Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
Including leading scientists, renowned experts in
technology, book authors, and leading academics,
and makes videos of these lectures freely available.
2016 © Microsoft Corporation. All ights reserved.

Project Everest
theory meets reality

Jonathan Protzenko Microsoft Research
Project Everest INRIA Paris
MSR Redmond, Cambridge, Bangalore

CMU

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 1/59

Team Members

SeCul’ity

Cambridge |
Bangalore
Aseem |_Redmond |
Rastogl
ntone Paris (INRIA)
Delignat-Lavaud
59 Pittsburgh (CMU)
Chris -
Hawbl |
awblitze s Swamy Edmburgh
+z Catalm Hritcu

Bryan Pamo

Karthik

)onathan Prouenko

Santiago
Zznnella Beguel n

Markulf

Chr stoph

wWntersteiger
Tahina '8

Ramanandro n
pL/Ver ificatl©

Everest:

Deploying Verified-Secure Implementations in the
HTTPS Ecosystem

&

e f

TRATTORIA - PIZZERIA

WINE - BAR

EVEREST

Sc: 1ffold1ng Inc.

. -“‘t’ GWO 0 AVE '.-\,.."l ‘ 4

(718) 328-1004

Cha16) Wﬁmomﬁ@ @mm Caneima

- S AL NI W WY A

@ Verification challenges in the HTTPS ecosystem

® A formalized toolchain for delivering C and ASM code
© Tooling support for programmer productivity

@ Stories from the “real world”

@ Challenges in the |
HTTPS ecosystem

What is there to verify?

! * 3
B

Everest: Expedition for a VERIfied Secure Transport

« A verified secure HTTPS ecosystem: this is huge
» Just focusing on TLS and QUIC and their dependencies
» But first, some background on TLS

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 7 /59

HTTPS: the TLS protocol
TLS stands for transport layer security.

Qutside world

))

™Y N~ N] "// s S v "',‘\..’—'\";v"‘ b o
H ACCOrad \.:,\-;",{ - H oIrvDito
w . T e ¥ e, asdo A fAN 4.4 A A0 (0 AN DO

miTLS

Two different kinds of beasts:
* the protocol layer
* the record layer

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 8/59

HTTPS: the QUIC protocol

Based on UDP instead of TCP.
Two goals: latency and multiplexing.

Re-uses the handshake from TLS 1.3 (ORTT) but then does its
own thing for the stream data.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 9/59

Why is it hard? (The crypto)

Implement efficient arithmetic over large numbers (bignums).

« Optimized bitwise operations
« Each bignum has its own optimized representation (reuse)
» Difficult to exhaustively test

Goal: functional correctness (implies memory safety) +
side-channel resistance.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 10/ 59

Why is it hard? (Polyl305 example)

These heavily optimized C implementations have bugs.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 11/ 59

Why is it hard? (Polyl305 example)

OpenSSL Security Advisory [1© Nov 2016] have

Severity: High

[openssl-dev]

TLS connections us

lopenssl.org #4482| Wrong results with

attack by corrupti POI}'ISOS fllllCtiO“S

issue is not consi

Fri Mar 25 12:10:32 UTC

e Previous message: [0

when using "no-asm
* Next message: [open
* Messages sorted by:

Attached is a sample codé
Polyl3eS functions of opé

These produce wrong resu
the other three also on 6

J. Protzenko et al. — MSR

produces incorrect output

David Benjamin via RT L at opensslorg
Tl Mar 17 21:22:20 UTC 2010

e Previous message: |lopenssi-dev] [openssi-users] Removing some svstems

Hamno Boeck via kT o | fOPENSSI-dev] [openssl.org #4439| poly1305-x86.pl

e Next message: [openssl-dev] [opensslorg #4439] polv1305-x86.pl produces incorrect output
e Messages sorted by: | date || thread | | subject | [author |
Hi folks,

You know the drill. See the attached polyl385_test2.c.

