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@ Verification challenges in the HTTPS ecosystem

® A formalized toolchain for delivering C and ASM code
© Tooling support for programmer productivity

@ Stories from the “real world”




@ Challenges in the |
HTTPS ecosystem




What is there to verify?

! * 3
B

Everest: Expedition for a VERIfied Secure Transport

« A verified secure HTTPS ecosystem: this is huge
» Just focusing on TLS and QUIC and their dependencies
» But first, some background on TLS
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HTTPS: the TLS protocol
TLS stands for transport layer security.

Qutside world
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Two different kinds of beasts:
* the protocol layer
* the record layer
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HTTPS: the QUIC protocol

Based on UDP instead of TCP.
Two goals: latency and multiplexing.

Re-uses the handshake from TLS 1.3 (ORTT) but then does its
own thing for the stream data.
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Why is it hard? (The crypto)

Implement efficient arithmetic over large numbers (bignums).

« Optimized bitwise operations
« Each bignum has its own optimized representation (reuse)
» Difficult to exhaustively test

Goal: functional correctness (implies memory safety) +
side-channel resistance.
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Why is it hard? (Polyl305 example)

These heavily optimized C implementations have bugs.
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Why is it hard? (Polyl305 example)

OpenSSL Security Advisory [1© Nov 2016] have

Severity: High

[openssl-dev]

TLS connections us

lopenssl.org #4482| Wrong results with

attack by corrupti POI}'ISOS fllllCtiO“S

issue is not consi

Fri Mar 25 12:10:32 UTC

e Previous message: [0

when using "no-asm
* Next message: [open
* Messages sorted by:

Attached is a sample codé
Polyl3eS functions of opé

These produce wrong resu
the other three also on 6

J. Protzenko et al. — MSR

produces incorrect output

David Benjamin via RT L at opensslorg
Tl Mar 17 21:22:20 UTC 2010

e Previous message: |lopenssi-dev] [openssi-users] Removing some svstems

Hamno Boeck via kT o | fOPENSSI-dev] [openssl.org #4439| poly1305-x86.pl

e Next message: [openssl-dev] [opensslorg #4439] polv1305-x86.pl produces incorrect output
e Messages sorted by: | date || thread | | subject | [ author |
Hi folks,

You know the drill. See the attached polyl385_test2.c.

$ OPENSSL_ia32cap=@ ./polyl305_test2

PASS

$ ./polyl305_test2

Polyl305 test failed.

got: 2637408fe03086ea73f971e3425e2820
expected: 2637408fel3086ea73f971e3425e2820

I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern,

This was found because a run of our SSL tests happened to find a
problematic input. I've trimmed it down to the first block where they
disagree,

I'm probably going to write something to generate random inputs and stress
all )o r cher 0ly1305 codepaths against
recomn jf

testatheqr meet mai@&ZEZ"““ . May. 14", 2018
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Why is it hard (record layer)

Provide a safe cryptographic functionality by combining
primitive blocks. Example: AEAD.

« Multiplex between different algorithms (AES-GCM,
Chacha-Poly).

» Safely combine the cryptographic primitives.
 Reason about integrity, authenticity, confidentiality.

Goal: cryptographic strength + side-channel resistance.
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Why is it hard (the handshake)

Provide a correct state machine that manages keys properly.

» Need for speed:. O-RTT and 0.5-RTT

« Multiple ways to derive keys (PSK, forward secrecy,
rekeying)
 Handle choice of algorithms, versions (1.2 vs. 1.3)

Goal: cryptographic security.
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Why is it hard (the handshake)

Parse messages following the RFC.

» Parsers are notoriously error-prone.
 Need to interop, but hard to exhaust all the code-paths.
« RFC informal.

Goal: memory safety (“if it interops, it interops”).
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Why is it hard (QUIC)

Implement retransmission, windows, error correction,
out-of-order frames, etc.

« Low-level systems programming

» Data structures: “inline” doubly-linked lists with ugly C
macros

« Concurrency with different streams
e |[nteraction with the rest of the OS

* Risk of integer overflow

Goal: memory safety
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In short...

