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ABSTRACT
UPDATED—May 31, 2018. We have designed a GesturePod
that converts any white cane into an interactive cane that can
enable easy access to smartphones and other home devices for
people who are visually impaired (VI) and the elderly. Users
can control devices by performing programmable gestures on
the cane. For example, a user can answer an incoming call
with a double swipe.

Our GesturePod is a lightweight, non-intrusive device built
from inexpensive Inertial Measurement Unit (IMU) sensors
and a battery-powered Cortex M0+ microcontroller. A key
technical contribution of this work is the development of a
robust real-time gesture recognition system based on Machine
Learning (ML) models that can be deployed on tiny microcon-
trollers.

We also developed an Android App which pairs with Gesture-
Pod and makes it easier and faster to complete frequent phone
tasks like answering a call or reading notifications. A study
with 12 VI participants demonstrated that with just 10 minutes
of training, users were able to perform gestures with >90%
accuracy and complete some of the tasks 9 times faster.

Author Keywords
Gesture recognition; Machine learning; Accessibility;
Microcontrollers.

INTRODUCTION
Smartphones and other home devices such as Amazon Echo
are now an integral part of work and personal life. Such
devices have a potential to positively impact lives of people
with visual impairment, the elderly, and others who might
have trouble interacting with common computing devices. A
glimpse of some of the exciting possibilities is demonstrated
by a few recent apps such as Seeing.AI [20] and Eye-D [24].

While smartphones apps and other devices can open up new
scenarios for visually impaired (VI) persons, in many cases a
more fundamental problem is that of accessing these devices
in the first place. This issue is more pronounced in certain
mobile settings or constrained environments where it might be
difficult for VI people to access/locate the phone (see Figure 2).
Moreover, due to ambient noises and for privacy reasons, using
voice commands may not be preferred. Finally, our informal
interviews and existing studies [12] suggest that UI for mobile

Figure 1. GesturePod on a white cane, pod can be attached to any cane
and can be detached at any time.

apps and other devices can be cumbersome to use for a VI
person.

In this paper, our goal is to help the visually impaired and the
elderly access smartphones (or other connected home devices
such as TV, microwave) without the need for buying new de-
vices or disrupting their normal routine. VI persons, especially
in mobile settings, are recommended to carry a white-cane
(http://whitecaneday.org). Therefore, we focus our efforts to
transform the cane itself into an accessible input device so
that it can interact with connected devices - i.e., an interactive
cane. An interactive cane alleviates the issue of introducing
completely new hardware (such as wristband) or the need to
teach an entirely new technology. Moreover, since the cost
of the device can be critical, especially in developing nations
[22] where disability is highly correlated with poverty, the
guiding principle behind our design was enabling ease of use

http://whitecaneday.org


Figure 2. A Visually Impaired (VI) person in constrained environment,
with both hands occupied.

and applicability to a large number of scenarios without incur-
ring significant overhead in terms of training, device cost, and
deviation from regular usage.

An approach to designing such an interface would be to aug-
ment the cane with buttons that can control the phone [2].
However, buttons are not easy to access in general, especially
if the user tends to hold the cane in different grips and different
orientations. Moreover, one cannot add more than a couple
of buttons without the clutter that could counteract the func-
tionality. Our interviews with VI users suggests the same, as
most VI users indicated a preference for solutions other than
buttons (Table 4, APPENDIX I)

Therefore, we develop a gesture-based solution for the in-
teractive cane. We propose to control the phone (and other
home devices) using certain programmable gestures on the
cane. Natural gestures can significantly reduce the training
overhead and can provide an intuitive experience to users. For
example, a double tap of cane can pick up an incoming phone
call. Moreover, gestures can allow for much more nuanced
tasks- for example, a fast twist of cane vs slow twist of cane
can enable faster scrolling of certain phone screen vs slower
scrolling. Finally, gestures can be combined with buttons to
give a more wholesome user experience.

To this end, we hand-designed the GesturePod that can be
clamped onto any cane and weighs less than 50 grams, thus
not impacting the usability of the cane. Our pod is powered
by a rechargeable lithium-ion battery, contains an ARM M0+
class microcontroller which is attached to an inexpensive off
the shelf accelerometer and a gyroscope along with a Blue-
tooth Low Energy (BLE) module for communication with
the phone. Our gestures trigger certain specific signature in
accelerometer/gyroscope readings, that can be used to detect
the gesture.

Recognizing gestures of the cane is a challenging task and
requires carefully designed ML algorithms to account for real-
world uncertainties. For example, a double tap of the cane on
carpet might product completely different signal than a double
tap on a hardwood floor. Similarly, variations of the gestures
exist across different users as well. Hence, simple rule-based

solutions might not suffice for robust detection of gestures.
However, ML algorithms and the requisite featurization of
data tend to be computationally expensive and hence are diffi-
cult to deploy on tiny microcontrollers housed by GesturePod.
See Section System Design for more details on how we over-
came these challenges, while respecting the unique resource
constraints posed by an embedded device like GesturePod.

