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Abstract—Online guessing attacks against password servers
can be hard to address. Approaches that throttle or block
repeated guesses on an account (e.g., three strikes type lockout
rules) can be effective against depth-first attacks, but are of little
help against breadth-first attacks that spread guesses very widely.
At large providers with tens or hundreds of millions of accounts
breadth-first attacks offer a way to send millions or even billions
of guesses without ever triggering the depth-first defenses. The
absence of labels and non-stationarity of attack traffic make it
challenging to apply machine learning techniques.

We show how to accurately estimate the odds that an ob-
servation x associated with a request is malicious. Our main
assumptions are that successful malicious logins are a small
fraction of the total, and that the distribution of x in the
legitimate traffic is stationary, or very-slowly varying. From these
we show how we can estimate the ratio of bad-to-good traffic
among any set of requests; how we can then identify subsets of
the request data that contain least (or even no) attack traffic; how
these least-attacked subsets allow us to estimate the distribution
of values of x over the legitimate data, and hence calculate the
odds ratio. A sensitivity analysis shows that even when we fail to
identify a subset with little attack traffic our odds ratio estimates
are very robust.

I. INTRODUCTION

Web service providers who offer password authentication to
their users must protect against both online and offline guess-
ing attacks. If an attacker gains access to the password file she
can mount an offline attack by repeatedly guessing at a rate
limited only by her hardware. The power of modern password
cracking tools make this a severe threat. To protect against
offline attacks it is generally recommended that passwords be
salted and hashed [1], that an iterated [2] or memory-hard [3],
[4] hash be used, that honey tokens be employed to trigger an
alert in the event that the file leaks [5], and/or that stealing the
hashed file be made infeasible [6]. Mechanisms and policies
to force users toward passwords that will resist offline attacks
have seen considerable effort, though this has proved a very
difficult task [7], [8].

Online guessing attacks might seem less serious in the sense
that the attacker cannot guess at the same rate as offline. Even
so they represent a widespread threat. Since the basic purpose
of an authentication server is to admit those who present a
valid username/password pair, every server must anticipate
online guessing traffic.

†Work performed while the author was at Microsoft.

Online guessing attacks are generally divided into targeted
(or depth-first) and untargeted (or breadth -first) approaches. In
a targeted attack a large number of guesses are directed against
a small number of accounts that presumably are of particular
interest to an attacker. The email or social networking accounts
of celebrities, for example, are obvious targets. Wang et al
suggest that targeted online guessing is underestimated as
a threat [9]. In an untargeted attack guesses are distributed
among a large number of accounts. Here the attacker is
not interested in particular individuals so much as access to
the resource that an account represents. For example, email
accounts of users with good reputation can be used to send
spam with much higher success rates than recently-opened
accounts with no history.

Not only has it proved difficult to get users to choose
passwords that will withstand offline guessing, the much
lower threshold of resisting online guessing has also proved
hard [10]. Users show considerable preference for easy-to-
remember passwords, and great ingenuity in circumventing
rules and policies put in place to forbid common choices [11],
[12]. Studies of passwords from breached data sets consistently
show that a dictionary of 100 or so passwords captures on the
order of 5% of accounts [10] [13]. This means that attackers
can reliably compromise significant numbers of accounts by
spreading guesses (most of which will fail) among many
accounts.

Untargeted attacks can be harder to detect since the guessing
is distributed across many accounts. In spite of how common
the problem is many of the recommended defenses appear
vague or ambiguous. The National Institute of Standards
and Technology (NIST) recommends that [14] “login traffic
be monitored for suspicious activity.” The UK’s CESG rec-
ommends [15] “protective monitoring to detect and alert to
malicious or abnormal behaviour, such as automated attempts
to guess or brute-force account passwords.” The Open Web
Application Security Project (OWASP) recommends that [16]
“all failures are logged and reviewed.” It is not entirely clear
how these recommendations might be turned to action. Large
web service providers presumably have some mechanisms for
dealing with online guessing, but none appears to publicly
divulge their approach.

The problem of online guessing appears significant. In 2009
Twitter was the subject of a successful large-scale online
dictionary guessing attack which (among others) compromised



the accounts of Barack Obama and Britney Spears. Speaking
of breadth-first online guessing against Microsoft Accounts,
Alex Weinert wrote in 2016 [17] about “more than 4 billion
credentials we detected being attacked last year.” He contin-
ued:

We detect more than 10 million credential attacks
every day across our identity systems. This includes
millions of attacks every day where the username
and password are correct, but we detect that the
person attempting to log in is a cyber-criminal.