Many different types of guarantees. The HTTPS ecosystem
really is a minefield.

Status:
» crypto: verified (some algorithms)

* record layer: verified
 handshake: In progress

e parser: nearing completion
« QUIC: scheduled

e PKI: on the horizon
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I @ A formalized toolchain




With a diagram

Kremlin

compile

GCC/Clang/CompCert/MSVC

Disclaimer: these steps are supported by hand-written proofs.
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The design of Low”




High-level verification for low-level code

For code, the programmer:
» opts in the Low™ effect to model the C stack and heap;
« uses low-level libraries for arrays and structs;
» leverages combinator libraries to get C loops;
« meta-programs first-order code;
» relies on data types sparingly.

For proofs and specs, the programmer:
» can use all of F~,

« prove memory safety, correctness, crypto games, relying
on

» erasure to yield a first-order program.

- Motto: the code is low-level but the verification is not.
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A sample cryptographic operation: Polyl305

Poly1305 is a message authentication code.

e

w
MAC(k.m,w) =m+» w;x K
=1
It authenticates the data w by:
« encoding it as a polynomial in the prime field 2!°Y — 5

e evaluating it at a random point k (first part of the key)
 masking the result with m (second part of the key)
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A sample cryptographic operation: Polyl305

Poly1305 is a message authentication code.

MAC(k.m.w) = m + Zw,- x k'
=3

A typical 64-bit arithmetic implementation:
» represents elements of the prime field (p = 2'°Y — 5) using
three [imbs holding 42 + 44 + 44 bits in 64-bit reqgisters
e uses (a x 2%V + b)%p = (a + 4a + b)%p for reductions

 unfolds the loop
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et prime = pow2 130 - 5

Spec.Polyl1305

type elem = e:Z{e 2 @ A e < prime}

Auto-saving. . .done

t fadd (el:elem) (eZ:elem) = (el + e2) ¥ prime
fmul (el:elem) (el:elem) = (el x e2) % prime

et éncode.(n:ﬁord)Jg
(pow2 (8 x length w)) “fadd™ (little_endian w)

rec poly (txt:text) (r:e:elem) : |
* length txt = @ !

Zero

et a = poly (Seq.tail txt) r i
t n = encode (Seq.head txt)
(n "fadd™ a) "fmul® r

395 . tst

All (2,0)

Git-master

(FO company)

t elem (decreases (length txt)) =

May. 14", 2018
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o

[@"substitute”)
val polyl1305_last_pass_
felem —
Stack unit
l '
(¢ es (A st live ha acC A bounds (as seq hp a

Y acC A DOunds

A live hy acc A bounds (as_seq hy acc) pag Pag Pa2

]
_last_pass_acc
c.(Oul) In
= acc.(1ul) in

lot a5 = acc.(2ul) In

et masky = gte_mask ag Hacl.Spec.f

™ ke - - ~- _’/
jot masky = eq_mask ay Hacl.Spec.Polyl: =
nask-> = eq mask ay Hacl.Spec Balyl 20°
et mas = Kn &° masky &~ mask-,
¥ 4 ) 4 - et 1y e <k ) !
nt.logand_lemma_1 (v ey togenTETina_1 (Vv mask,) ogand

: |

A
t.logand_lemma_2 (v masky), t.logand_lemma_2 (v maskq)
t.logand_associative (v masky) (v masky) (v ma;kzjn

cut (v mask = Lofyes 64 = (vag = powy 44-5Ava; = powy 44 -1 A

nt.logand_lemma_1 (v Ha pec.Polyl3 64 pddmg) t.logand_lemma_1l
Unt.logand lemma 1 (v Hacl.Spec Polyls 64.pa2my) tlogand lemma 2 (v Ha
ad lemma 2 (v pec.Polyl 64.p4d4my) Llogand lemma 2 (v
lot ag' = ~ (Hacl.S| ol 211TS & mask
o1 30 - ao {Hac 4 r y A . pmurns masK) i1
lotay' = ay -~ (Ha pec. Polyl305 64 pddmy &™ mask) i
10T 3+ :-\2 ™ (Had P VLY . . .p.z:’n‘l&. mask) ir

upd_3 acc ap’' ay' ay

4 Git-master (FO Fl

=

4

Static v
{
Hacl_Bignum_Fproduct_carry limb_(acc),
Hacl_Bignum_Modulo_carry top(acc),