Our current solution supports five gestures of cane: double tap,
double swipe, twirl, left twist, right twist; (see Figure: 4) for an
illustration of the gestures. We selected these gestures based
on user feedback about ease of gestures, their distinguishability
from regular cane usage, and ease of their detection using our
ML algorithms.

We conducted an exploratory user study with about 12 VIPs
to understand the pros and cons of our cane. Our user study
suggests the following: a) our gestures are natural and easy
to learn, b) the GesturePod is accurate in detecting gestures
across users and across settings (it detects gestures with more
than 92% accuracy), c) certain critical tasks can be performed
faster by using GesturePod. For example, in our study, Ges-
turePod decreased the average time required to enquire the
current location on a smartphone by a factor of 9 and sped up
the task of answering an incoming call by a factor of 3.

Roadmap: In Problem Formulation section, we formulate the
problem, discuss key challenges and provide an overview of
our solution. In the section on System Design, we present
design of GesturePod, the workflow used to develop the pre-
dictive model for gesture recognition and discuss how we
deployed the ML algorithm on GesturePod. Finally, in the
Experimental study section, we describe our exploratory user
study and our empirical results.

RELATED WORK
The white cane is one of the most important accessibility de-
vice for people with visual impairment and naturally has been
subject of several recent studies. [26] presented a compre-
hensive qualitative study of the various navigation difficulties
faced by VI and outlined various approaches for accessibility
researchers. [10] also provided design guidelines for smart-
cane designers and highlighted critical issues with electronics-
based canes such as battery life, reaction time, floor-level etc.

Most existing electronic cane-based solutions enhance the
cane with obstacle detection capabilities. A good example
here is the SmartCane [25] which uses an ultrasound device
to detect nearby obstacles. Similarly, EYECane [9] uses a
camera to detect obstacles while [21] uses a LIDAR and
accelerometer to detect obstacles. In another line of works,
[3, 5, 15] designed canes which use RFID tags to determine
obstacles and can also read out certain other information. Our
solution is complementary to such obstacle detection solutions
and can be potentially combined with such solutions to provide
easier and safer access to devices. [2] represents one of the
most related work to GesturePod as it proposes a button based
solution for the cane. In particular, the proposed cane houses
a “home" button as well as four arrow buttons to control the
phone. As mentioned in the previous section, our studies
suggest that users typically don’t prefer button based solutions



Figure 3. Illustration of various gestures: a) double tap: hit the floor twice with the cane, b) right twist: twisting the cane to right, c) left twist, d) twirl:
make a circle in air with cane’s grip, d) double swipe: tilting the cane to the right twice.

Figure 4. Flow chart for training and deploying cane-gesture recognition model.

as they are unnatural to use and might require changing how
one uses a cane. Moreover, buttons can potentially be used as a
complementary approach to our technique, where our gestures
can be used to perform certain critical and low-latency budget
tasks like picking up phone call, while buttons can be used
for other tasks like navigating over all apps or controlling a
relatively obscure app.

Gesture and activity recognition is an extensively studied prob-
lem and Inertial Measurement Unit (IMU) sensors like ac-
celerometer and gyroscope have been successfully used for
detecting gestures in a variety of applications [1, 4, 7, 11, 16,
19]. For example, [18] used the accelerometer readings from
a watch, transmitted them to an Android tablet and ran a Naïve
Bayes classifier on the data for recognizing hand gestures.
[17] employed a k-Nearest Neighbor (kNN) on electromyog-
raphy and accelerometer signals received via Bluetooth on a
Nokia phone to remotely control mobile devices. [8] designed
a Magic Ring, which was to be worn on a finger and had an ac-
celerometer module, and would detect static predefined finger
gestures like Finger Up, Finger Down, etc. using hand-tuned
rules.

While gesture recognition has been studied extensively, most
of the existing solutions either: a) rely on hand-tuned rules for
a small number of gestures/activities like running, sleeping
[8], b) apply simple ML algorithms that can handle simple
gestures in restricted settings [17], c) use a powerful device
to detect gestures/activities via computationally expensive ML
algorithms [16].

The above-mentioned solutions do not apply to our problem
setting as we need to enable reasonably complicated gestures
that do not misfire during regular cane usage. Moreover, the
solution should be robust enough to handle a variety of users,
grips, and different environments like floor type etc. Finally,
due to weight, battery and latency constraints, we are required
to predict gestures on a low-powered microcontroller without

any external compute help. To the best of our knowledge, our
method is the first gesture detection system that can detect
complicated gestures accurately and robustly despite access to
tiny computing devices.

Recently, there have been a few ML algorithms proposed
which can produce tiny but effective ML models. Examples
include SNC [14], BNC [27], NN-prune [23], BONSAI
[13], ProtoNN [6] etc. In this work, we use ProtoNN algo-
rithm which compresses standard k-Nearest Neighbor (kNN)
algorithm to decrease both the model size as well as predic-
tion time. Similar to kNN, ProtoNN can also learn non-linear
and complicated decision boundaries. However, ProtoNN still
requires “featurized" data and does not perform well on raw
sensor values. Hence, designing a “featurizer" for raw sensor
values is equally critical to the success of the entire system.

