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Abstract—We introduce the binomial ladder filter: a data
structure used to examine a stream of values to identify those that
occur frequently, while keeping the identity of infrequent values
private. Password-protected services may use the filter when
users choose passwords, to isolate the common (weak) passwords
and forbid their use—without storing or revealing infrequent
(likely-strong) passwords. Similarly, when users login, they may
filter the stream of passwords from failed login attempts to
isolate frequent incorrect passwords, which result when attackers
guess a password they believe to be common against many
user accounts. The filter would ignore passwords from users’
failed logins, which exhibit errors that are broadly distributed
and infrequent (even if collectively more frequent). Among the
features of the binomial ladder filter are that it protects the
privacy both of the frequency of values in a stream and the
identity of the values themselves; its size does not grow with
the number of elements in the stream or the number of possible
values any element can represent; it does not need to be replaced
or re-initialized with age; and with small modifications it can
be implemented efficiently in highly-distributed systems with
minimal coordination.

I. INTRODUCTION

A frequency filter is an online data structure that is used to
examine a stream of elements (values), identifying frequently-
occurring values while filtering out rare elements, as illus-
trated in Figure 1. Systems that rely on passwords, PINs,
or other shared secrets can apply frequency filters to detect
users’ ‘popular’ choices and prevent more users from relying
on secrets that are already too frequent among the user
base [15]. Password-based authentication systems can also use
frequency filters to examine the passwords submitted in failed
login attempts, identify passwords being frequently-guessed
by attackers, and use this information to more quickly and
accurately block hosts engaged in guessing [2].

We introduce a privacy-preserving frequency filter that not
only limits what the output reveals about individual contri-
butions to the frequency of elements in the stream, but that
also protects the very identity of infrequent elements—even
in the event that the internal data structures of the filter
are captured by an adversary. Systems can use this filter to
track users frequently-chosen passwords without maintaining
a list of infrequently-observed passwords. They can identify
passwords that frequently appear in incorrect login attempts
without keeping records of incorrect passwords that resulted
from users’ unique (or relative rare) mistakes.

†Work performed while the author was at Microsoft.
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Fig. 1: A frequency filter is used to examine a stream of
values to identify frequently-occurring values while filtering
out infrequent values. In other words, the filter should detect
values that arrive at a rate that exceeds the detection threshold:
a frequency of one in one million, or 10−6, in this illustration.
The filter should reject values that arrive at a rate below the
rejection threshold: a frequency of one in fifty million, or
2 · 10−8, in this illustration. The filter may detect or reject
values that arrive at rates between the two thresholds—a
segment of the frequency range that we call the indifference
region.

This binomial ladder filter is an approximate data structure
in the spirit of Bloom filters [5]. Applications configure the
filter to detect very-frequent elements that occur at a rate above
a specified detection threshold and to reject those elements
that occur at a rate below a specified rejection threshold. In
between these two frequencies lies an indifference region,
which contains elements that neither occur very frequently
nor very rarely, and which the filter is free to treat either as
frequent or rare.

We describe the design of the binomial ladder filter in
Section II and describe its modes of operation and behavior in
Section III. We explain the mathematics underlying its prob-
abilistic behavior, and our algorithmic approach to precisely
calculate detection probabilities, in Section IV. We present
a model for understanding the filter’s privacy guarantees in
Section V. We describe how to configure the filter for different
applications in Section VI. We explain how the filter can
be modified to scale to distributed systems, and do so with
minimal coordination overhead, in Section VII. We provide
case studies of how the filter can be used in password policies
and to prevent guessing attacks in Section VIII. We compare
the filter with a number of existing tools for identifying
frequent values and protecting privacy in Section IX.



(a) We begin the height operation by associating the element with H = 8 bits of the array, which we will refer to as the rungs of the element’s
ladder. To do so we invoke the filter’s H hash functions to index into H bits of the array. The green arrows above represent one element’s rungs.

(b) The height operation returns the number of rungs below the element: it counts the number of one bits associated with the element. We
use four green arrows to show which four rungs of the eight in Subfigure (a) that should be counted (the one bits).

(c) We begin the step operation by identifying the rungs (bits) associated with the element, as shown in step (a) above. We then select one
of the rungs above the element (a zero bit) at random with uniform probability, shown above by the remaining arrow. (If there are no rungs
above, we select a zero bit at random from the entire filter array.)

Rung to step aboveNot a rung for this key(d) From all the one bits in the entire array that are not among this element’s rungs, we select one at random (with uniform probability). In the
example, we identify this bit with a red arrow.

Rung to step aboveNot a rung for this key(e) We swap the values of the two selected bits, setting the element’s rung to one and clearing the bit that is not associated with the element.
The swap increases the element’s height on its ladder while preserving the invariant that the number of zero and one bits in the array remains
constant.

Fig. 2: An example of the height operation to identify the height of an element on the binomial ladder (a,b) and the step
operation (c-e) to raise the height of the element on its ladder by one rung. The filter in this example has N = 128 bits and
H = 8 hash functions that associate each element to a subset of those bits (rungs).

II. DESIGN

Like a Bloom filter [5], a binomial ladder filter pairs an
array of N bits with a family of H hash functions used to
index into the array. The hash functions associate elements
(values) with H different1 bits in the array, which we call
rungs. Together, these H rungs make up an element’s binomial
ladder. Continuing with the ladder analogy, we say that an
element has climbed those rungs that have value one (it is
above them on the ladder) and has yet to climb those rungs
with value zero (it is below them). The height h of an element
on its ladder is the number of these rungs below it: the number
of associated bits with value one.

A. Initialization

Upon construction, we initialize a random subset of half
of the bits of the binomial ladder filter to be one and the
remaining half to be zero. The equal ratio of zero bits to
one bits stays constant during the lifetime of the filter (in
Section VII we relax this constraint slightly to accommodate
distributing the filter over multiple hosts).