Freeman et al describe a statistical approach to detecting logins
that may be attacks (even though username and password
are correct) at LinkedIn [18]. Wordfence, a firm that offers
protection to users of the popular WordPress blogging soft-
ware, referred to 6 million guesses over a 16 hour period
in 2016 [19]. Twitter and Microsoft both pro-actively check
user chosen passwords against blacklists of a few hundred of
the most common passwords [7]; since this is a defense that
primarily affects breadth-first guessing it is likely that this is
in response to observed attack traffic. NIST’s recently updated
authentication guidelines suggests blacklisting very common
password choices and throttling as a defense against this attack
[20]. The solution that many might prefer, that passwords at
long last be replaced by something better, appears optimistic
[21]. Thus it appears this problem will be with us for some
time.

An idealized model of authentication would have the server
grant access when username and password are correct and
deny it when they are not. The fact that some users choose
passwords that are so simple that they will not withstand even
100 guesses and attackers can send high volumes of guessing
traffic complicates this view. Providers are thus naturally
driven to incorporate side information to improve decisions.
Login requests accompanied by a previously-issued cookie,
or from a familiar location or IP address might naturally be
weighted higher. Logins from locations that appear anomalous
might be weighted as more suspicious (this is the approach
taken by Freeman et al [18]).

Contributions: Our contributions are as follows. First, we
show how we can robustly estimate the ratio of bad traffic
to good among login requests. We show that we can use this
estimate to identify the subsets of the request data that contain
least (or even no) attack traffic. We then use these least-
attacked subsets to estimate the distribution of values of any
feature of interest over the unattacked data. We put the pieces
together to calculate the odds that any particular request is
malicious given our observations. To the best of our knowledge
no previous work details how to estimate the amount of attack
traffic at a site, or explains how to calculate the likelihood that
an observation indicates attack traffic. Finally we perform a
sensitivity analysis that shows that even if we fail to identify a
subset with little attack traffic our odds ratio estimates are very
robust. Since we explicitly estimate the bad-to-good traffic
ratio, our approach has the advantage over fixed-threshold
schemes (e.g., three strikes lockout and variants) that we avoid

base rate neglect [22]. It has the advantages over machine
learning schemes that it requires no labels, and does not
assume stationarity of attack traffic.

II. RELATED WORK

In spite of how the fact that the problem is common to
all password-protected servers there appears very little work
on protecting against online guessing attacks. As mentioned
earlier, recommendations by organizations such as NIST [14],
CESG [15] and OWASP [16] tend to be vague and non-
actionable.

The most commonly referred to defense against online
guessing is a “three strikes” type policy which locks an
account after three consecutive unsuccessful attempts. There’s
been little formal analysis of the efficacy of this scheme.
Brostoff and Sasse [23] examine actual login attempts at
a large university and find that increasing from three to
ten would have negligible effect on security, while reducing
unnecessary lockouts and improving security.

Other approaches include throttling the rate at which the
server will respond to guesses against an account. A 1985
Department of Defense report recommends limiting the rate at
which guesses will be served to between one per second and
one per minute [24]. Florêncio et al [25] propose a variant with
exponentially increasing time between successive requests
against a particular account. Pinkas and Sander [26] propose
interjecting a Captcha challenge periodically to disrupt brute-
force guessing attacks. Van Oorschot and Stubblebine [27]
offer a simplification which greatly reduces the number of
challenges presented to legitimate users. Alsaleh et al [28]
further enhance this approach. Despite the hold it has on
popular imagination Bonneau and Preibusch find that “three
strikes” type rules to block accounts are uncommon [29].

Approaches that involve account locking, or rate-limiting
or serving Captcha challenges appear more suited to targeted
guessing attacks than untargeted ones. The prevalence of this
line of thinking may be due to the fact that untargeted attacks
seem relatively recent phenomenon; breadth-first attacks make
most sense against services with very large user populations.
Web services with hundreds of millions of users were probably
not imagined when, e.g., the 1985 DoD guidance was written.