PROBLEM FORMULATION
The technical goal is to program a microcontroller to use IMU
sensors’ data to detect cane-gestures accurately and in real-
time. Our Gesture-Pod contains an IMU sensor that reads out
values every 5 milliseconds, i.e., data is sampled at 200HZ.
Each data sample consists of six values - acceleration and
angular velocity along X, Y, and Z axis. That is, we get data
of the form: d1,d2, . . . ,dt , . . . , where each data point dt ∈ R6

contains the six numbers corresponding to acceleration and
angular velocity along each axis.

For predicting gestures, we use a sliding window-based ap-
proach, where we fix a window size ω and stride-length ψ

and predict gestures in each window see Figure 8. That is, we
make a prediction for gesture in data points Di, and then stride
by ψ time-steps:

Di = [d(i−1)·ψ+1,d(i−1)·ψ+2, . . . ,di·ψ+ω ] (1)



Figure 5. Internals of the GesturePod. It houses Arduino MKR1000,
IMU sensors, Li-Po battery, and a BLE module. See Figure 6 for a pic-
ture of all the individual components.

i.e., data point Di is 6 · ω -dimensional. The goal is to find a
function f that maps Di into a C -dimensional vector, i.e.,

f : R6·ω→{0,1}C (2)

where C is the number of gestures, all-zero vector denotes no
gesture, i.e., regular usage. In this paper, we will focus on the
following 5 gestures:

1. Double tap

2. Right twist

3. Left twist

4. Twirl

5. Double swipe

(see Figure 4) for a description of how to perform the gestures.
These gestures are complicated and require >500ms to com-
plete, so we must set the window size to around 2 seconds.
Moreover, to ensure that the gestures are captured accurately
without overflowing the tiny data buffer on IMU, we stride
windows by 100ms. This implies that a single thread on the
microcontroller must poll the IMU data, compute the features,
apply the ML model to make a prediction and communicate
any intended gesture within the 100ms time budget set by the
IMU buffer.

Naturally, the task is quite challenging due to these hard con-
straints on time and memory budget along with the richness
in gestures. To the best of our knowledge gesture recogni-
tion problem has not been solved under such severe compute
constraints for as complicated gestures as ours.

Next section introduces our system design and method to solve
the above-mentioned gesture recognition problem.

SYSTEM DESIGN
We have developed a plug-and-play GesturePod that can be
clipped onto any white cane. The pod is used for both col-
lecting the labeled data necessary for training the ML model
and for deploying the trained model to infer gestures on the
cane. In this section, we describe (a) the electronics, (b) the
methodology used for collecting data and training the ML

Figure 6. Components that make up the Gesture-pod.

model, and (c) the design and control flow of the inference
pipeline.

Electronic Subsystem
The pod contains an inexpensive Inertial Measurement Unit
(IMU), an ARM Cortex-M0+ microcontroller based Arduino
MKR1000 board, a Bluetooth Low-Energy (BLE) module,
a rechargeable battery and an on/off switch. This data is
fed to the microcontroller which computes the features on
a sliding window basis and predicts the gesture in real-time.
The predicted gesture is then communicated to the smartphone
connected to the BLE module. All the components are housed
in a 76mm X 38mm X 25mm GesturePod as shown in Figure 5,
with a clamp that can be attached on to most canes. The
specific make of IMU used in our pod can buffer 1024 bytes
of data. At a rate of 43 bytes for each instance, sampled every
5ms, the buffer can retain 23 instances - in other words, 115ms
of data before the buffer queue overflows. To prevent data loss
due to overflows, the microcontroller reads and clear the IMU
buffer at least once every 100ms.

Data Collection for model training
The data required for training the predictive model was col-
lected from sighted volunteers who were shown examples of
the five gestures. To collect data, the pod was attached to the
cane at a natural location for VI people. The data consists of
raw sensor readings from the IMU sampled at 200Hz, i.e., one
set of readings every 5 milliseconds. This is streamed to a PC
through serial communication via the microcontroller.

Data Labeling For training our ML models, we require labeled
data, i.e., we need to annotate all the intervals in which the
user performed a gesture with the correct gesture. There are
two possible ways to label sensor readings with gestures in the
data collection phase:

1. Toggle Switch: A toggle switch controlled by the cane user.
The user switches it on right before performing a gesture
on a cane in the other hand, and switches it off immediately
after.

2. Observer: A second observer watching the cane user marks
the beginning and the end of gestures.



Figure 7. Functional block diagram of the plug and play device.

However, we found both these to be inaccurate as it is hard
to start and stop precisely at gesture boundaries. Hence, to
further refine our approximate annotations from one of the
above-mentioned techniques, we manually replayed the data
on screen and refined the annotations so that (a) each gesture
label spans an interval of 400 data samples, i.e., 2 seconds,
and (b) the signature corresponding to the gesture is centered
within the 2 second window.