B. Operations

The binomial ladder filter supports two fundamental opera-
tions, height and step, as illustrated in detail in Figure 2.
Height(element): The height operation returns the

height of an element: the number of bits associated with the
element (they element’s H rungs) that are set to one (placing
them below the element on its ladder).

1In the event that a hash function yields a position already indexed by an
earlier (lower-indexed) hash function, re-hashing can ensure that the set of
rungs represent distinct positions in the filter array.

Step(element): The step operation increases the ele-
ment’s height by one rung, while maintaining the invariant
that the number of zero and one bits must be equal. To do
so it first identifies the bits associated with the element (the
element’s rungs), identifying the rungs above the element (the
zero bits) and those below the element (the one bits). It then
selects one of the rungs that are zero bits at random (with
uniform probability) with the intent of flipping its value to
one, which would push the rung below the element and in so
doing raise the element’s height up by that one rung. If there
are no rungs above the element (the element is already at the
top of its ladder), step picks a zero element at random from
the set of zero elements in the entire array.

To ensure that the number of zero and one bits in the filter’s
array stays constant, step must select a one bit from the array
to clear to zero. It selects this one bit uniformly and at random
from the set of one bits in the entire array, excluding those
associated with the element that is taking the step.

The step operation then swaps the values of the zero bit
to be set and the one bit to be cleared, preserving the invariant
that the number of zero and one bits remains constant. Moving
the rung from above the element (its bit had value zero) down
below (setting the bit to one) raises the element one rung
higher on its ladder.

The step operation returns the height of the element before
the operation took place.

III. APPLICATION USAGE MODES

We analyze the binomial ladder filter for two important
usage modes. In both modes, applications calls step for each
element in a stream regardless of the value of the element.
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(a) Perpetual mode (T=44)
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(b) Sticky mode (T=48)

Fig. 3: The probability a binomial ladder filter (H = 48, N = 229) will correctly detect frequent elements that arrive at
the detection frequency (one in a million in this example) and falsely detect infrequent elements that arrive at the rejection
frequency (one in fifty million). After a ramp-up period, the behavior closely approximates the ideal behavior shown in Figure
1. (Note that since infrequent elements occur at a rate that is fifty times lower than frequent elements, it takes 50× longer
for an infrequent element to take the same number of steps, with 50× more steps taken for other elements.) Subfigure (a)
shows a filter operating in perpetual mode that registers a detection when the element is at ladder height threshold T = 44
prior to a step. Subfigure (b) shows a filter operating in sticky mode that will permanently classify an element as frequent if
it is at the top of its ladder (T = 48) when step is called. The lower threshold used for perpetual mode results in faster
detection, but a higher rate of false positives in the short-run. The slow continual increase in the false-positive rate of sticky
mode will, if run long enough, eventually outpace the false-positive rate for perpetual mode, which flattens out over time.

A. Perpetual mode

In perpetual mode, an element is treated as frequent if its
height at the start of the step operation exceeds a height
threshold for detection T. Since even the most-frequently
observed elements may sometimes drop a rung on their ladders
due to bits cleared at random by steps for other elements,
applications should choose a threshold T one or more rungs
below the top of its ladder H. Frequently-observed elements
that become infrequent will eventually drop below the height
threshold and again be treated as infrequent.

In Figure 3a we illustrate the detection rates for a binomial
ladder filter used in perpetual mode, using analysis techniques
presented in Section IV.

B. Sticky mode

In sticky mode, the application uses the binomial ladder filter
only to identify when an element first exceeds the detection
threshold, relying on a separate data structure to maintain the
set of detected elements. The application will add an element
to the detection set when step is called on an element that
is already at the height threshold on its ladder—typically at
the top. Depending on the data structure the application uses
to track elements that have been identified by the filter, it may
come to include elements that are no longer frequent and its
size may be unbounded.

In Figure 3b we show the detection rates for a binomial
ladder filter used in sticky mode, also using the analysis
techniques below.
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Fig. 4: The probability that a binomial ladder filter (H = 48,
N = 229) will incorrectly reject elements that occur at the
detection frequency threshold: one in one million in this
example. We cannot detect the element until it occurs a
sufficient number of times in the stream to be deemed frequent,
and so some initial number of occurrences will always be false
rejections. In perpetual mode, the chance of a false rejection
levels out over time because there is always the possibility a
cluster of drops will occur between two arrivals of the element.
In sticky mode, once an element is detected it will always be
treated as detected, so the chance of false rejection approaches
zero.

IV. COMPUTING DETECTION RATES

To understand how to compute the probability that a bi-
nomial ladder filter will detect a value that occurs with a



given frequency, we begin by recalling that the only operation
that changes the state of the filter is step. The height of
an element of interest may change when it is passed to the
step operation, or when another element passed to the step
operation flips a bit associated with the element of interest
(one of the element of interest’s rungs).

Examining the potential effects of the step operation case
by case, an element of interest, e, may rise in height when
another element, takes a step causing one of the rungs above
e (a zero bit) to be moved below it (flipping it to a one bit).
The probability r(h) that e will rise when another element is
passed to step is equal to the number of rungs of e that are
zero bits, H − h, divided by the total number of zero bits in
the entire array, N/2, from which the bit to be set is selected.

r(h) =
H − h
N/2

=
2H − 2h

N

Similarly, e will drop in height when another element takes
a step and the bit cleared to zero is one of e’s rungs. The
probability d(h) that e will drop when another element is
passed to step is equal to the number of rungs of e that are
one bits, H, divided by the total number of one bits in the
entire array, N/2, from which the bit to be cleared is selected.

d(h) =
h

N/2
=

2h

N

We calculate detection and false-positive rates by iteratively
calculating the probability that an element is at a particular
height after each step taken for any element in the stream.
In each iteration i, we track the probability that an element
has taken s steps and is currently at height h. Whereas the
iteration counter i is incremented on on the arrival (step taken)
for any element in the stream, only steps for the element we
are interested in increment s. We define P [i, s, h] to be the
probability that an element of interest is at height h after taking
exactly s steps (for the element of interest) by iteration i (the
ith call to step for the ith element in the stream).