Establishing reputation for an IP address has the potential
breadth-first attacks. Simple heuristics might involve blocking
requests from an address if the number or fraction of failed
attempts exceeds some threshold. Obviously it is important to
count distinct fails rather than repeated attempts with the same
wrong password (as might come from a poorly configured
client with a cached password). While not much studied in the
academic literature it appears likely that large providers use
some variant. Several companies offer IP reputation lookup
services (e.g., Webroot, Trend Micro, Cyren). This technique
has the potential to catch attacks that evade account throttling.
Even if dispersed among many accounts a high volume of
guesses will generate many fails. Assuming that the attacker
operates from an IP address pool that is a) relatively small
an b) distinct from that of the legitimate user population



we should be able to block significant amounts of traffic.
The increasing use of botnets has undercut these assumptions
somewhat. Many attackers have access to millions of IP
addresses many of which co-exist with legitimate user traffic.

The problem of classification where the distribution changes
has been studied under the name “concept drift” in the
statistical learning literature. Gama et al [30] give a survey of
the approaches. These techniques have been used with some
success for the detection of slowly-evolving credit-card fraud
[31]; however they do less well when faced with extreme non-
stationarity.

A. Binary classification

The decision to allow or deny access (or block an IP address
or other defensive action) is in principle a binary classification.
If an observation were associated only with attack activity then
our task would be easy. However, almost everything we can
observe that may be indicative of attacker traffic is also present
in legitimate traffic. For example, password-guessing attackers
generate a lot of failed requests, but users also mis-type
and mis-remember their passwords. So, failed login attempts
certainly occur in legitimate traffic. Thus, we often have to
deal with observations that may be more common in attack
than legitimate traffic (or vice versa) but we have to deal with
questions of degree rather than binary demarcation criteria
between malicious and benign. Fails are almost certainly much
more common in attack than legitimate traffic, but by how
much? How should we use this fact to protect user accounts?

The common way of using an observation to decide between
two possibilities is with a likelihood ratio test [32]. Let’s call
our observation x and suppose that we are trying to decide
between malicious, mal, and non-malicious, mal based on x.
The likelihood ratio test says that if

P (mal|x)

P (mal|x)
=
P (x|mal)
P (x|mal)

· P (mal)
P (mal)

> T

then we decide that the observation is malicious, and otherwise
not. The threshold, T , controls the trade-off between false
positives and false negatives.

This test clarifies the difficulty of simply associating some
observation with attacker behavior. The likelihood ratio test
shows that observing that P (x|mal) is high is not enough to
allow us to conclude that the odds of being malicious are
high. For example, suppose our observation is a failed login
attempt where the attempted password is on a dictionary of the
100 most common passwords. This might account for 95% of
malicious requests (i.e., P (Top-100 fail|mal) = 0.95) and only
0.5% or so of benign ones (i.e., P (Top-100 fail|mal) = 0.005).
However, we’re still not in a position to decide whether the
request is malicious or not since the ratio of bad traffic to good
P (mal)/P (mal) might vary by orders of magnitude. Ignoring
this factor is known as base-rate neglect [22].

The difficulty then in applying binary classification ap-
proaches is estimating the quantities in the likelihood ratio
test. This will be our main task in Section III.

B. Machine Learning

An alternative approach is to use machine learning. Bon-
neau et al suggest that traditional password authentication
be augmented in this way [33]; that is, providers should
incorporate other pieces of information (e.g., presence of
cookie, familiarity of location, etc) when making a decision.
Supervised machine learning approaches generally train using
a fixed number of labelled samples. Freeman et al describe a
learning approach to identifying whether a successful request
is actually from the user or an attacker [18].

The limitations of machine learning for security problems
are explored by Sommer and Paxson [34]; while their em-
phasis is on intrusion detection many of the lessons are also
applicable to our problem. In a recent book Chio and Freeman
explore applications to spam and account hijacking [35]. While
they do not cover password guessing explicitly some of the
challenges they highlight are applicable. Two factors limit the
applicability of machine learning to this problem: the absence
of labels, and non-stationarity of the attack traffic.

First, we do not have an easy way of getting a training set
of requests that are labelled benign and malicious. Second,
a fundamental assumption of most supervised learning ap-
proaches is that the distributions from which the training data
are drawn are representative of what will be seen in-the-wild,
and stationary [36]. This may be true of the benign traffic:
as the result of independent actions of a large population of
users we can expect patterns to vary very slowly. However,
we must expect extreme non-stationarity in the attack traffic.
This is so because a) attackers deliberately change traffic
patterns to confuse detection mechanisms, b) attackers may
change strategy or have fluctuating resource availability, and c)
malicious traffic is probably due to a small number of attackers
(and thus will have much higher variance). Kelly et al find
that changing populations has can have disastrous effects on
classifier performance [36].