Iint64 t a0 = accl0);

Iint64 t alo = accll);

IInt64d t 220 = accl2];

Int6d t a0 = a0 & (uints4_t )OxTTIfe,
uinte4 t r0 = a0 >> (uint32 t )44,
= (310 + r0) & (uints4a t JOxTITmY;
trl=(al0 + r0) >> (uint32_t )44,
= 220 + rl,

id Hacl_Impl Polyl305_64 _polyl305 jast_pass(uint64 t *acc)

inte4 t al
inte4
unt64d t az
acc[0] = a0_
accfl] =al_;
acc[2] = a2 ;
Hacl_Bignum_Modulo_carry top(acc),
ti0 = accf[o)]
a4 11l = acc[l];

nted t i O & (({uintgd t )]l << (UINt32 L )44) - (uinted t )11),

inteaTt i1~ =11 \ .4}

acc[0] = i0_;

acc[l] =11

IINt64 t 200 = acc[0]);
! ™= accll]

tbd t 32 = accl2);

. 4 Lt mask0 = FStar_Uint6d_gte_mask{a00, (uint64 1 JOxfY

nt6d_t maskl = FStar_UInt64_eq_mask(al, (uintB4_t )OI
. i FStar_UInt64_eq_mask{a2, (uint64 _t JOX3FTTT

. sk0 & maskl & mask2

iNtG4 t a0 0= a00 - ((uinté4 t )Ox J.

INtE4 Lt a1 0= al - ((UINtE4 t )OI & mask)

= a2 - ((UINLG4 T )OXII & mask)

Iint64

-**. Polyl305 64.c 49% L272 Git-master (C/l compan
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Insights about
our formalization




High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st pre) (post: (mem -> Tot (st post a))) =
STATE a (fun (p:st post a) (h:mem) ->
pre h /\ (V a hl.
(pre h /\ post h a hl /\ equal domains h hl) ==> p a hl))

let equal domains (mO:mem) (ml:mem) =
mo.tip = ml.tip
/\ Set.equal (Map.domain m@.h) (Map.domain ml.h)
/\ (forall r. Map.contains mO0.h r ==>
Heap.equal dom (Map.sel mO.h r) (Map.sel ml.h r))

Preserves the layout of the stack and doesn't allocate in any
caller frame.
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High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:T
STATE a (fun (p

pre h /\ (V a hl.
(pre h /\ post h a hl /\ equal domains™h hl) ==> p a hl))

post a)))

preservation of the stack structure

let equal domains (mO:mem) (ml:mem) =
mo.tip = ml.tip
/\ Set.equal (Map.domain mO@.h) (Map.domain ml.h)
/\ (forall r. Map.contains mO0.h r ==>
Heap.equal dom (Map.sel mO.h r) (Map.sel ml.h r))

Preserves the layout of the stack and doesn't allocate in any
caller frame.
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High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st pre) (post: (mem -> Tot (st post a))) =
STATE a (fun (p:st post a) (h:mem) ->
pre h /\ (V a hl.
(pre h /\ post h a hl /\ equal domains h hl) ==> p a hl))

let equal _domains (mO:mem) (ml:mem) =

mo.tip =~l.tip
/\ Set.equat®™&{Map.domain mO@.h) (Map.domain ml.h)
/\ (fo >

Heap.| the tip remains the same [@P-sel ml.h r))

Preserves the layout of the stack and doesn't allocate in any
caller frame.
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High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun hO z hl -> live hO b /\ hl == hO
/\ z == Seq.index (as seq hO b) (v n)))
let index #a b n =
let s = !b.content in
Seq.index s (v b.idx + v n)