In the base state before the first iteration (i = 0) no steps
have been taken, and so we initialize to zero the probabilities
of all states that represent more than zero steps (when s > 0).
The probability that an element for which no steps have been
taken is at a height h is the probability that h of its rungs
were chosen from the set of N/2 bits initially set to one and
the other H − h rungs from those initially set to zero.

P [0, s, h] =

0, if s > 0
(N/2

h )( N/2
H−h)

(N
H)

, if s = 0

The above equation accounts for the fact that the probability
is that a rung is initially assigned be a zero or one bit is not
independent, but slightly dependent, on the other rungs; if the
first rung of an element is a zero bit, the ratio of remaining
bits is N/2-1 one bits to N/2 zero bits, and so the probability
that the next bit will also be one is slightly less than one half.
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Fig. 5: The initial height of elements that have not been
observed approaches the binomial distribution as N

H → ∞.
This figure shows that, for when N is a small multiple of H,
elements that have not been observed will skew more closely
to the middle of their ladders than the binomial distribution.
The lines for N = 216 and the binomial distribution, listed
separately in the legend, are on top of each other.

As such, elements skew slightly more toward the center of the
ladder than they would if rungs were truly independent.

For most configurations, N � H, and so we can ap-
proximate the probability that each rung is one or zero as
exactly one half—as if they were independent. Using this
approximation, the probability of being at each height is given
by the binomial distribution: the chance that h of the H rungs
(bits) associated with the element were set to 1 by chance with
each rung having a 50% chance of being either value. Figure 5
illustrates the skew from the binomial distribution when N is
not much larger than H, and how the two distributions are
indistinguishable when N � H.

P [0, 0, h] ≈
(

H
h

)
· 1

2H

(As an aside, if when associating elements with H indexes
into the bit array, we had allowed these elements to overlap
such that one bit could represent two or more rungs, we would
have arrived at a binomial distribution for even small values
of N. However, elements might rise or fall by more than one
rung in a single step.)

Given the initial state of a binomial ladder filter, we walk
through the inductive process of calculating the probability of
being at each state – having taken s steps and being at a height
h – at each subsequent iteration i. In stepping through this
calculation, we will often use the probabilities events did not
happen, and so define the complement probabilities f = 1−f
for a step being taken for an element other than the element
of interest, r(h) = 1 − r(h) that a step taken by another
element will not cause the element of interest to rise, and
d(h) = 1−d(h) that a step taken by another element will not
cause the element of interest to drop.



The probabilities at iteration i are derived from those at
iteration (i− 1):

P [i, s, h] =

f · P [i− 1, s, h] · r(h) · d(h)

+f · P [i− 1, s, h] · r(h) · d(h)

+f · P [i− 1, s, h− 1] · r(h− 1) · d(h− 1)

+f · P [i− 1, s, h+ 1] · r(h+ 1) · d(h+ 1)
+f · P [i− 1, s− 1, h− 1]

The first four lines are the probability of reaching this state
due to a step taken for another element, which occurs with
probability of 1 − f . Hence, each of these four terms begins
with f .

The first two of these lines are the probability of arriving
at this state from a prior iteration at the same height. In other
words, the probability that the height did not change. The first
line represents the likely case that a step for another element
neither caused this element to rise or fall. The second line
represents the very rare possibility that a step for another
element caused both a rise (a rung being set to one) and a fall
(another rung being set to zero), leaving the height unchanged.

The third and fourth lines of the equation represent changes
in height due to a step for another element. The third line
represents a rise from an element at height h− 1, and so the
probability is the product of rising from that height, r(h− 1),
not dropping from that height, d(h − 1), and the probability
of being at that height given the same number of steps have
been taken: P [i−1, s, h−1]. This line is replaced with 0 when
calculating height 0 as there is no position on the ladder at
height −1 to rise up from. The fourth line represents a drop
from height h+1 and is the product of not rising, and falling,
and being at height h + 1. The fourth line is replaced with
0 when calculating height H as there is no position on the
ladder at height H + 1 to drop down from.

The fifth and final line represents the probability of reaching
this state due to a step for this element, which occurs with
probability f and is multiplied by the probability of having
been at the state one step below (and thus at a height one
below).

Perpetual Mode

When calculating the iterative probability of an element
being at the top of its ladder in perpetual mode, we must
also add a sixth line – shown added below – since a step from
a previous iteration that is at the top of the ladder will keep
the element at the top of its ladder.

P [i, s,H] = · · ·+ f · P [i− 1, s− 1,H]

Up to this point in the analysis we have used the frequency
f to represent the probability that an element will occur at any
point in the stream. Our stochastic simulation yields a broad
distribution of actual frequencies, both higher and lower, that
is only centered at the expected frequency f . Yet the goal of
our filter is to detect and reject elements based on the rate
at which they occur, not at the rate they were expected to

occur. Hence, to calculate detection and rejection rates when
an element takes its ith step, we examine the portion of the
probability distribution where the number of steps taken is
equal to s− 1.

We calculate the sum of the probabilities of being at step
s − 1 after sf−1 − 1 iterations, such that a step at the next
iteration would result in an observed frequency of exactly f .
We calculate the detection rate as the proportional probability
of being at or above the detection height threshold T:

P (detect) =

∑H
h=T P [sf−1 − 1, s− 1, h]∑H
h=0 P [sf−1 − 1, s− 1, h]

.

As time goes on (and the number of steps increases) there is
a (very slowly) increasing chance that the overall frequency of
an element is low, but the recent frequency is high, resulting
in a false positive.

Sticky Mode

When calculating the iterative probability of an element
being at the top of its ladder in sticky mode, we do not add
the sixth line for height H but instead a new height to the top
of the ladder to represent the stuck-at state. The only way to
reach this state is to have been in the state during a previous
iteration, or to take step for an element that is at the top of
the ladder (H) but not yet at the stuck-at state above the top.