Thus, we cannot expect P (x|mal) to be even approximately
stationary: the user-agents, IP addresses and attack strategy can
change enormously. Equally, P (mal)/P (mal), the ratio of bad
traffic to good can change enormously: 50% of traffic might
be malicious at some times, and it might be only 1% at others.
Some IP ranges might have no attack traffic, while at others
it might be 100%.

We suggest that even extreme fluctuations in attack traffic
are common and to be expected as attackers acquire, lose or
re-direct resources. Further, any assumption of non-stationarity
greatly eases the attackers’ task. A supervised learning ap-
proach learns a classification boundary between benign and
malicious traffic. To evade the defences the attacker need
simply change along the input features. For example, the
usefulness in making classification decisions of a feature like
browser version can be greatly reduced by simply changing
browser version with a high enough frequency that it ceases
to be a good predictor.



III. ESTIMATING THE TEST STATISTIC

Our attack on the problem is as follows. We’ll assume that
x is a categorical feature and that we wish to estimate:

Θ(x) ·Ψ ,
P (x|mal)
P (x|mal)

· P (mal)
P (mal)

. (1)

This is the odds that observing a particular value of x implies
that the request is malicious [32]. This might allow us to decide
to lock an account, block requests from an IP address or other
defensive action. We note that the observed distribution of x
is the sum of the distributions in the benign and malicious
traffic:

P (x) = α · P (x|mal) + (1− α) · P (x|mal), (2)

where 0 ≤ α ≤ 1. The problem is that we don’t know
P (x|mal), P (x|mal) or α. While the malicious traffic is non-
stationary, we expect the benign traffic, P (x|mal), as the
aggregate of the independent actions of a very large number
of users, to vary slowly, if at all. We first show how we can
estimate the second term in (1), the ratio of bad traffic to good:
Ψ , P (mal)/P (mal) = (1 − α)/α. Using this we can then
identify subsets where there is very little attack traffic (i.e.,
α ≈ 1) and thus the observed distribution closely approximates
that of the benign traffic, i.e., P (x) ≈ P (x|mal). This then
allows us to estimate the first term in (1) by subtraction:

Θ(x) ,
P (x|mal)
P (x|mal)

=
P (x)− α̂ · P̂ (x|mal)

α̂ · P̂ (x|mal)
.

Here we are using theˆsymbol to represent an estimate.
To avoid encumbering the notation we present our approach

for a single categorical feature. Extension to multiple indepen-
dent features is trivial. We represent the two component ratios
of the likelihood ratio test as Ψ and Θ(x). Ψ is the ratio
of bad-to-good traffic (often called the pre-observation odds);
Θ(x) is the ratio of how common x is in the malicious traffic
over how common it is in legitimate traffic (often called the
likelihood ratio). The product, Θ(x) · Ψ, is often called the
post-observation odds.

We perform a sensitivity analysis in Section IV to determine
how our estimates will change assuming that we mis-estimate
some of the parameters along the way.

A. Estimating P (mal)/P (mal)

Consider an authentication server which handles login re-
quests. Over any collection of requests it sees L successful
logins and F failed attempts. We assume that there’s an
unknown mix of legitimate and malicious traffic: the combined
number of benign and malicious logins is

L = Lb + Lm

and the combined number of benign and malicious fails is

F = Fb + Fm.

We first wish to estimate the last term in the likelihood ratio
test, the ratio of bad traffic to good, P (mal)/P (mal) = (1 −

α)/α = (Lm + Fm)/(Lb + Fb), but can observe only L and
F.

Consider the ratio of fails to logins. Under the assumption
that malicious logins are a small portion of the benign ones
(i.e., Lm/Lb ≈ 0) we get:

F

L
=

Fb + Fm

Lb + Lm
=
Fb/Lb + Fm/Lb

1 + Lm/Lb

≈ Fb

Lb
+
Fm

Lb
. (3)

The assumption that Lm/Lb ≈ 0 should be true of guessing
attacks. (The same is of course not true for an attacker
exploiting password re-use or other non-guessing approach.)
First, any service for which Lm/Lb 6≈ 0 (i.e., legitimate
logins do not heavily outnumber malicious ones) would appear
to offer little utility to its users. Further, even in the best
case the attacker will have a per-guess success rate of about
0.1% [13]; if legitimate requests succeed 95% of the time,
and traffic is a 50/50 mix of malicious and benign then
1 + Lm/Lb = 1.0011 ≈ 1.