The data for the gestures were collected from 7 sighted vol-
unteers. Each user contributed at least 5 instances of at least
2 gestures to the dataset. The data includes variations in (1)
flooring, (2) grip - technique of holding the cane, (3) orienta-
tion of the cane, and (4) handedness. We collected 102 double
taps, 55 right twists, 54 left twists, 353 twirls and 83 double
swipes.

For negative data, i.e., regular cane usage without any gestures,
we asked the users to walk with the cane in their hand without
trying to perform any of the five gestures. We collected about
8 minutes of such data and clipped it to generate two-second
segments which are negative examples, i.e., example data
points with no-gestures.

Although the positive examples described above were suffi-
cient to generate a model that could recall gestures accurately,
the negative examples were insufficient to prevent false posi-
tives. That is, due to a large amount of variation in regular cane
usage, the model could misclassify regular cane usage as one
of the five intended gestures, and hence needed further work
to decrease the number of false positives. We will describe
how we addressed this problem in Section Model Boosting.

ML Model Training Pipeline:

Data Collection for model training
The data required for training the predictive model was col-
lected from volunteers who were shown examples of the five
gestures. To collect data, the pod is attached to the cane at
a location where one would expect a VI person to attach the
pod to their cane. The data consists of continuous raw sen-
sor readings from the IMU streamed to a PC through serial
communication via the microcontoller. This data has no an-
notations about the intervals in which the user has performed
a gesture. To make this data useful for supervised learning,
it is necessary to identify the windows in which the gesture
was performed and label the window with the right gesture.
There are a couple of ways to add this annotation in the data
collection phase:

Figure 8. Sliding window with width 400 and stride length 20

1. A toggle switch controlled by the cane user. The user
switches it on right before performing a gesture on a cane
in the other hand, and switches it off immediately after.

2. Performing gestures on white-cane used by Visually Im-
paired(VI) persons to trigger actions on the phone.

The labeled data set can be accessed here.

Features
Typical ML algorithms require featurization of the data to
perform accurate predictions. While Deep Learning based
methods can learn features from the raw-data on its own, it is
difficult to embed and execute such methods on tiny compute
that our microcontroller is able to afford. In fact, even storing
the raw data for a 2 second window itself is somewhat expen-
sive as it would mean storing 400×6 integers which would
occupy about 10KB of RAM.

Hence, in this work, we convert our raw data into a 124-
dimensional feature vector that can be potentially computed
with streaming data; for simplicity, we buffer the entire data
for now. Our features consist of 120× 6 (= 120) features
from the counts of acceleration and gyroscope values across 3
axes quantized into 20 equally spaced bins. Let ψ(Di) be the
feature vector for i− th data point Di (see Eq 1 ) i.e.,

ψ(Di) ∈ R124 (3)

where ψ(Di)[1 : 20] is the count of X−Axis acceleration val-
ues in 20 equispaced bins between -16384 to 16384. Similarly,
ψ(Di)[21 : 40] represents the count of Y −Axis acceleration
values and so on.

However, the above-mentioned bin features lose all the phase
information. For example, a left twist and a right twist differs
only in the phase of gyroscope readings, resulting in similar
values for bin features. To alleviate this concern, we introduce
4 additional features: the index and lengths of longest posi-
tive and negative sequence of values from the y-axis of the
gyroscope (i.e. y-angular momentum). These features retain
the phase information helping us discern gestures based on
the angular movement of the cane. For identifying the longest
positive sequence, we require each instance to be above a
threshold of 0.62 (on a scale of 0 to 1). This filters out any
noise that may affect the feature. Similarly, for a sequence to
be considered negative it needs to be below a set threshold of
0.32 (on a scale of 0 to 1).

https://www.microsoft.com/en-us/research/uploads/prod/2018/05/dataTR_v1.tar.gz


Model Generation
We feed our featurized and annotated training data into the
ProtoNN algorithm [6] to train a model that accurately pre-
dicts one of the C gestures (C = 5 in our case). That is, we
form the training data:

Z = {(ψ(D1),y1), . . . ,(ψ(DN),yN)}

where yi ∈ {0,1}C is the training label vector. We randomly
selected an equal number of points for each gesture and for no-
gesture class. In all, we selected 1,25,513 training examples
and also selected 31,378 examples for validation.

We recovered a 6KB predictive model by using the multi-class
formulation of the ProtoNN algorithm [6] to train a model on
the featurized data using the following hyperparameters: 10
projected dimensions, 4 prototypes per class using per-class
-means prototype initialization, and 200 iterations. That is,
we learn 20 prototypes b1, . . . ,b20, their corresponding label
vector z1,z2, . . . ,z20 where each label vector zi ∈ R6 and a
sparse projection matrix W ∈ R10×124.
The final prediction function is given by:

f (Di) = ∑
i=1

zi · exp(−γ||bi−Ωψ(Di)||22) (4)

where γ ≥ 0 is a hyperparameter and ||α||22 = ∑ j α2
j .

