Ψ(Ch(cli))
is O(EK2D). Thus, the spherical embedding complexity is
O(EKQ + EK2D). The optimization algorithm is imple-
mented on the Tensorflow platform, which can be accelerated
with GPU.

5 Experiments
In this section, we present our experimental evaluation of the
GNE method on both synthetic and real networks.

5.1 Experiment Setup
Data Sets We employ the following three real datasets
in the Facebook social networks dataset which comprises
100 colleges and universities in US [Traud et al., 2012].
We choose the social networks in Hamilton University
(2314 nodes, 96394 edges), Amherst College (2235nodes,
90954edges) and Georgetown Universit (9414 nodes, 425639
edges). Moreover, in order to evaluate the performance
of hierarchical community structure preservation, four Hi-
erarchical Random Graphs (HRG) with explicit hierar-
chical community structure are generated by [Clauset et
al., 2008], i.e. Syn with 125nodes (125 nodes, 406
edges), Syn with 1800nodes (1800nodes, 739637 edges),
Syn with 2560nodes (2560 nodes, 1460147 edges) and
Syn with 3750nodes (3750 nodes, 3066250 edges).
Relevant Algorithms We compare the GNE against six net-
work embedding algorithms: SpectralClustering [Tang and
Liu, 2011], DeepWalk [Perozzi et al., 2014], Node2Vec
[Grover and Leskovec, 2016], LINE [Tang et al., 2015],
GraRep [Cao et al., 2015] and MNMF [Wang et al., 2017].
Parameters Settings The hyper-parameters of GNE is θ,
i.e. θ = (µ, γ). GNE is not very sensitive to the hyper-
parameters, the settings of which can achieve ideal results
with grid search on a small range. In our experiments, the
embedding size m of all models is 64. Besides, the param-
eter setting of comparison models follow the recommended
settings in relevant code packages.

5.2 Hierarchical Community Detection
In this section, we verify the ability of hierarchical commu-
nity preservation of our model GNE. We consider synthetic
data sets in this experiment, including three different struc-
tures of HRG but with the same number of layers (see Fig.3).
Jaccard’s coefficient is applied as an external index for eval-
uating the performance of community preservation at each
hierarchy of networks.

Fig.3 shows that the content of the hierarchical community
structure can be integrally preserved with our model, no mat-
ter how many communities are there. However, MNMF only



Model Amherst Hamilton Georgetown
10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

GNE 93.57 93.31 93.33 93.18 92.89 94.83 94.53 94.11 94.17 93.86 53.22 53.80 53.55 52.20 51.88
SpectralClustering 72.89 73.49 73.94 74.32 72.82 78.16 77.60 77.21 77.59 74.92 49.26 50.87 50.79 50.60 48.53

DeepWalk 90.62 91.65 91.32 91.13 90.41 92.89 92.33 92.52 92.18 91.55 54.07 53.79 53.35 51.69 50.92
Node2Vec 91.29 91.24 91.04 90.44 90.02 92.09 91.03 91.18 90.06 89.56 52.86 53.73 53.16 52.70 51.28

LINE 90.76 91.82 91.48 91.09 89.42 92.33 92.72 92.52 92.62 91.73 54.64 53.45 53.81 52.71 51.28
GraRep 92.13 92.25 91.78 91.56 91.48 93.67 93.04 92.30 92.40 91.00 54.80 53.24 53.95 51.87 51.74
MNMF 89.82 89.06 88.04 86.43 78.44 91.42 90.32 89.12 87.02 81.19 53.43 52.63 52.10 51.52 50.35

Table 1: The multi-label classification results on different percentages of test datasets
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Figure 3: The comparison of hierarchical community preservation
on different models. Three different structures of HRG with the
same number of layers are used.

preserves community information at some layers but not all,
and its performance is inferior to GNE, while other models
perform much worse and could not handle multi-layer and
complex community structure well.

5.3 Network Visualization

Network visualization is an important application of network
embedding, and it maps a network into the two-dimensional
space. We visualize a synthetic network with 125 nodes, 406
edges and 5 communities. Fig.4 presents the visualization ex-
periments. We firstly generate a self-similar network of which
nodes are derived from the leaves of five-ary tree with four
layers and edges are derived from the sampling of connected
paths between leaves in the tree. Additionally, the vertices
in the network are classified into different communities with
GirvanNewman algorithm [Girvan and Newman, 2002]. We
compare our method against other models. For other models,
we layout the network into low-dimensional space, and then
further map the low-dimensional vectors of the vertices to a
2-D space with t-SNE package [Maaten and Hinton, 2008].
For our model, we can directly embed network into 2-D vec-
tor space based on our spherical embedding we proposed.

It can be seen from Fig.4 that our model GNE embeds ver-
tices on the different-scaled spherical surface hierarchically.
It is evident that the vertex representations of GNE are con-
sistent with modularity property at each hierarchy, i.e. higher
intra-cluster similarity but lower inter-cluster similarity. That
is to say, GNE integrally preserves the hierarchical commu-
nity structure. Additionally, GNE has an outstanding perfor-
mance on clustering vertices compared with others.

5.4 Vertex Classification
In order to verify the effectiveness of GNE on vertex classifi-
cation, three real social networks of the Facebook datasets
with the four-layer hierarchical tree (including root and
leaves) are used. The two intermediate layers are divided by
the enrollment year and major, respectively. For MNMF, we
use enrollment year as an indicator for community division.
The learned representations are used to classify the vertices
into a set of labels. The classifier we used is Logistic Regres-
sion with sklearn package, and the evaluation metric is Ac-
curacy. Different percentage of nodes are sampled randomly
for evaluation, and the rest are for training. The results are
averaged over 10 different runs.

Table 1 shows that GNE almost always performs the best
among all models on different percentage of test data size.
Our model is also robust across different percentage of test
datasets.

(a) GNE  (b) MNMF

(c) LINE (d) DeepWalk

Figure 4: The visualization of vertex representations on different
models

6 Conclusion
In this paper, we propose Galaxy Network Embedding (GNE)
for network embedding to preserve the hierarchical commu-
nity structure of a network. Specifically, we introduce an
optimization problem with constraints and transform it into
an unconstrained optimization problem more easily to be
solved. Moreover, we propose a spherical embedding method
to maintain the hierarchical community structure from top to
bottom. Empirically, we verify GNE in a variety of network
datasets and applications. The extensive experimental results



on vertex clustering and classification, as well as network vi-
sualization, demonstrate the advantages of GNE, especially
on the networks with hierarchical community structures.
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