We swap this F* model with a low-level implementation.
buffer int becomes int* and index b 1 becomesb[1].
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High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun hO z hl -> ldyve hO b /\ hl == hO
/\ z == Seq.lndex (as seq
let index #a b n =
let s = !b.content in temporal
Seq.index s (v b.idx + v n) safety

We swap this F* model with a low-level implementation.
buffer int becomes int* and index b 1 becomesb[1i].
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Side-channel resistance




What are we protecting against

« We want to guard against some memory and timing
side-channels

 Our secret data is at an abstract type
* By using abstraction, we can control what operations we
allow on secret data
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Abstraction to the rescue

Our module for secret integers exposes a handful of audited,
carefully-crafted functions that we trust have
secret-independent traces.

(* limbs only ghostly revealed as numbers *)
val v : limb -> Ghost nat

val eq mask: x:limb -> y:limb ->
Tot (z:limb{if v x <> vy then v z = 0 else v z = pow2 26 - 1})

By construction, the programmer cannot use a Limb for
branching or array accesses.
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What we show

We model trace events as part of our reduction.

(= . |read(b.n, f) | write(b.n, ) | brT | brF | £, 0

Note: this does not rule out ALL side channels!
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The KreMLIn tool




A compiler from F* to readable C

The KreMLin facts:
» about 14,000 lines of OCaml
» carefully engineered to generate readable C code
» essential for integration into existing software.

Design:
* relies on the same Letouzey-style erasure from F*
 one internal AST with several compilation passes
e abstract C grammar + pretty-printer

e small amounts of hand-written C code (host functions)

So far, about 120k lines of C generated.
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Evaluation




A word on HACL?*

Our crypto algorithms library. Available standalone, as an
OpenSSL engine, or via the NaCl API.

 Implements Chacha20, Salsa20, Curve25519, X25519,
Poly1305, SHA-2, HMAC

7000 lines of C code
25,000 lines of F* code
Performance is comparable to existing C code (not ASM)

Some bits are in the Firefox web browser!

W Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,

Jonathan Protzenko, Benjamin Beurdouche
HACL*: A Verified Modern Cryptographic Library
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ChaCha20 1000s of bytes/s (higher is better)
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Vale




Vale: extensible, assembly language verification

machine model (Dafny/F*/Lean)

. Mov(dst:reg, src:reg)
. | Add(dst:reg, src:reg) :
. | Neg(dst:reg)

| evaI(Mov(dst, src), ...) =
: eval(Add(dst, src), ...) =
eval(Neg(dst), ...) = ...

' prlnt(Mov(dst SIc), ...) =
“mov “ + (...dst) + (.. src)

. print(Add(dst, src), ...) = ... |

—
_instructions______. Trusted
' type reg = r0 | r1 | COmputing
5 typeins = Base v

i - Ccryptospec
o . mem[eax] ==
{|! SHA(mem([ebx]) |:

p

...................

Add(r1, r0),

: [Mov(r1, rO), . | lemma_mov(...);

. lemma_add(...);

machme interface

procedure add(...) !

Vale code

rocedure mov(.. )

requires ..
ensures ...

}

_program_____ .
. procedure quadruple( )
requires 0 <=r0 <27,

: Add(rl rl)] ' lemma Add(...);
bty et oo . ensuresrl==r0*4;
 {
=y . mov(rl, r0);
'.' ‘.'\ . add(r1, r0);
= = : add(r1, r1);
|‘”|i \‘| }
W EE————

\ USENIX Security 2017




Crypto performance: OpenSSL vs. Vale

Throughput (MB/s)

* AES: OpenSSL with SIMD, AES-NI
* Poly1305 and SHA-256: OpenSSL
non-SIMD assembly language

3000
2500
2000
| 500
1000
500

0

* Same assembly code for
OpenSSL, Vale

OpenSSL w——
Vilc mmmn

- il

6 64 256 1024 BI192 16,384
Number of input bytes per Poly 1305 MAC

Throughput (MB/s)

Throughput (KB/s)