Model Boosting
While the trained model recognizes gestures accurately, it suf-
fers heavily from false positives - the model predicts a gesture
even when no gesture is performed. This is not surprising
as our training data might not cover a lot of tricky scenar-
ios. For example, a single-tap of the cane is always a part of
double-tap, and doesn’t occur in our initial negative examples.
Hence, naturally, the algorithm detects a double-tap whenever
a single-tap type of gesture is performed leading to a false
alarm. Similarly, half a twist of the cane or a single swipe of
the cane also leads to a false alarm.

To solve this, we had to augment the negative example set in
the training data with three sources of false positives: (1) Data
obtained from participants walking, and performing activities
they usually would - climbing a stair, strolling through the
corridor etc.(2) Partial gestures, i.e., partial time-signatures of
actual gestures, e.g. a single tap which is a part of a double
tap and (3) any other stray activities where the model misfires
a gesture such as throwing the cane in the air, holding it at a
particular angle, etc.

After collecting data from the first scenario (day-to-day ac-
tivities), we clipped only those windows that caused false
positives and injected them as negative examples to keep the
size of training data manageable. For scenarios (2) and (3), the
data collected was already in the form of 2 second windows.
By retraining the model by augmenting the dataset with these
negative examples, significantly reduced false positives.See
Table 5 for a confusion matrix of the learned model on 20%
data sampled as validation set.

Figure 9. Machine Learning Inference flow-chart. The pipeline starts
with buffering data from IMU sensors, forming data point Di from slid-
ing windows (Eq 1), computing their features using Eq 3 and then ap-
plying ProtoNN prediction function Eq 4 . If it predicts a gesture for 6
continuous time windows, then we transmit the detected gesture to the
phone via BLE.

Prediction Pipeline
The ML inference pipeline on the cane consists of (a) data
collection from IMU, (b) feature computation, (c) ProtoNN
inference algorithm along with the model generated by the
ProtoNN training algorithm and (d) BLE communication for
relaying the gestures detected to the phone. Careful engineer-
ing was necessary to orchestrate all stages of the pipeline on a
single-threaded microcontroller. Figure 9 represents the time
allocated to each component of the pipeline.

At a high level, we first compute features from the data col-
lected from IMU sensors, apply ProtoNN prediction function
(Eq 4) and if a gesture is detected then communicate the de-
tected gesture to the phone via BLE. The phone then takes
appropriate action based on the gesture.

The microcontroller used in the pod does not have a native
floating-point support and hence it takes about 5ns for one
fixed point arithmetic vis-à-vis 50ns for a floating-point arith-
metic. Hence to accommodate this, the normalized data is
scaled from [zero to one] floating points to [one to hundred]
integers. The microcontroller maintains a rolling window of
width 400 instances. On every 20th new instance, we compute
the feature vector for the previous 400 instances.

For prediction, we use Eq 4 to output a prediction vector f (Di)
for the i− th data point. We take a continuous poll of the 6
latest votes cast and output the highest polled gesture as the
latest gesture performed. This voting mechanism reduces false
positives. That is, we compute ŷl = f (Di)+ f (Di+1)+ . . .+
f (Di+5) and output the gesture with the highest value; if none
of the gesture has enough mass then we declare no-gesture.

Based on the detected gesture, our Android app initiates certain
tasks on the phone. Our app programs a state-machine that
is illustrated in Figure 10. A gesture performed on the cane
results in corresponding transitions in the app’s state machine.
For example, our app has a “home" state. In “home" state, a
double-tap leads to phone reading out the current time and
returning to the "home" state. A twirl gives you the current
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Figure 10. State machine for the App on smartphone. See Figure 4 for
illustration of our DT, DS, RT, LT, Twirl gestures.

location and twists read out latest notifications. A double-
swipe enters the app into our “quick apps" menu that can be
further navigated using twists and double-swipe. A detailed
description of the state machine can be found in Appendix II.

We designed our app state-machine so that certain key tasks
can be performed quickly. For example, we enabled a quick
call-back for a missed call or quickly reading out the current
time. We designed the app state-machine based on feedback
from informal interviews with 15 VI volunteers.

EXPERIMENTAL STUDY
We conducted user studies to evaluate the in-situ accuracy
of the GesturePod and the utility of the interactive cane for
visually impaired users. We investigated whether the gestures
on the cane were natural and accurate enough to improve
smartphone user experience. Specifically, we performed three
rounds of experiments to test the following hypotheses:

Hypothesis 1:The ML model can accurately recognize the
set of 5 gestures across participants. Further, the gestures
themselves are simple natural and are easy to learn.

Hypothesis 2:The interactive cane enables faster task comple-
tion of common smartphone-related tasks.

Hypothesis 3:Interactive cane enables VIPs who use feature
phone to easily adapt basic smartphone functionality and ben-
efit from additional functions such as location.

Subjects
The user study spanned 12 visually impaired (VI) and 6 sighted
users. 12 voluntary VI persons were recruited from 3 NGOs.
Diversity of users was encouraged in terms of educational
qualification, gender, age and handedness.

We conducted three rounds of experiments. VI participants
with smartphones participated in Round 1 and Round 2 while
VI participants with feature phones participated in Round 1
and Round 3. Sighted users also participated in Round 1.