P [i, s,H + 1] =
P [i− 1, s,H + 1]

+f · P [i− 1, s− 1,H]

To calculate the detection rate for sticky mode, we sum the
probabilities of being at the top of the ladder or already being
in the stuck-at state above it.

P (detect) =

∑H+1
h=H P [sf−1 − 1, s− 1, h]∑H+1
h=0 P [sf−1 − 1, s− 1, h]

V. PRIVACY AND RARE ELEMENTS

The binomial ladder filter’s ability to protect the identity
of rare elements is what differentiates it from other data
structures. It is designed to limit the information revealed to an
attacker who captures the state of the binomial ladder filter and
wants to determine if an element e that occurs with frequency
below the rejection threshold has, nonetheless, appeared in the
stream.

The null hypothesis is that the element e has not appeared
in the stream and that all of the one bits associated with e were
set at random either during initialization or due to steps taken
for other elements. By measuring the height of e’s binomial
ladder, an attacker can calculate a likelihood ratio LR: the
ratio of the probability that the value has been observed with
some tiny frequency or in some tiny number of events to
the probability that this height of the ladder was reached by
chance.

The binomial ladder achieves privacy because it shares bits
between elements. A one stored in a bit associated with an
element e due to a step taken for e is indistinguishable from



a one set during initialization of the filter or a step taken
for another element. More generally, the filter does not reveal
when x bits were set at random and ε bits were set by step
operations and when x+ ε bits were set at random. The only
difference between these two scenarios is the likelihood with
which they occur under the null hypothesis.

Consider, for example, that we are concerned about attack-
ers testing to see whether elements observed five times or
fewer are stored in the binomial ladder filter in our running
example (ladder height H = 48, N = 229). If the starting
height of an element is H

2 = 24 rungs, it would be at 29 rungs
after five observations. The probability of being at or above
a given height by chance (calculated from the binomial CDF)
decreases from 0.557 at height 24 to 0.096 at height 29: a
proportional increase in the likelihood ratio for rejecting the
null hypothesis of 5.76. Stated another way, one of every 5.76
of the candidate elements that were previously as attractive to
attackers as this element are still more attractive to attackers
after these five steps were taken.

More generally, the multiplicative increase to the likelihood
ratio LH due to ε steps for an element of interest e starting
at height h is

∆LH =

∑H
i=h

(H
i

)∑H
i=h+ε

(H
i

) .
Not all elements will start at height H

2 . An element observed
only a few times may have the misfortune of starting high
up on its ladder by pure chance. This will result in a larger
increase in the likelihood ratio as each actual observation of
the element occurs. For our example with H = 48, there is
just under a two in a million chance that an element will
start at height 40 (i.e. P [0, 0, 40] ≈ 2 · 10−6). The first actual
observation of such a value will increase the likelihood ratio
for rejecting the null hypothesis (i.e. that we reached height
41 by chance) by a factor of 5.3. Still, if we looked only at the
roughly two in a million values that have at least 40 elements
set to one by chance, one out of every 25, 181 of them will
have 45 bits set by chance, as if they too had been observed
another five times.

Increasing the ladder height H can reduce the amount of
statistical information revealed by each step, but at the cost of
increasing computation, space requirements, and the number
of observations required to detect keys.

VI. CONFIGURATION

We derive initial configurations for the binomial ladder filter
by setting as our goal that elements with frequencies at, or
even close to, the detection frequency should rise to the top of
their ladders. Similarly, less frequent elements at the rejection
threshold hover closer to the midpoint of their ladders (the
expected height for elements that do not occur and for which
f = 0).

We define the equilibrium height of a value with a given
frequency, h̃, to be the height at which the probability of
dropping a rung down its ladder at each iteration is equal to
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Fig. 6: The equilibrium height function, h̃(f), for an element
that occurs with frequency f on a binomial ladder filter with
N = 229 bits and ladder height H = 48. We illustrate an
indifference region bounded by a detection threshold of one in
a million (the vertical line to the left) and a rejection threshold
of one in fifty million (the vertical line to the right).

the probability of moving up its ladder (or, in the event that
an element is at the top of its ladder, the probability that it
would move up if only there were more rungs to climb).

For an element of interest that occurs with frequency f , the
probability of climbing is equal to the probability of a step
taken for the element of interest (f ) plus the probability that
another element is observed (f) that causes the element of
interest to rise.

f + f · r(h̃) · d(h̃)

Falling occurs with a probability that a step is taken for
another element (f) which causes the element of interest to
drop.

f · r(h) · d(h)

Below the equilibrium height, the upward forces exceed
downward forces, causing the element to (eventually) rise.
Above the equilibrium height the downward pressures exceed
the upward forces, causing the element to (eventually) fall.
Thus, homeostatic forces are constantly pushing elements
toward their equilibrium height. The equilibrium height can
be derived by solving for height at which the probability of
climbing equal the probability of falling.

f + fr(h̃)d(h̃) = fr(h̃)d(h̃)

We begin by simplifying the above equation to isolate the
input, f , on the right side.

r(h̃) · d(h̃)− r(h̃) · d(h̃) =
f

1− f

After multiplying and cancelling terms, we expand d(h̃) and
r(h̃).



d(h̃)− r(h̃) =
f

1− f
2h̃

N
− 2H − 2h̃

N
=

f

1− f

h̃ =
1

2
H +

f

1− f
N
4

Rewriting the equilibrium height as a function of f , and
recognizing that the step operation cannot cause an element
to climb above the top of its ladder, we obtain the equilibrium
height equation:

h̃(f) = min

(
1

2
H +

f

1− f
N
4
, H

)
. (1)

We graph the equilibrium height as a function of frequency
for a sample binomial ladder filter in Figure 6. Elements that
never occur, with f = 0, have an equilibrium height half
way up their ladders at h̃(0) = H/2, as half of the bits
associated with the element are expected to be one by chance.
The equilibrium height grows sharply within the region of
indifference, thereby making the height a powerful signal
with which to identify elements with frequency above the
detection threshold to distinguish them from elements below
the rejection threshold.