900
800
70
600
S00
4(X)
300
200
100

0

OpenSSL  ——

THi

30000
25000
20060
1 5000
10000
SO00

0

16 o4 256 1024 8192 16,384

Number of input bytes per AES-CBC-128 encryption

OpenSSE  ——
Vale =

16 64 256 1024 8192 16384

Number of input bytes per SHA-256 hash




I ® Tooling support




Cryptography: a (too) good example

e Crystal clear math spec
* Trivial allocation patterns
 The code is naturally low-level

A driver that informed the design and implementation of
Low™.
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But! ...beyond cryptography

Allocation patterns are more complex

The code iIs naturally higher-level

Surprise: people actually do not want to write C in F*
e Strong push for more tooling support
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A point in the design space

Reality moving beyond the paper formalization

Tension the tooling is not verified

Claim priority ordering: high-risk source, lower risk
tooling

DentirirrYivnt feer~= i v e \/aritheard tAanlhharm
Proauctivity/scali (0 VS. Verified toolchain
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Tooling support: killing abstraction

Abstraction = good for verification
No Abstraction = good for compilation

* At the module level (-bundle)
» At the function level (inline for extraction)

This triggers enough compiler optimizations to fulfill the
original promise.
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Tooling support: data types

Or: “programmer productivity”.

Tuples, inductives (tagged unions) are supported

Four (!) different compilation schemes

Use at your own risk (MSVC! CompCert! x86 ABI!)
Requires:
« monomorphization
« Implementation in KreMLin of recursive equality
predicates
« mutual recursion; forward declarations
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Tooling support: misc

Type abbreviations

C loops (syntactic closures for bodies)

Removal of uu

Optimal visibility

Removal of unused function and data types arguments

Passing structures by reference
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Tooling support: conclusion

sO... hone of this Is rocket science

but... it's a slippery slope

idea have a mode that disables cosmetic optimizations
to do differential testing.

There is a constant tension (e.qg. tail-rec).

There is hope: all the bugs found so far were either in the
formalization, in unverified, glue code, or in the compiler.
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@ Two stories about
the real world

& Firefox
® Windows Kernel mode




Firefox (1): the code

 These people actually read our code
» Stringent coding standards

¢ parentheses
* unused variables
* unused parameters

 Cosmetic (indentation, no clang-format)

« More fundamentally: no recursion and no uint128
support (cross-platform)

» Still need to implement const support (# our
formalization)
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Firefox (2): the infrastructure

They used a Docker VM to put the toolchain under Cli

No one can modify the code directly

One student at INRIA supports them

Minimize the hand-written glue code (FStar.h and
kremlib.h)
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Kernel mode (1): why?

« Lower latency (usermode/kernelmode transitions) +
connection management in-kernel

 Pooling of connections to the same domain
» Better security (keys in OS memory)
 Primitive 1O API support

« Makes it available to other drivers
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Kernel mode (2): MSVC

The first problem was the Microsoft Compiler (MSVC)
» VS2017/ has decent C11 support
No uintl28 type

No variable-length arrays

Arbitrary nested struct depth

Unpredictable tail-calls and struct passing optimizations
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Kernel mode (3): all the other things

A lof of things were not captured by our formalization.

o excessive stack consumption: limit is 12k in kernel mode
(value structs, lack of tail-calls)

 abuse of recursion: byte-by-byte copy is great for
verification but...

 need to offer C-like APls: some amount of glue code

Stack overflows are not good...
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Kernel mode (4): misc

No C runtime means different APls

Logging APls

Symbol collisions

MSVC compiler bug

C standard library bug
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I ® Conclusion




IN hindsight

The paper is only half the work
Prioritize verification effort

Nothing beats good Cl and testing

Tooling matters
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Your future plans

It's all on GitHub!

e https://www.glt
e https://www.glt
e https://www.glt
e https://www.glt

e https://www.glt

e https://www.glt
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Thanks.

, .‘ Questions?
y THIIO'

Ld
. - ’ . R,
~‘Ranh ,L sat adve books

abe
Jon Krakaver