$ OPENSSL_ia32cap=@ ./polyl305_test2

PASS

$./polyl305_test2

Polyl305 test failed.

got: 2637408fe03086ea73f971e3425e2820
expected: 2637408fel3086ea73f971e3425e2820

I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern,

This was found because a run of our SSL tests happened to find a
problematic input. I've trimmed it down to the first block where they
disagree,

I'm probably going to write something to generate random inputs and stress
all)o r cher 0ly1305 codepaths against
recomn jf

testatheqr meet mai@&ZEZ"““ . May. 14", 2018

11/59

Why is it hard (record layer)

Provide a safe cryptographic functionality by combining
primitive blocks. Example: AEAD.

« Multiplex between different algorithms (AES-GCM,
Chacha-Poly).

» Safely combine the cryptographic primitives.
 Reason about integrity, authenticity, confidentiality.

Goal: cryptographic strength + side-channel resistance.

J. Protzenko et al. — MSR Project Everest: theory meets reality (Y 14", 2018 12/ 59

Why is it hard (the handshake)

Provide a correct state machine that manages keys properly.

» Need for speed:. O-RTT and 0.5-RTT

« Multiple ways to derive keys (PSK, forward secrecy,
rekeying)
 Handle choice of algorithms, versions (1.2 vs. 1.3)

Goal: cryptographic security.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 13/ 59

Why is it hard (the handshake)

Parse messages following the RFC.

» Parsers are notoriously error-prone.
 Need to interop, but hard to exhaust all the code-paths.
« RFC informal.

Goal: memory safety (“if it interops, it interops”).

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 14 / 59

Why is it hard (QUIC)

Implement retransmission, windows, error correction,
out-of-order frames, etc.

« Low-level systems programming

» Data structures: “inline” doubly-linked lists with ugly C
macros

« Concurrency with different streams
e |[nteraction with the rest of the OS

* Risk of integer overflow

Goal: memory safety

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 15/ 59

In short...

Many different types of guarantees. The HTTPS ecosystem
really is a minefield.

Status:
» crypto: verified (some algorithms)

* record layer: verified
 handshake: In progress

e parser: nearing completion
« QUIC: scheduled

e PKI: on the horizon

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 16 / 59

I @ A formalized toolchain

With a diagram

Kremlin

compile

GCC/Clang/CompCert/MSVC

Disclaimer: these steps are supported by hand-written proofs.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 18 / 59

The design of Low”

High-level verification for low-level code

For code, the programmer:
» opts in the Low™ effect to model the C stack and heap;
« uses low-level libraries for arrays and structs;
» leverages combinator libraries to get C loops;
« meta-programs first-order code;
» relies on data types sparingly.

For proofs and specs, the programmer:
» can use all of F~,

« prove memory safety, correctness, crypto games, relying
on

» erasure to yield a first-order program.

- Motto: the code is low-level but the verification is not.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 20 / 59

A sample cryptographic operation: Polyl305

Poly1305 is a message authentication code.

e

w
MAC(k.m,w) =m+» w;x K
=1
It authenticates the data w by:
« encoding it as a polynomial in the prime field 2!°Y — 5

e evaluating it at a random point k (first part of the key)
 masking the result with m (second part of the key)

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 21/ 59

A sample cryptographic operation: Polyl305

Poly1305 is a message authentication code.

MAC(k.m.w) = m + Zw,- x k'
=3

A typical 64-bit arithmetic implementation:
» represents elements of the prime field (p = 2'°Y — 5) using
three [imbs holding 42 + 44 + 44 bits in 64-bit reqgisters
e uses (a x 2%V + b)%p = (a + 4a + b)%p for reductions

 unfolds the loop

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 21/ 59

Doo~NNOOTWLME WN -

19
11
12
13
14
15
16
17

e L

(S LR -

et prime = pow2 130 - 5

Spec.Polyl1305

type elem = e:Z{e 2 @ A e < prime}

Auto-saving. . .done

t fadd (el:elem) (eZ:elem) = (el + e2) ¥ prime
fmul (el:elem) (el:elem) = (el x e2) % prime

et éncode.(n:ﬁord)Jg
(pow2 (8 x length w)) “fadd™ (little_endian w)

rec poly (txt:text) (r:e:elem) : |
* length txt = @ !