Next observe that benign traffic is the aggregate of a large
number of users (at a large provider millions or even hundreds
of millions) acting independently. For a large enough number
of requests, Fb/Lb ≈ const. This is so because we expect
login failures from legitimate users to happen independently
at some rate p. These should happen because of typos, mis-
remembered passwords or usernames etc, which we assume
happen independently across the population. So, a total of
Lb+Fb benign requests should result in p·(Lb+Fb) = Fb fail-
ures. Thus, using the well-known normal approximation to the
binomial distribution [37], we can have 95% confidence that
an approximation of the benign failure rate p̂ = Fb/(Lb +Fb)
will lie in the interval

p± 1.96 ·

√
p · (1− p)
Lb + Fb

. (4)

For example, if p = 0.07 then 95% of the time we would
expect an approximation p̂ = Fb/(Lb + Fb) to fall within
±0.00158 of the true value of p for Lb + Fb = 100, 000 and
within ±0.000158 for Lb+Fb = 107; so we’re within 0.226%
of the true value of p with 10 million benign requests. Since
p is small the confidence interval for Fb/Lb = p̂/(1 − p̂) ≈
p/(1 − p) = const. will be fractionally higher. (A value of
p = 0.07 is broadly in line with the value that Chatterjee et
al [38] measured for typos, but we will show how to estimate
it below).

Thus, the ratio of benign fails to logins should be fairly
constant over large enough collections of authentication re-
quests. Hence, if we divide our data into large-enough subsets
of requests, we get for any given subset:

F (k)

L(k)
≈ c+

Fm(k)

Lb(k)
(5)

where c = p/(1− p) and k is just an index over subsets.
The subsets can be any grouping of the login request data so

long as they have enough entries to ensure that the confidence



interval in (4) is small relative to p. For example, the subsets
can have request data from particular time slots, requests
that come from particular IP-address ranges, requests with
particular user-agent strings, or requests against particular sets
of accounts. Combinations of those things are also possible,
e.g., we could form a subset of request data during a particular
time slot, from a particular range of IP addresses against
a certain collection of accounts. We’ll take subsets that are
grouped by time intervals (e.g., hour or day) as well as by
features such as browser and IP address; to avoid unnecessarily
encumbering the notation we don’t explicitly add an index for
time.

Note, we are assuming that the benign failure rate p is
independent across features; that is, Fb(k)/Lb(k) ≈ const. for
each of the subsets. For example, we expect that the benign
users of Chrome 64.0.3282.119 to fail at the same rate as the
users of Firefox 27.3; we expect the benign traffic from one
particular range of IP addresses to fail at the same rate as
others. We are not assuming the same of the malicious traffic,
and we are not assuming the same of the observed traffic
(i.e., the mix of benign and malicious in (2)). We postpone
the question of mobile devices and proxies (which may have
different traffic and failure patterns) until Section V-B.

Now (5) is interesting because it tells us that variations
(across subsets or over time) in the ratio of observed failures to
observed logins, F (k)/L(k), are due to malicious traffic. That
is, if a subset has no malicious traffic, Fm(k) = 0 and then
F (k)/L(k) = c = p/(1 − p). Further, since Fm(k) must be
positive, malicious traffic can cause increases in F (k)/L(k)
above the baseline value c, but cannot cause decreases.

Suppose then that we knew the value of the constant in (5).
We then have a straightforward way to estimate the malicious
traffic in a particular subset:

Fm(k) = Lb(k) ·
(
F (k)

L(k)
− c
)
≈ F (k)− c · L(k). (6)

So we could estimate the amount of malicious traffic in a time-
slot, or from a range of IP addresses, or from a particular user-
agent if we can determine this single number c = p/(1− p).
This value should also be very stable over time: we do not
expect that rate at which users mis-type and mis-remember
passwords etc, to change significantly over time. (We examine
the question of traffic containing a mixture of types with
different failure rates, e.g., mobile and desktop, in Section
V-B). Hence, we have a potentially accurate estimate of the
amount of malicious attack traffic if we can determine this
single constant c, which at least in principle, need only be
measured once. For example, as a thought-experiment, if
attackers were to “take a day off” and pause all malicious
traffic then we could get a value for c = F (k)/L(k) for
all K of the subsets on that day. We could use this estimate
for months or even years to come. In practice, of course we
would want to re-estimate c regularly to confirm that nothing
is changing, but we can do a great deal with (6) if only we
can find c. Also, the larger the subset that we use the smaller

is the confidence interval in (4). Hence, there’s a significant
advantage to having large subsets.