A simple approach to configuring a binomial ladder filter
is to aim to have the equilibrium height reach the top of
the ladder half way between the rejection frequency fr and
the detection frequency fd on a log scale. We call this this
midpoint frequency, fm.

fm = e
ln(fr)+ln(fd)

2

Seting the equilibrium height in Equation 1 to H and the
frequency to fm yields:

H =
1

2
H +

fm
1− fm

N
4
.

We can then solve for the size of the filter in bits, N, as a
function of the ladder height H.

N = 2 · H · 1− fm
fm

.

To determine the best ladder height, H, simply increase
values until the rate of false detections and rejections fall
into an acceptable range. For example, Figure 7 shows the
reduction in error rates that result from moving from a ladder
of height H = 48 with threshold T = 44 (solid lines) to a
ladder of height H = 64 with threshold T = 56. The reduced
long-term error rates come at a cost of a longer ramp-up time
to detect frequent values. Increasing the ladder height also
linearly increases the number of memory accesses and hash
calculations required.

To avoid expensive division operations when indexing into
the bit array, some applications may choose to configure N to
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Fig. 7: We can reduce the probability of errors by increasing
the height of the binomial ladder, as illustrated in perpetual
mode moving from a ladder of height H = 48 with threshold
T = 44 (solid lines) to a ladder of height H = 64 with
threshold T = 56 (dashed lines). False rejections (in blue)
are initially higher with a larger ladder to climb, but decrease
as a taller ladder can support a greater distance between
the detection threshold T and the top of the ladder. False
detections (in red) are consistently lower. In this example, the
H = 48,T = 44 ladder converges to have keep false detections
and false rejections below one in a million.

the closest power of two. The setting of H = 48, N = 229

bits (64MB) used throughout the paper is the result of applying
this process with a detection frequency of one in a million and
a rejection frequency of one in fifty million, with a midpoint
frequency of approximately one in seven million.

VII. ADJUSTMENTS FOR USE IN DISTRIBUTED SYSTEMS

We can increase the throughput and reliability of the bino-
mial ladder filter by implementing it as a high-performance
distributed system.

An approximate data structure, which can only gives prob-
abilistic guarantees of the number of observations required
to detect a frequent value, should offer implementation ad-
vantages over data structures that give precise, deterministic
detection guarantees. For example, an approximate data struc-
ture should be able to tolerate some amount of data loss and
be able to operate correctly even when its underlying storage
medium fails to provide atomic or consistent transactions. Yet
the specification in Section II has a very precise requirement:
the invariant that the number of zero bits and one bits be
exactly equal. We will first show how to relax the invariant via
small changes to the step operation. We will then describe
how to distribute the data structure to minimize the amount of
communication and coordination required.

A. Probabilistic bit-ratio enforcement

Enforcing the equal-ratio invariant for a filter array divided
over multiple hosts would require that hosts coordinate to
ensure that a bit is never set without also ensuring that a
corresponding bit (which may have been distributed to another
host) is set to one, requiring the execution of a distributed



Bit-Ratio Average Worst-Case
Enforcement Reads Writes Total Reads Writes Total

Equal 2 2 4 2 + N/2 2 4 + N/2
Probabilistic 0 4† 4† 0 4 4

TABLE I: A comparison of the number of read and write
operations to perform a step operation under the original
enforcement of an equal bit-ratio from Section II and under
the probabilistically-enforced bit-ratio in Section VII-A. We
exclude the H bit reads needed to determine which rungs
are below the element (the one bits) from those above (the
zero bits)—it is the same for both approaches. The † in the
probabilistic row indicates that we chose a conservative value:
while four writes will be required for elements the top of their
ladders, other elements require only three writes.

agreement protocol. Further, if data were lost, the system
would need to count the exact number of ones in the surviving
data in order to know how many bits should be set in the
replacement data.

To make the binomial ladder filter more amenable to use
in distributed systems, we relax the equal-ratio invariant to
instead ensure that approximately half of all bits are one. We
initialize the filter with random bits, setting each bit to one
with probability one half. We then modify the step operation
to use homeostasis to drive an equilibrium state in which half
the bits are set to one.

Whereas the step operation previously identified a single
random one bit to clear to zero, we instead pick two random
bits to clear with no regard to their current value. Similarly,
when taking a step for an element that is already at the top of
its ladder, we choose two random bits of the array to set to one,
whereas before we had searched to identify a single random
zero bit. For an element that is not at the top of its ladder and
has rungs above it, we preserve the step operation’s existing
behavior of setting the bit for one of those rungs to one.

At equilibrium, when half of all values are zero and half
are one, writing a value to a randomly-selected bit position
has probability .5 of changing the value of that bit. Hence, we
expect to change one bit on average by assigning a value to
two randomly-selected bits of unknown value. If we allow for
data to be lost or for failures to occur between the operation
of setting bits and clearing bits, the ratio of zeros and ones
may become biased. The modifications made to step work to
restore equilibrium. If the filter array contain more ones than
zeros, the step operation will be biased to clear more bits
than it sets until equilibrium is restored: the expected number
of bits cleared will exceed one and the number of bits set
when an element is at the top of its ladder will fall below
one. If the filter array contains more zeros than ones, the step
operation will be biased to set more bits than it clears until
until equilibrium is restored.

Impact on performance: Adopting probabilistic bit-ratio
enforcement should not hurt performance, even in non-
distributed implementations of the filter.