Zero

et a = poly (Seq.tail txt) r i
t n = encode (Seq.head txt)
(n "fadd™ a) "fmul® r

395 . tst

All (2,0)

Git-master

(FO company)

t elem (decreases (length txt)) =

May. 14", 2018

22/ 59

o

[@"substitute”)
val polyl1305_last_pass_
felem —
Stack unit
l '
(¢ es (A st live ha acC A bounds (as seq hp a

Y acC A DOunds

A live hy acc A bounds (as_seq hy acc) pag Pag Pa2

]
_last_pass_acc
c.(Oul) In
= acc.(1ul) in

lot a5 = acc.(2ul) In

et masky = gte_mask ag Hacl.Spec.f

™ ke - - ~- _’/
jot masky = eq_mask ay Hacl.Spec.Polyl: =
nask-> = eq mask ay Hacl.Spec Balyl 20°
et mas = Kn &° masky &~ mask-,
¥ 4) 4 - et 1y e <k) !
nt.logand_lemma_1 (v ey togenTETina_1 (Vv mask,) ogand

: |

A
t.logand_lemma_2 (v masky), t.logand_lemma_2 (v maskq)
t.logand_associative (v masky) (v masky) (v ma;kzjn

cut (v mask = Lofyes 64 = (vag = powy 44-5Ava; = powy 44 -1 A

nt.logand_lemma_1 (v Ha pec.Polyl3 64 pddmg) t.logand_lemma_1l
Unt.logand lemma 1 (v Hacl.Spec Polyls 64.pa2my) tlogand lemma 2 (v Ha
ad lemma 2 (v pec.Polyl 64.p4d4my) Llogand lemma 2 (v
lot ag' = ~ (Hacl.S| ol 211TS & mask
o1 30 - ao {Hac 4 r y A . pmurns masK) i1
lotay' = ay -~ (Ha pec. Polyl305 64 pddmy &™ mask) i
10T 3+ :-\2 ™ (Had P VLY . . .p.z:’n‘l&. mask) ir

upd_3 acc ap’' ay' ay

4 Git-master (FO Fl

=

4

Static v
{
Hacl_Bignum_Fproduct_carry limb_(acc),
Hacl_Bignum_Modulo_carry top(acc),

Iint64 t a0 = accl0);

Iint64 t alo = accll);

IInt64d t 220 = accl2];

Int6d t a0 = a0 & (uints4_t)OxTTIfe,
uinte4 t r0 = a0 >> (uint32 t)44,
= (310 + r0) & (uints4a t JOxTITmY;
trl=(al0 + r0) >> (uint32_t)44,
= 220 + rl,

id Hacl_Impl Polyl305_64 _polyl305 jast_pass(uint64 t *acc)

inte4 t al
inte4
unt64d t az
acc[0] = a0_
accfl] =al_;
acc[2] = a2 ;
Hacl_Bignum_Modulo_carry top(acc),
ti0 = accf[o)]
a4 11l = acc[l];

nted t i O & (({uintgd t)]l << (UINt32 L)44) - (uinted t)11),

inteaTt i1~ =11 \ .4}

acc[0] = i0_;

acc[l] =11

IINt64 t 200 = acc[0]);
! ™= accll]

tbd t 32 = accl2);

. 4 Lt mask0 = FStar_Uint6d_gte_mask{a00, (uint64 1 JOxfY

nt6d_t maskl = FStar_UInt64_eq_mask(al, (uintB4_t)OI
. i FStar_UInt64_eq_mask{a2, (uint64 _t JOX3FTTT

. sk0 & maskl & mask2

iNtG4 t a0 0= a00 - ((uinté4 t)Ox J.

INtE4 Lt a1 0= al - ((UINtE4 t)OI & mask)

= a2 - ((UINLG4 T)OXII & mask)

Iint64

-**. Polyl305 64.c 49% L272 Git-master (C/l compan

May. 14" 2018 23/59

Insights about
our formalization

High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st pre) (post: (mem -> Tot (st post a))) =
STATE a (fun (p:st post a) (h:mem) ->
pre h /\ (V a hl.
(pre h /\ post h a hl /\ equal domains h hl) ==> p a hl))

let equal domains (mO:mem) (ml:mem) =
mo.tip = ml.tip
/\ Set.equal (Map.domain m@.h) (Map.domain ml.h)
/\ (forall r. Map.contains mO0.h r ==>
Heap.equal dom (Map.sel mO.h r) (Map.sel ml.h r))