EXPERIMENTAL DESIGN

Round 1
This round tests prediction accuracy and robustness of the
machine learning model in the GesturePod. In addition to

2X
Tap

Right
Twist

Left
Twist Twirl

2X
Swipe

No
Gesture Recall

2X Tap 95 0 0 0 0 0 1
R. Twist 0 86 8 0 0 1 0.91
L. Twist 0 9 81 0 0 5 0.85
Twirl 0 0 0 82 11 2 0.86
2X Swipe 0 0 0 1 93 1 0.98

Precision 1 0.91 0.91 0.99 0.89 -
Table 1. Confusion matrix for detection gestures performed across all
visually impaired users. Easy gestures like double tap and double swipe
are detected with nearly 100% accuracy. Naturally, detection of right
twist and left twist is relatively inaccurate as the users sometimes per-
form both the twists in the same action.

measuring the accuracy of our gesture recognition system, we
also want to test whether the gestures are natural enough to be
learned in a quick training session.

Participant Requirements: White-cane trained VI people as
well as sighted volunteers participated in this round of study.

Methodology and experiment design: The experiment began
with a description of the project. Users were then briefed
about the current set of gestures and how to perform them.
Users were then given a training smartphone app to help learn
the gestures. The app requests the user to perform a randomly
chosen gesture and notifies the user whether the gesture was
recognized by the ML model. We noticed most users became
familiar with the gestures after 10 minutes of training with the
app.

After this brief training session, each VI person as well as
sighted user performed 5 sets of 5 gestures in a randomized
order: Double Tap, Right Twist, Left Twist, Twirl, Double
Swipe. To ensure objectivity and remove any bias, we built an
Android app that speaks out the gestures in randomized order
and awaits a gesture in the next 10 seconds.

Evaluation Metrics: We analyze the accuracy of the ges-
ture recognition model qualitatively using standard accuracy
metrics. Our Android app records the number of times
the intended gesture is successfully performed. The num-
ber of times the intended gesture wasn’t fired, as well as
the number of times a false gesture was detected, is also
recorded. We report accuracy numbers using standard con-
fusion matrix.C(i, j) : (i, j)− th entry of confusion matrix C
denotes he number of instances where the i-th gesture was
recognized as j-th gesture. Recall and precision of the i-th
gesture are given by:

Recall(i) =
C(i, j)

∑ j C(i, j)
Precision(i) =

C(i, j)
∑ j C( j, i)

We also collected feedback from questionnaire to understand
how users perceive various gestures and the overall solution.

Results: Table 1 presents the confusion matrix for recognition
of gestures performed by VI participants. Evidently, double-
tap and double swipe gestures are recognized accurately with



2X
Tap

Right
Twist

Left
Twist Twirl 2X Swipe Recall

2X Tap 30 0 0 0 0 1
R. Twist 0 27 3 0 0 0.9
L. Twist 0 3 27 0 0 0.9
Twirl 0 0 0 2 28 0.9667
2X Swipe 0 0 0 2 28 0.9334

Precision 1 0.9 0.9 0.9355 0.9655
Table 2. Confusion matrix for detecting gestures performed across
sighted users. Naturally, the accuracy of detection is better for sighted
users as they can better understand how to perform the twists but we ob-
served that with more training VI users also started to improve on that
front.

a small error in prediction. The model tends to confuse right
and left twist gestures with each other on occasions, but still
achieves more than 85% accuracy. That is, with just 10 min-
utes of user training, our method is able to achieve overall
accuracy of 92%±3% (with 95% confidence). Moreover, this
also indicates good generalization ability of the model as it is
able to accurately detect gestures for participants whose data
was not used for training the ML model. Naturally, perfor-
mance of ML model on sighted volunteers’ gestures was more
accurate as they could see exactly how the gesture should be
performed; this also indicates that with more training, our
performance for VI people might also improve. See Table 5,
APPENDIX I for the confusion matrix of the ML model on val-
idation data sampled from the same distribution as the training
data.

Round 2
The second experiment tests whether the interactive cane re-
sults in faster completion of frequent smartphone-related tasks
as compared to prior usage patterns of the participants. We
selected the tasks based on input from prior interviews with
visually impaired smartphone regarding tasks that are critical
to them. To facilitate access to certain smartphone tasks, we
built a custom Android app that has an internal state machine.
See the Prediction Pipeline section for an overview of our app
state-machine.

We compare time for task completion in both constrained and
unconstrained environments. Constrained environments are
those in which the participant has one or both their hands
occupied, e.g., walking with a bag, having a cup of coffee in
one hand. In unconstrained environments the participants have
at least one hand free to use their phone, e.g., standing and
conversing with friends.

Participant Requirements: This round involves participants
that: a) are visually impaired, b) have received mobility train-
ing with cane, and (3) have used an Android smartphone for
at least 3 months.

Methodology and experiment design: Participants are trained
for a period of 15 minutes. The state machine that maps
gestures to tasks on the smartphone as described in Appendix
II is explained to the user.