As illustrated in Table I, the step operation with proba-
bilistic ratio enforcement requires no more memory operations

than the original. Both require H bit reads to identify which
rungs are above and below the element, and so these reads
are not shown in the figure. The revised step requires up to
four writes: two bits are cleared and either one or two bits are
set: one is set if the element is below the top of its ladder and
two are set otherwise. While the original step required only
two writes (one set and one clear), it required an expected
two reads to identify a bit to clear. Since the revised step
operation has a fixed number of memory operations, it can be
relied upon to meet tighter latency bounds.

On systems where writing is much more expensive than
reading, implementations of the revised step function will
perform two extra reads to ensure that it writes only the values
that change. On average, half of values have changed, and so
the expected number of write operations is two, which is the
same as for the original step.

B. Distributing the array

We divide the filter array into a fixed number of shards, M,
of equal size (N/M bits) which can be distributed to different
servers. For example, a binomial ladder filter with 229 bits
(64MB) might be divided into 1024 shards of 219 bits (64KB).

If we were to continue to map elements to bits in the entire
array, the bits for an element might be stored in as many
as H shards on H different servers. Both the height and
step operations would only be able to return after the slowest
of as many as H servers responded to the requests for the
state of each rung. This naive approach to sharding would
also be inefficient, as a separate communication request might
be required for every one of the H rungs queried.

Instead, we will restrict each element’s rungs to a single
shard. We first hash the element to associate it with a single
shard. We then use the H hash functions to associate the
element with bits within the shard associated with the element.
We can now compute the height of an element by identifying
the shard associated with it, identifying the server responsible
for storing that shard, and making a single request to that
server (instead of as many as H requests). This design choice
requires us to make the number of shards constant, so it is
important to provision enough shards to allow them to be
nearly evenly divided even if the system grows very large.

Co-locating an element’s rungs within a single shard ensures
that the step function will require at most five cross-server
requests. The first request is issued by the client taking a step
for an element. After identifying the shard associated with the
element, it contacts the server that hosts that shard. The server
that hosts the element’s shard will examine the element’s rungs
locally, and can set a rung to one if the element is not at the
top of its ladder. The server will then identify two bits in the
entire array (not limited to its shard) to clear. The server will
send (up to) two requests to the servers hosting the shards that
contain the bits to be cleared. In the event that the element
was already at the top of its ladder, and no rung was set to
one, the server will also identify two bits in the entire array
to set and send set requests to the responsible servers.



For all four of the potential requests to change bits on other
servers, the server that hosts the element’s shard does not need
to know the values of the bits before they were set. Nor does
that server need any guarantees about consistency if another
sever is setting these values. Since the result of the step
operation does not depend on the results of these set and clear
operations, the server that host’s the element’s shard can issue
these requests in the background and return a result to the
client immediately. In the event that a small fraction of these
background requests fail, biasing the ratio of ones to zeros,
the homeostatic design works to restore equilibrium.

C. Handling loss

In the event that the server hosting a shard fails, the shard’s
data will be lost and the server that takes over responsibility
for hosting that shard will need to replace the lost data. The
simplest means of recovery is to replace the shard with a
random array of ones and zeros, though this will cause all
elements that map within the shard to reset to an average
height of H/2. To provide more comprehensive recovery, a
shard’s host may periodically write the shard to off-host back-
up, such as a database or to the host next in line to be
responsible for the shard. The period used should be equal
to the acceptable amount of time (step events in the stream)
that the application will tolerate the loss of. For example, if the
application will tolerate a loss of only one second of steps for
a lost shard, then all shards should be backed up every second.
Backing up all of the non-replicated shards of a 64MB filter
requires a write throughput of 64MB/second, or 0.5 Gbps,
which is tiny for most highly-distributed systems.

D. Preventing hot spots

One way to attack a distributed binomial ladder filter would
be to overload a server by directing a large fraction of the
step operations to a single shard. To prevent attackers from
identifying elements that would map to the same shard, the
hash functions used to map elements to shards should be
salted with a secret: some value not accessible to attackers.
If a binomial ladder filter is to be used by clients controlled
by parties that cannot be trusted to prevent hot spots (clients
that may be controlled by an attacker), all operations should
be mapped to a load-balanced set of trusted clients.

Attackers may still attempt to overload individual servers
by issuing a large number of requests for a single element.
To prevent element-specific hot-spots, clients should maintain
a cache of recent results. The cache for step should include
recent elements that have reached the top of their ladders.
When step is called for one of these elements, the client
can skip the height lookup and immediately issue two set and
two clear operations to random bits not associated with the
element.

If the ladder supports calls to height separate from the
implicit height operation within step, the server may also
want to cache results of the height operation. The server
that hosts an element may indicate when client requesting a

height should cache a value and should invalidate cache
entries when heights exceed a detection threshold.

VIII. APPLICATIONS TO PASSWORDS

The binomial ladder filter has two complimentary applica-
tions for protecting services that use password-based authen-
tication from guessing attacks.

First, the filter can be applied to identify passwords fre-
quently chosen by users and prevent these passwords from
being used too frequently. In other words, it can enforce
a policy that no password should be used by more than a
certain number, or fraction, of a service’s users. This policy
addresses attacks that attempt to identify the most-commonly-
used passwords on the system and to try them against a broad
swath of user accounts.

Second, the filter can be applied to track the passwords
submitted in authentication attempts that fail. The failed login
attempts of attackers engaged in guessing common passwords
are much more likely to contain a frequent-incorrect password
than the failed login attempts of legitimate users, and so
services can use such filteres to identify hosts engaged in these
attacks with greater speed and accuracy.

The service may use this list of frequently-guessed pass-
words to accelerate its ability to detect hosts engaged in
online-guessing attacks. The service may also decide to force
users whose passwords are among those frequently-guessed
by attackers to choose new passwords, potentially requiring
an additional authentication factor to perform the password
reset.

A. Frequently-chosen passwords

Preventing passwords from exceeding a maximum-
frequency limits the probability that an attacker will succeed
when guessing the most-frequently chosen passwords. If a ser-
vice imposes a maximum-frequency limit f̂ , even an attacker
who knows the set of passwords most-frequently employed
by users must expect to issue an average of 1/f̂ guesses to
compromise an account using one of these passwords.