From (6) the ratio of bad traffic to good for any subset
that we need in the likelihood ratio test (1) can now be easily
estimated as

P (mal)(k)

P (mal)(k)
≈ Fm(k)

Lb(k) + Fb(k)
=
F (k)− L(k) · c
L(k)(1 + c)

=
F (k)

(1 + c) · L(k)
− p. (7)

This involves only quantities that we observe directly (i.e.,
F (k) and L(k)) and p (which we have yet to estimate).

Note that in an abuse of notation we’ve indexed the prob-
abilities P (mal)(k) and P (mal)(k) by subset k. This is so
since the malicious to good traffic ratio can (and in general
will) vary enormously from subset to subset. For example,
traffic from some IP addresses may be 100% malicious, while
that from others may be 100% benign, and many will contain
some mix.

B. Estimating c = p/(1− p) and P (x|mal)

The potential to estimate the ratio of bad traffic to good
is promising, but we still need an accurate estimate of the
constant p/(1− p). As noted earlier there are several compo-
nents to the benign failure rate p. One possibility is that we
might measure these individual components. That is, perform
a measurement study to estimate the rate at which users
enter either password or username incorrectly. Chatterjee et
al [39] offer a measurement of one of these components: they
estimate failures due to password typos at 4.5% overall and
9% from touchscreen keyboards. It’s likely that the rates at
which benign failures occur are somewhat stable across sites,
however we wish to leave open the possibility that they vary.
For example, it is likely that a tax-related site where people
login only once a year or so will have a much higher benign
failure rate than a social networking or email site where a
majority login every day. Sites that force mandatory password
expiration every 90 days likely have higher fail rates than
those that do not (and this might be time-dependent if those
changes are synchronized across users). Also, we can expect
benign failures that come from mobile clients to occur at
a very different rate from clients that have a conventional
keyboard. The mix of traffic from mobile to conventional
clients is probably very site dependent (e.g., many people
probably access facebook or twitter using apps on their phone,
while it is likely that few people access a government tax site
in this way). Finally, users may feel more reticent to allow
a browser to auto-fill credentials for a bank site than for a
video-streaming service or online newspaper; this might make
password submission more likely to be automated and thus less
subject to error. For all of these reasons it seems preferable (if
possible) to estimate p on a per-site basis and to update this
estimate periodically.



Clearly, from (5), malicious traffic can increase F (k)/L(k)
above c but not decrease it. Thus, a simple upper-bound
estimate for our constant is:

ĉ , min
k

F (k)

L(k)
≥ c. (8)

Here the minimization is taken over all subsets large enough
to satisfy our assumption that the confidence interval in (4) is
small enough to ensure that Fb/Lb is approximately constant.
We’ll examine subsetting strategies in Section III-C below.
Obviously, once we have this we can estimate p̂ = ĉ/(1 + ĉ).

Call the index of the subset of our data that achieves
the minimum k0. Note from (5) that k0 is the subset,
where Fm(k0)/Lb(k0) is minimized. It’s easy to show that
Fm(k)/Lb(k) is monotonically decreasing with α(k) and thus
this subset contains the least amount of attack traffic among
all the subsets. Hence, in finding our estimate ĉ we’ve also
found an estimate for the distribution of x over the benign
traffic:

P (x|mal) ≈ P (x)(k0). (9)

Note that we’ve dropped the k-index since, by assumption,
the distribution of x in the benign traffic is stationary and
independent of features such as browser version, IP address
and time.

Observe that (8) is generally an over-estimate (unless we
find a subset with no attack traffic). If we over-estimate c then
we wrongly consider some malicious traffic as benign. This
means that we under-estimate the numerator and over-estimate
the denominator in P (mal)/P (mal). Thus our estimate is
conservative in the sense of erring toward considering traffic
benign rather than malicious. We examine the sensitivity of
our estimates in greater detail in Section IV.

C. Subsetting strategies

The request traffic can be grouped into subsets many dif-
ferent ways depending on the features logged by the server.
We’ll consider subsets consisting of time slots, IP address
ranges, and particular user-agents and particular collections
of accounts. Other features may be recorded, but we assume
most authentication servers log at least this set of features.