Question

Responses
averaged across
12 participants

How would you rate the ease to perform
the gestures?

4.25 ± 0.43

Do the gestures seem natural and intu-
itive?

4.17 ± 0.48

Was the GesturePod able to detect your
gestures?

4.29 ± 0.40

How would you rate the ease of remem-
bering the gesture?

4.58 ± 0.38

How would you rate the amount of effort
required to get used to the way gestures
must be performed?

3.87 ± 0.65

How would you rate the design of the
state-machine on the app?

4.04 ± 0.50

How would you rate the design of the
GesturePod?

4.63 ± 0.37

How would you rate your overall product
experience?

4.41 ± 0.45

Table 3. Average participant ratings with 95% confidence interval on
different aspects of GesturePod. 1 represents the lowest rating and 5 is
the highest rating.

The participant is then asked to perform 4 repetitions of 5
activities in a randomized order:

1. Receive a phone call - answer a phone call from a test
phone.

2. Call back the last caller from a missed call notification.

3. Start and stop audio recordings on the phone.

4. Read out the current geographic location.

5. Check for notifications and read out the time.

Each repetition is performed in a different setting:

1. Using their Android Phone (with no bindings to the cane)
in unconstrained environments.

2. Using their Android Phone (with no bindings to the cane)
in constrained environments.

3. Using the interactive cane to interact with their phone in
unconstrained environments.

4. Using the interactive cane to interact with their phone in
constrained environments.

Evaluation Metrics: For each user, we video-record the study;
see supplementary material for a partial video of a recorded
session. Later, we replay the video and note the following
after the user study:

1. If each of the intended activities is successfully completed

2. The time taken to perform each activity.



Figure 11. Comparison of task completion times between the interac-
tive cane usage and direct smartphone usage in unconstrained (top) and
constrained (bottom) settings.

Results: Figure 11 indicates that using an interactive cane to ac-
cess smartphone results in a significant improvement to all five
task completion times in both constrained and unconstrained
settings. Figure 12 illustrates the relative speedup in perform-
ing various activities using the interactive cane. Figure 12
presents speed-up for each of our 8 participants, as well as
the average speedups and the corresponding 95% confidence
intervals. The improvement in task completion times ranges
between 1.75x and 9x depending on the task and setting, and is
slightly higher in the constrained setting. Interestingly, some
of the users could not complete some of the activities using
their smartphone but were able to finish the activities quickly
using GesturePod.

Round 3
This round of experiments studies the third hypothesis - that
the interactive cane makes it easier for VI feature phone users
to adopt basic smartphone functionality like reading out loca-
tion.

Participant Requirements: This round involves participants
who: (a) are visually impaired, (b) have received mobility
training with cane, (c) use a feature phone as their primary
phone, and (d) are not used to smartphones. Three persons
participated in this round.

Methodology: Participants are briefed about the utility of a
smartphone and then told about the state machine for about
15 minutes; recall that our state machine maps gestures to
certain activities on the smartphone (Figure 10). We explain
the concept of notifications to participants who were not aware
and provide the participant with the interactive cane with a
GesturePod attached to it.

Just as in the previous round, we then asked each participant
to perform 4 repetitions of 5 tasks (same as mentioned in the
previous section, except task number 3 - “start and stop audio
recordings on the phone" is replaced with “Note the current

Figure 12. Relative speedup of task completion time with interactive
cane usage over direct smartphone usage in unconstrained (top) and
constrained (bottom) settings. Figure also shows average speedup across
all users. x indicates the user could not perform the activity using only
smartphone.

Figure 13. Time to taken to complete each activity using GesturePod
paired with smartphone in an unconstrained and constrained environ-
ment by users with featurephone as their primary phone.

time") in a randomized order. Similarly, we measure the time
required to perform the task using feature phone as well as
using our interactive cane in combination with the Android
app, in both constrained and unconstrained setting.

Evaluation Metrics: We measure all the three metrics men-
tioned in the previous section. At the end of the user studies,
the participant is provided with a questionnaire to get a quali-
tative response of the interactive cane.

Results: We found that within the 15-minute training period,
participants were able to use the smartphone for basic func-
tionality like accepting or rejecting calls through their smart-
phones. Moreover, they were also able to use functionalities
such as knowing their geographic location and reading out no-
tifications in a reasonable amount of time. Figure 13 presents
the time take for each task in constrained and unconstrained
settings.

All three participants could read the current time in under
3 seconds in an unconstrained environment and in under 4
seconds in a constrained environment. Further, we observed
that participants could receive calls on an average (GM) 2.37



times faster in unconstrained environments. Similarly, the
participants could dial back from a missed call notification on
an average (GM) 1.86 times faster in constrained environments.
Naturally, verifying statistical significance of these studies is
difficult due to only three participants.

Other Observations: None of the participants had location
feature on their feature phone. They mentioned that they
relied on passers-by for getting to know their current location.
Somewhat surprisingly, two of the three participants did not
know how to read time from their phone and had to rely on
others. They felt that interactive cane helped them easily
access the time and their location.