Preserves the layout of the stack and doesn't allocate in any
caller frame.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 25/ 59

High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:T
STATE a (fun (p

pre h /\ (V a hl.
(pre h /\ post h a hl /\ equal domains™h hl) ==> p a hl))

post a)))

preservation of the stack structure

let equal domains (mO:mem) (ml:mem) =
mo.tip = ml.tip
/\ Set.equal (Map.domain mO@.h) (Map.domain ml.h)
/\ (forall r. Map.contains mO0.h r ==>
Heap.equal dom (Map.sel mO.h r) (Map.sel ml.h r))

Preserves the layout of the stack and doesn't allocate in any
caller frame.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 25/ 59

High-level verification for low-level code (2)

Our low-level, stack-based memory model.

effect Stack (a:Type) (pre:st pre) (post: (mem -> Tot (st post a))) =
STATE a (fun (p:st post a) (h:mem) ->
pre h /\ (V a hl.
(pre h /\ post h a hl /\ equal domains h hl) ==> p a hl))

let equal _domains (mO:mem) (ml:mem) =

mo.tip =~l.tip
/\ Set.equat®™&{Map.domain mO@.h) (Map.domain ml.h)
/\ (fo >

Heap.| the tip remains the same [@P-sel ml.h r))

Preserves the layout of the stack and doesn't allocate in any
caller frame.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 25/ 59

High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun hO z hl -> live hO b /\ hl == hO
/\ z == Seq.index (as seq hO b) (v n)))
let index #a b n =
let s = !b.content in
Seq.index s (v b.idx + v n)

We swap this F* model with a low-level implementation.
buffer int becomes int* and index b 1 becomesb[1].

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 26 / 59

High-level verification for low-level code (3)

Our low-level, sequence-based bu

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun hO z hl -> live hO b /\ hl == hO
/\ z == Seq.index (as seq hO b) (v n)))
let index #a b n =
let s = !b.content in
Seq.index s (v b.idx + v n)

We swap this F* model with a low-level implementation.
buffer int becomes int* and index b 1 becomesb[1].

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14 2018 26 / 59

High-level verification for low-level code (3)

Our low-level, sequence-based buffer model.

val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} ->
Stack a
(requires (fun h -> live h b))
(ensures (fun hO z hl -> ldyve hO b /\ hl == hO
/\ z == Seq.lndex (as seq
let index #a b n =
let s = !b.content in temporal
Seq.index s (v b.idx + v n) safety

We swap this F* model with a low-level implementation.
buffer int becomes int* and index b 1 becomesb[1i].

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 26 /59

Side-channel resistance

What are we protecting against

« We want to guard against some memory and timing
side-channels

 Our secret data is at an abstract type
* By using abstraction, we can control what operations we
allow on secret data

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 28 / 59

Abstraction to the rescue

Our module for secret integers exposes a handful of audited,
carefully-crafted functions that we trust have
secret-independent traces.

(* limbs only ghostly revealed as numbers *)
val v : limb -> Ghost nat

val eq mask: x:limb -> y:limb ->
Tot (z:limb{if v x <> vy then v z = 0 else v z = pow2 26 - 1})

By construction, the programmer cannot use a Limb for
branching or array accesses.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 29 /59

What we show

We model trace events as part of our reduction.

(= . |read(b.n, f) | write(b.n,) | brT | brF | £, 0

Note: this does not rule out ALL side channels!

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 30 /59

The KreMLIn tool

A compiler from F* to readable C

The KreMLin facts:
» about 14,000 lines of OCaml
» carefully engineered to generate readable C code
» essential for integration into existing software.

Design:
* relies on the same Letouzey-style erasure from F*
 one internal AST with several compilation passes
e abstract C grammar + pretty-printer

e small amounts of hand-written C code (host functions)

So far, about 120k lines of C generated.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 33/59

L

Evaluation

A word on HACL?*

Our crypto algorithms library. Available standalone, as an
OpenSSL engine, or via the NaCl API.

 Implements Chacha20, Salsa20, Curve25519, X25519,
Poly1305, SHA-2, HMAC

7000 lines of C code
25,000 lines of F* code
Performance is comparable to existing C code (not ASM)

Some bits are in the Firefox web browser!

W Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,

Jonathan Protzenko, Benjamin Beurdouche
HACL*: A Verified Modern Cryptographic Library

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 35/59

oo

1 O
yOO0(0)

]

(433329 st 1aybiy) s/sdo 6T1552X

10s

iInput bytes

Bl 8 HACL* B B OpensSsL

ChaCha20 1000s of bytes/s (higher is better)

- -. "« —q »—
e 10 — —

QO r— O e e 200 e v

$=9- l }‘ am— * | \’.0.’ | ‘ |

X *e'e | r .1’0‘ i — t 1 \”o.o [; 4

- Yors | 4 ‘c'.‘ ' { ".o.o [‘ 4

r 'l‘ ... | } 0.0.‘ re— } 4 .. r 1 i

j } } o) | = { S5 {

——t T Bt ' ' ‘ire) | 1 Pl {

}*.° | } } OO | m=m { Fed 1A

i*.ed 1 | | ! oA VA P d 1A

6 64 256 1024 8192 16384

—-

Input bytes

Bl B HACL® O OHACL* -vec B B OpensSSL Bl B OpenSSL ASM

ACAAANANANNAAAANAAANANAAAAAANRANNANANANANANANAANANAANANNNANANANAN]
0T AT 0T TS 555
S0 RRRIIRLRIRRERERERERRRRRRIRILLILRERRERS

[DR S e |
.. e
I
YOO

R AAAAAAAD
K OO
PSRN

{
lll"

(481129 st 1aybiy) s/sa3Aq Jo sQO0T AVIY

64 256 1024 8192 16384

16

iInput bytes
BB HACL® B B OpenssL B B OpenSSL ASM

Vale

Vale: extensible, assembly language verification

machine model (Dafny/F*/Lean)

. Mov(dst:reg, src:reg)
. | Add(dst:reg, src:reg) :
. | Neg(dst:reg)

| evaI(Mov(dst, src), ...) =
: eval(Add(dst, src), ...) =
eval(Neg(dst), ...) = ...

' prlnt(Mov(dst SIc), ...) =
“mov “ + (...dst) + (.. src)

. print(Add(dst, src), ...) = ... |

—
_instructions______. Trusted
' type reg = r0 | r1 | COmputing
5 typeins = Base v

i - Ccryptospec
o . mem[eax] ==
{|! SHA(mem([ebx]) |:

p

...................

Add(r1, r0),

: [Mov(r1, rO), . | lemma_mov(...);

. lemma_add(...);

machme interface

procedure add(...) !

Vale code

rocedure mov(..)

requires ..
ensures ...

}

_program_____ .
. procedure quadruple()
requires 0 <=r0 <27,

: Add(rl rl)] ' lemma Add(...);
bty et oo . ensuresrl==r0*4;
 {
=y . mov(rl, r0);
'.' ‘.'\ . add(r1, r0);
= = : add(r1, r1);
|‘”|i \‘| }
W EE————

\ USENIX Security 2017

Crypto performance: OpenSSL vs. Vale

Throughput (MB/s)

* AES: OpenSSL with SIMD, AES-NI
* Poly1305 and SHA-256: OpenSSL
non-SIMD assembly language

3000
2500
2000
| 500
1000
500

0

* Same assembly code for
OpenSSL, Vale

OpenSSL w——
Vilc mmmn

- il

6 64 256 1024 BI192 16,384
Number of input bytes per Poly 1305 MAC

Throughput (MB/s)

Throughput (KB/s)

900
800
70
600
S00
4(X)
300
200
100

0

OpenSSL ——

THi

30000
25000
20060
1 5000
10000
SO00

0

16 o4 256 1024 8192 16,384

Number of input bytes per AES-CBC-128 encryption

OpenSSE ——
Vale =

16 64 256 1024 8192 16384

Number of input bytes per SHA-256 hash

I ® Tooling support

Cryptography: a (too) good example

e Crystal clear math spec
* Trivial allocation patterns
 The code is naturally low-level

A driver that informed the design and implementation of
Low™.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 42 /59