A binomial ladder filter enables a service to identify
frequently-chosen passwords while bounding the information
it stores about rarely-chosen passwords—information attackers
could learn if they managed to gain access to the filter.

The greater the number of accounts a service provider hosts,
the easier it is to identify frequently-chosen passwords and
forbid more than f̂ users from using any given password. For
example, a service with 100 million users can use a binomial
ladder filter of height H = 20, an array large enough to make
clears exceedingly infrequent (e.g., N = 233 bits or 1GB).
Such a service can expect to prevent most passwords from
becoming more frequent than one in 10 million and prevent
all passwords from becoming more frequent than one in 5
million. However, a site with only five million users will only
observe one password before it becomes common with one in
every five million users. The smaller the site, the more difficult
the trade-off between the frequency limit f̂ , false positives,



steps per
Application N H T observation

Prevent any password from being used by more than ˜10 users in population of 100m 233 20 20 1
Prevent any password from being used by more than ˜3 users in population of 5m 233 16 16 3
For each IP, track the number of login failures using frequently-guessed passwords 229 48 44 1
Block all logins and force password reset if account’s password is among frequent guesses 229 64 58 1

TABLE II: Suggested configurations for common applications.

and the amount of information revealed by using the step
function to record each observed password.

In addition to increasing the frequency limit, f̂ , and de-
creasing the ladder height to speed detection, we can increase
the number of steps taken each time a password is observed.
This causes the filter to record more statistical evidence that
each element occurred, reducing false positives (but weakening
privacy due to the extra steps’ change in the likelihood ratio).

A false positive, indicating a user’s chosen password it too
common when it is in fact unique, will force the user to choose
another password unnecessarily. Even without false positives,
data from past breaches suggest that well over one in a hundred
users choose a common password on their first try. A false
positive rate as high as one in ten thousand will not increase
the number of users forced to choose another password by
even a percent.

For example, consider a deployment scenario of a service
with five million users that wants to prevent passwords from
being used more than five users: f̂ = 1/1, 000, 000. Assume
the service uses a binomial ladder filter height H = 16, a
sufficiently large filter array, and issues three steps each time
a password is chosen. With this filter, most passwords would
be forbidden after being employed by three users, a small
number would be employed by four users, and a much smaller
number by five users. While its possible that a tiny number of
passwords might be used by as many as six users, an attacker
would be unable to identify which of the passwords at the top
of their ladders were used by twice as many users as others. A
user who chose a unique password would be prevented from
using it with probability 2−16, and so we would expect 76
users in our population of 5 million users (0.0015%) would
be forced to choose a new password after having chosen
something unique on their first attempt.

Web-based services that already have a large user base with
their passwords stored in a hashed format can take advantage
of a frequently-chosen password filter by marking each ac-
count with a bit to indicate whether the account’s password
has been submitted to the filter. When a user successfully logs
in with the correct password, and the flag indicates that the
user’s password has not yet been submitted to the filter, the
service adds the user’s password to the filter by calling step
on the submitted password (which is available in plaintext
during login). It then sets the bit indicating the the user’s
password has been sent to the filter.

B. Frequently-guessed passwords

Password-based services have a number of reasons to iden-
tify and track frequently-occurring incorrect passwords: pass-

words submitted in login attempts that either contain an invalid
account name or that fail to match the assigned password for
an existing account. The service may infer that a host (IP
address) that issues a failed login attempt with a frequently-
guessed password is more likely to be engaged in guessing
than a host that fails to login using a rarely-guessed password.
The service may prevent users from choosing passwords that
are frequently guessed by attackers, or may force users to
choose new passwords if their current password is one that
attackers have guessed frequently.

The binomial ladder filter enables a service to identify
frequently-occurring incorrect passwords while bounding the
information it stores about the set of rarely-occurring ones.
The set of rarely-occurring passwords that occur at least once
may include legitimate users’ actual passwords, which may be
recorded when legitimate users enter incorrect usernames. It
may also include typos of users’ passwords.

An individual’s password may appear frequent if she makes
the same mistake repeatedly or if a client operating on her
behalf repeatedly attempts to login with the wrong password.
To prevent a single user’s error to be counted repeatedly, the
account identifier (user name or email) and password should be
hashed together to create a salted hash that remains consistent
even if the account identifier is invalid. A password should
only be added to the filter if this salted hash of the password
has not been seen before (or, at least, not recently).

A binomial ladder filter used to track frequently incorrect
passwords might use an array of N = 229 bits, ladder height
of H = 48, detection height threshold T = 44, and take
one step per observation. This will ensure that, with high
probability, incorrect passwords that occur with frequency one
in a million will be detected after 30 occurrences. Passwords
less frequent than one in fifty million will rarely result in false
positives.

C. Combining approaches

If a site prevents passwords from being used by more
than one out of every million users (f̂ = 1/1, 000, 000), the
best-case for an attacker is if all users choose from a set
of one million passwords and so all passwords occur with
probability f̂ = 1/1, 000, 000. This is equivalent to dividing
up the 6-digit PIN space among all users. In such a case, an
attacker has a 30 in one million chance of guessing an account
that uses a password before the password is identified as
frequently-guessed and users’ who have chosen that password
are locked out. Thus, an attacker could expect to compromise
30 out of every million accounts before all users are locked
out. In reality, passwords distributions typically resemble a



zipf distribution, and so only a small fraction of users who
chose passwords predictable enough to be guessed online
by attackers will be affected. With each round, a significant
number of the users forced to choose a new password will
have chosen one that the attacker will not guess, and so with
each round the number of users forced to reset their password
will be a small fraction of the number in the previous round.