One of the three participants knew how to read notifications
on their phone. Amongst the remaining two, one participant
had not heard of notifications before (we explained to them)
and the other knew what notifications were but did not know
how to access it on their feature phone. For the first person
who knew how to read notifications, our GesturePod made it
faster to read and dismiss notifications.

Overall Subjective Feedback
We also collected subjective feedback about ease of using
GesturePod and performing various gestures. The feedback
was collected by informing the participants that we are not
the owners of the prototype. Table 3 presents average of the
ratings provided by the participants for various questions; we
also provide the ratings’ 95% confidence intervals so as to
ensure that the conclusions are statistical significant. Partici-
pants’ response to first five questions in Table 3 suggests that
participants were quickly able to learn various gestures and
felt that they were natural and intuitive. Similarly, responses
to last three questions of Table 3 indicate that the participants
found GesturePod as well as connected apps to be helpful.

CONCLUSION
In summary, we developed an interactive cane based on our
GesturePod which is a plug-play device that can be attached
to any cane. GesturePod deploys real-time ML algorithm to
detect gestures robustly and effectively despite variations in
users, participants etc. Our user studies indicate that with
simple and natural gestures, we can design a novel User In-
terface that can aid the VI. Going forward, we are working
on detecting more nuanced gestures that can enable access to
many more phone apps.
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APPENDIX I
Participants from user study were asked about their preference
among the 3 choices:
Would you prefer to use the cane:

1. Using only buttons on the cane
2. Through gestures on the cane
3. Using both buttons and gestures on the cane.

Their responses were tabulated in Table 4

Options

Number of Participants
who chose a particular

option

using only Buttons on the cane 1

through gestures on the cane 5

both 6
Table 4. User study participant preference towards GesturePod.

Table 5 presents confusion matrix of the learned model, on
20% data sampled as validation set.

No
Gesture

2X
Tap

Right
Twist

Left
Twist Twirl

2X
Swipe Recall

No
Gesture

30007 1 4 0 1 0 1.000

2X Twist 6 209 0 0 0 0 0.972
R. Twist 2 0 107 1 1 0 0.964
L. Twist 3 0 0 127 0 0 0.977
Twirl 0 0 0 0 746 0 1
2X Swipe 14 0 0 0 3 146 0.896

Precision 0.999 0.995 0.964 0.992 0.993 1.000
Table 5. Confusion matrix for test data.

APPENDIX II
The interactive cane app works as a state machine, which
is basically a system of gesture-action mappings. The app
maintains its current state of execution at every point of time,
and thereafter performs the corresponding action with respect
to that state. The app launches in the home state, which
is analogous to the standard home screen of a smartphone.
Performing a double tap in the home state makes the app read
out the current time, whilst remaining in the home state. A
double tap in any other state reverts the state of the app back
to the home state. Basically, a double tap is equivalent to the
home button which any smartphone has.

The app speaks out the current location by getting the GPS
coordinates when a twirl is performed in the home state. There-
after, it maintains its state to the home state.

Performing a right twist in the home state makes the app recite
the existing notifications in the smartphone. The app speaks
out “You have x notifications", and doing a left twist at this
stage is redundant and will simply repeat this line. Thereafter,
scrolling through the notifications is achieved by the left twist
- right twist pair - right twist to go one notification ahead, and
left twist to scroll one notification back. At any point in time
while scrolling through the notifications, performing a double
tap resets the state of the app to the home state. While scrolling
if the current notification is that of a missed call, performing a
double swipe results in dialing the number to call the person.
After having scrolled through all the notifications, there is an
option available to flush all the notifications. This is achieved
by performing a double swipe at the end of all the notifications.

Provided that the app has been launched, and either is alive
or is running in the background, an incoming call on the
phone can be accepted by performing a double swipe, whereas
performing a double tap results in rejecting the call.

There is a “Quick Apps" menu as part of the app. This menu
can be accessed by performing a double swipe in the home
state. Two useful functionalities have been incorporated as
part of this Quick Apps menu, namely, Speed Dial and Audio
Recorder. Scrolling in the Quick Apps menu happens by
means of left and right twists. Performing a double swipe at
either of Speed Dial or Audio Recorder results in selecting
it. Double swiping at Speed Dial presents a list of contacts
stored beforehand as part of speed dial. Scrolling through
these contacts is again possible with the help of the left twist-
right twist pair. Double swiping now at any contact results in
calling that number, and thereafter the call can be ended by
performing a double tap.

Performing a double swipe at the audio recorder makes it start
recording. Thereafter, a double tap stops the recording, and
the recorded audio file gets stored on phone.

At every point in time, there will be a voice-over with respect
to the option being selected. Also, a lengthy voice-over (eg. a
lengthy location with unnecessary details like pin code, state,
county etc.) can be interrupted and stopped by performing a
double tap, and the app will cut the voice over and return to
the home state.

Performing any gesture at a state other than the state-gesture
pairings described above results in the app remaining in the
same state. Also, not performing any gesture at a state other
than the home state for a period of more than 7 seconds results
in the app reverting to its home state.
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