But! ...beyond cryptography

Allocation patterns are more complex

The code iIs naturally higher-level

Surprise: people actually do not want to write C in F*
e Strong push for more tooling support

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14 2018 43 /59

A point in the design space

Reality moving beyond the paper formalization

Tension the tooling is not verified

Claim priority ordering: high-risk source, lower risk
tooling

DentirirrYivnt feer~= i v e \/aritheard tAanlhharm
Proauctivity/scali (0 VS. Verified toolchain

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 44 / 59

Tooling support: killing abstraction

Abstraction = good for verification
No Abstraction = good for compilation

* At the module level (-bundle)
» At the function level (inline for extraction)

This triggers enough compiler optimizations to fulfill the
original promise.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 45 /59

Tooling support: data types

Or: “programmer productivity”.

Tuples, inductives (tagged unions) are supported

Four (!) different compilation schemes

Use at your own risk (MSVC! CompCert! x86 ABI!)
Requires:
« monomorphization
« Implementation in KreMLin of recursive equality
predicates
« mutual recursion; forward declarations

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 46 / 59

Tooling support: misc

Type abbreviations

C loops (syntactic closures for bodies)

Removal of uu

Optimal visibility

Removal of unused function and data types arguments

Passing structures by reference

J. Protzenko et al. — MSR Project Everest: theory meets reality U E 14" 2018 47/ 59

Tooling support: conclusion

sO... hone of this Is rocket science

but... it's a slippery slope

idea have a mode that disables cosmetic optimizations
to do differential testing.

There is a constant tension (e.qg. tail-rec).

There is hope: all the bugs found so far were either in the
formalization, in unverified, glue code, or in the compiler.

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 48 /59

@ Two stories about
the real world

& Firefox
® Windows Kernel mode

Firefox (1): the code

 These people actually read our code
» Stringent coding standards

¢ parentheses
* unused variables
* unused parameters

 Cosmetic (indentation, no clang-format)

« More fundamentally: no recursion and no uint128
support (cross-platform)

» Still need to implement const support (# our
formalization)

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 50 /59

Firefox (2): the infrastructure

They used a Docker VM to put the toolchain under Cli

No one can modify the code directly

One student at INRIA supports them

Minimize the hand-written glue code (FStar.h and
kremlib.h)

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14", 2018 51/59

Kernel mode (1): why?

« Lower latency (usermode/kernelmode transitions) +
connection management in-kernel

 Pooling of connections to the same domain
» Better security (keys in OS memory)
 Primitive 1O API support

« Makes it available to other drivers

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 52 /59

Kernel mode (2): MSVC

The first problem was the Microsoft Compiler (MSVC)
» VS2017/ has decent C11 support
No uintl28 type

No variable-length arrays

Arbitrary nested struct depth

Unpredictable tail-calls and struct passing optimizations

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 53/59

Kernel mode (3): all the other things

A lof of things were not captured by our formalization.

o excessive stack consumption: limit is 12k in kernel mode
(value structs, lack of tail-calls)

 abuse of recursion: byte-by-byte copy is great for
verification but...

 need to offer C-like APls: some amount of glue code

Stack overflows are not good...

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 54 /59

Kernel mode (4): misc

No C runtime means different APls

Logging APls

Symbol collisions

MSVC compiler bug

C standard library bug

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 55/ 59

I ® Conclusion

IN hindsight

The paper is only half the work
Prioritize verification effort

Nothing beats good Cl and testing

Tooling matters

J. Protzenko et al. — MSR Project Everest: theory meets reality May. 14" 2018 57 /59

Your future plans

It's all on GitHub!

e https://www.glt
e https://www.glt
e https://www.glt
e https://www.glt

e https://www.glt

e https://www.glt

J. Protzenko et al. — MSR

ub.
hub.
Nub .
Nub .

Nub .

nub.

com/FStarLang/FStar
com/project-everest/vale
com/FStarLang/kremlin
com/mitls/mitls-fstar
com/mitls/hacl-star

com/project-everest/everest

Project Everest: theory meets reality May. 14" 2018

58/59

Thanks.

, .‘ Questions?
y THIIO'

Ld
. - ’ . R,
~‘Ranh ,L sat adve books

abe
Jon Krakaver