Some of the features are entirely under attacker control.
Useragent or browser version can be chosen without con-
straint. IP addresses, on the other hand, are constrained by
those the attacker controls; it is very likely that there will
be large blocks of IP address ranges from which she sends
no traffic. The account attacked lies somewhere in between:
it’s quite likely that the attacker does not have a complete
and accurate directory of every single account at a service.
Thus, it’s likely that she has a list of accounts that she attacks;
accounts not on any attackers list might see no attack traffic
at all.

The goal in Section III-B was to find the subset with the
least amount of attack traffic while still being large enough to
keep the confidence interval in (4) small. If we divide into very
small subsets the likelihood that one or more see very little

attack traffic is increased, but as the subsets become smaller
the confidence intervals around our estimates becomes larger.
On this point services with massive user-bases have a clear
advantage. A service with 100 million users might have a
million logins per day on a particular version of a particular
browser (e.g., Chrome 64.0.3282.119); if this version happens
not to be used by any attacker this would suffice to estimate c
within a very narrow confidence interval. On the other hand,
at a small university with only 10,000 students that same
browser version might see only 100 logins per day, which
is nowhere near enough to give a narrow confidence interval
in (4). The university in this case might choose a much longer
time interval.

Consider the particular case of dividing the data into subsets
by account name. As explained above, we assume that while
some accounts will be attacked a great deal some will almost
certainly see very little or no attack traffic. One possible
subsetting strategy is as follows. Choose a time interval and
a number of subsets Ku such that the average number of
successful logins per subset is large enough to make the
confidence interval in (4) small. For example, if a service has
14 million logins per day we might choose our time interval to
be one day and make Ku = 20; this gives approximately 700k
benign requests per subset, so that we’ll be able to estimate
p with about 1% accuracy (i.e., if p were 0.05 we’d have
p̂ = 0.05± 0.0005).

Now assign accounts to demi-decile subsets (i.e., each has
1/20 of the total) ordered by the increasing ratio of fails to
logins F/L on one day. That is, the k = 0 subset has the 5%
of the accounts that had the lowest F/L ratio, while the k =
Ku−1 subset has the 5% of accounts where this is highest. We
can now use these subsets to estimate c as in (8). In sorting by
F/L we increase the dissimilarity of amount of attack traffic
between subsets (e.g., with respect to a random assignment).
Obviously, we must do the estimation over a different time
interval from the one used to assign the accounts into bins. For
example, if we assigned accounts to subsets based on sorting
over the F/L ratio on day-0, we would use days-1, 2, 3, · · · to
estimate c. That is, we wish to be sure that F (k)/L(k) is low
because of low attack volume and not because of selection
bias.

This subsetting exercise can be repeated for other features
such as IP address, browser version, and any others available.
All that is required to get an accurate estimate of c is that at
least one of these subsets receives little or no attack traffic and
is big enough to make the confidence interval in (4) small. Of
course we cannot guarantee that we will ever find a subset
entirely free of attack traffic. However, the sensitivity analysis
of Section IV will show that even imperfect estimates are very
useful in getting the likelihood ratio.

Here, again, services with very large user populations appear
to have a significant advantage. A service with hundreds
of millions of users might be able to divide accounts (or
IP addresses or browser versions) into 1% subsets while
preserving narrow confidence intervals in a single day’s worth
of requests. It would then be possible to estimate c almost



precisely if even a single 1% of accounts (or IP addresses or
browser versions) see no attack traffic for a single day.

The assumption that some portions of account and IP
address space may be free of attack traffic does not seem
strong (since the attacker is constrained by addresses available
and accounts that she knows of). While the useragent has
fewer constraints, some popular password guessing tools, such
as THC-Hydra, offer only limited ability to randomize user-
agents in the traffic generated.

Unless the distribution of attack traffic across time, IP
address ranges, user-agents and accounts is identical to those
distributions in the legitimate traffic then some subsets will
contain more attack traffic than others. The subset with the
least attack traffic will be the one that minimizes (8) and thus
gives the tightest bound on c.

Importantly, if we find an unattacked subset we can have
high confidence that we have done so. In a subset that is free of
attack traffic the value of F (k)/L(k) should remain constant
over time and give us the actual value of c. For example, with
a time interval of one day, having F (k)/L(k) vary within the
margin of error for a period of weeks is a good indication that
subset k is unattacked (or that the attack traffic does not vary
over time in this subset). If several subsets yield the same
value of F (k)/L(k) then either they are all unattacked or
the bad to good ratio (1 − α(k))/α(k) is the same in all
of them. Naturally, our confidence that we’re close to the
true value of c increases greatly if we get several subsets
independently corroborating the same value. For example, if
several user-agents are unused by an attacker, some accounts
are unattacked, and she has access to only a portion of the IP
address range then we will have independent measurements
converging on the true value of c.