IX. RELATED WORK

The binomial ladder filter shares many of the same goals
as much of the research in ‘differential privacy’, a framework
introduced by Dwork [10]. Differential privacy is typically
used to address the problem of reporting the frequency of
events in data while bounding what is revealed by any in-
dividual event (or subset) in the data—so as not to allow
data reported in aggregate to be used to make conclusions
about individuals whose data were analyzed. For example, if
examining patient records to count the fraction of one con-
dition who have another condition, differential privacy could
be used to add sufficient randomness such that the counters
do not reveal information that would allow those with access
to the data to draw conclusions about individuals. Within
this framework Dwork et al. also introduced the concept of
pan privacy to account for privacy in the event that the data
structures being used to count events are compromised (once
or repeatedly) while recording statistics from the stream of
events [11]. Chan et al. [7] extend the concept for counters that
report outcomes as each element in a stream arrives. Where
work in differential privacy focuses releasing and storing the
frequency of a set of pre-specified values in a stream, in our
setting the potential values themselves (possible passwords)
are, and should remain, unknown unless they prove sufficiently
common.

Recent work by Blocki et al. [4] used differential privacy
to introduce enough randomness to protect the privacy of
users and release password-frequencies from a historical data
set of 70 million Yahoo! users [6]. The researchers analyzed
hashes generated from the password and a secret key that
they did not have access to, to prevent attempts to reverse
the hashes and find the original passwords if the data set
were compromised. Thus, even though attackers surely knew
many of the top 10-passwords (e.g., likely 123456 and
password), the researchers can not identify or reveal them.

Another similar line of work focuses on optimizing the
space required to detecting the most frequent elements, or
‘heavy hitters’, in a stream. Solutions include Cormode and
Muthukrishnan’s count-min sketch [8], a probabilistic data
structure similar to the Bloom filter, and probabilistic algo-
rithms based on more conventional array structures such as
proposed by Metwally, Agrawal, and Abbadi [13]. More recent
work includes that of Berinde et al., who provide an excellent
survey of solutions from this literature [3].

While these space-efficient data structures designed to de-
tect frequent elements were not designed for privacy, secu-
rity researchers have proposed employing space-efficient data
structures to prevent weak passwords dating back as far as

1992, when Spafford introduced a weak-password prevention
system that stored dictionaries of forbidden passwords using
bloom filters [12].

In a 2009 study of security questions that revealed that many
of these shared secrets had common answers, Schechter et al.
proposed banning common ones [14]. As early as December of
that year, it was observed that Twitter blocked a list of known-
common passwords [1] and Microsoft followed in 2011 [9].
In 2010, Schechter, Herley, and Mitzenmacher proposed using
Cormode and Muthukrishnan’s count-min sketch to identify
passwords as soon as they became common so they could be
blocked immediately. They proposed introducing noise into
the count-min sketch to introduce false positives and reduce
the value of the sketch to attackers if it were compromised.
However, they did not specify an algorithm for introducing
such noise or provide proofs of what attackers could learn by
analyzing the data structure itself. In contrast, simple analysis
using the binomial distribution allows one to analyze the
change in likelihood ratio that results when an element is
recorded in a binomial ladder filter via the step operation.

X. CONCLUSION

We introduced the binomial ladder filter for detecting
frequently-occurring elements in a stream while protecting the
privacy of rarely-occurring elements. It is particularly valuable
for applications that handle secrets because secrecy and fre-
quency are inversely correlated: a good secret is known to at
most a handful of individuals and will not be witnessed fre-
quently, whereas a value that is shared by many or commonly
guessed by others is not very secret. The binomial ladder filter
allows applications to identify values that are too common
to be anything more than nominally secret while minimizing
the risk to rare and truly secret values. For example, it can
be used to discover passwords commonly chosen by users or
commonly guessed by attackers without putting users with
unique or nearly-unique passwords at unnecessary risk.



REFERENCES

[1] Olaf Alders. Twitter and avoiding weak passwords. http://blog.
wundercounter.com/2009/12/twitter-and-avoiding-weak-passwords.
html, December 8, 2009.

[2] Anonymized. Using guessed passwords to thwart online password
guessing. In Submission, May 2016.

[3] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss.
Space-optimal heavy hitters with strong error bounds. ACM Transactions
on Database Systems, 35:1–28, 2010.

[4] Jeremiah Blocki, Anupam Datta, and Jospeh Bonneau. Differentially
private password frequency lists: Or, how to release statistics from
70 million passwords (on purpose). In Proceedings of Network and
Distributed Systems Security (NDSS), February 21–24 2016.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, July 1970.

[6] Jospeh Bonneau. The science of guessing: Analyzing an anonymized
corpus of 70 million passwords. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pages 538–552, May 2012.

[7] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual
release of statistics. ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24,
November 2011.

[8] Graham Cormode and S Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[9] Dick Craddock. Inside windows live: Hey! my friends account was
hacked! Blog post archived at http://bit.ly/1Z5MBTV, July 14, 2011.

[10] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd
International Conference on Automata, Languages and Programming
- Volume Part II, ICALP’06, pages 1–12, Berlin, Heidelberg, 2006.
Springer-Verlag.

[11] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum.
Differential privacy under continual observation. In Proceedings of the
Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pages 715–724, New York, NY, USA, 2010. ACM.

[12] Eugene H. Spafford. OPUS: Preventing weak password choices. Com-
puters & Security, 11(3):273–278, 1992.

[13] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In Pro-
ceedings of the International Conference on Database Theory (ICDT),
pages 398–412. Springer LNCS Volume 3363, 2005.

[14] Stuart Schechter, A. J. Bernheim Brush, and Serge Egelman. It’s
no secret: Measuring the security and reliability of authentication via
‘secret’ questions. In Proceedings of the 2009 IEEE Symposium on
Security and Privacy, Berkeley, CA, USA, May 2009. IEEE Computer
Society.

[15] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity
is everything: A new approach to protecting passwords from statistical-
guessing attacks. In The 5th USENIX Workshop on Hot Topics in
Security (HotSec ’10). USENIX, August 2010.