D. Estimating P (x|mal)/P (x|mal)

We’ve seen how we can estimate P (mal)/P (mal) over
subsets. Since our goal is to use the likelihood ratio test (1) it
remains to find P (x|mal)/P (x|mal). We show now how this
can be calculated.

We already saw in (9) how to estimate P (x|mal). Now recall
from (2) that any subset that contains a mixture has proportions
(1−α(k)) and α(k) of attack and benign traffic respectively:

P (x)(k) = α(k) · P (x|mal) + (1− α(k)) · P (x|mal)(k).

(Note that we drop the k index for P (x|mal) since it is
constant across subsets). Equation (7) gives the ratio of bad
to good traffic. This allows us to solve for α(k) :

P (mal)(k)

P (mal)(k)
=

1− α(k)

α(k)
. (10)

So, we can now calculate α(k) for any subset assuming that
we have first estimated P (mal)(k)/P (mal)(k). That is:

α(k) =
1

1 + P (mal)(k)/P (mal)(k)
, (11)

where P (mal)(k)/P (mal)(k) is calculated from (7).

Now, the malicious portion of the traffic is:

(1− α(k)) · P (x|mal)(k) = P (x)(k)− α(k) · P (x|mal).

In words: the malicious traffic (left-hand side) is what we have
observed minus the benign traffic. The benign traffic in this
particular subset is P (x|mal) weighted by α(k). So now the
overall odds become (using ˆ notation for quantities that are
estimated rather than observed directly):

Θ(x)(k) ,
P (x|mal)(k)

P (x|mal)
=
P (x)(k)− α̂(k) · P̂ (x|mal)

α̂(k) · P̂ (x|mal)
,

(12)
where α̂(k) is an estimate of α(k), etc.

Extending to multiple features is trivial under the common
assumption of independence; the likelihood ratio is simply
expanded as the product of the individual probabilities. Thus,
we can estimate the odds that a request is malicious given
all of the independent observations available. We might get
the odds that a request at a particular time of day, from a
particular IP address range, from a particular browser version
is malicious for example. Combining multiple features is, of
course, particularly valuable when we have multiple weak
indicators of attack, rather than a single strong one.

E. Overall algorithm

So our entire estimation procedure is as follows. We select a
time-interval and break our request data into K subsets using,
e.g., the strategy of Section III-C. These should be such that
the confidence interval in (4) can be expected to be small. This
naturally depends on the number of users and logins per unit
time and will vary enormously from service to service.

For pre-processing, we first calculate the quantities that
pertain to the benign distribution. These should be stable and
do no need to be re-estimated for each subset.

1: Estimate ĉ from (8),
2: Calculate p̂ = ĉ/(1 + ĉ)
3: Estimate P̂ (x|mal) from (9)
For each subset k = 0, 1, 2, · · · ,K − 1:
4: Estimate Ψ̂(k) = P̂ (mal)(k)/P̂ (mal)(k) from (7)
5: Solve for α̂(k) using (11)
6: For each value of categorical feature x: estimate

Θ̂(x)(k) = P̂ (x|mal)(k)/P̂ (x|mal) from (12)
Now for every request received where we observe a value

x simply calculate the post-observation odds as the product:
Θ̂(x)(k) · Ψ̂(k).

F. Toy example

We present a toy example to demonstrate the simplicity of
the approach. We stress that these are “made-up numbers” and
for illustration only.

Suppose that 25% of the request traffic at a service is
malicious. Assume, however, that only 80% of accounts are
known to the attacker (i.e., 20% are not on her list). We use the
strategy in Section III-C to group into ten subsets by account;
we sort by the fail-to-login ratio and each subset contains 10%
of logins. Clearly then two of the subsets will be free of attack



traffic. The actual value will be Ψ(k) = 0 for two subsets
and Ψ(k) = (0.25/8)/(0.75/10) = 0.4167 for the remaining
eight. This leads to an estimate ĉ that has 95% chance of being
within one margin of error of c, and it allows us to accurately
estimate the bad-to-good traffic ratio Ψ(k) for k = 2, 3, · · · , 9
in the 8 subsets of accounts that do receive attack traffic (using
(7)). We also get an accurate estimate P (x|mal) for any feature
x of interest (from (9)).

Consider the simple binary feature mentioned in Section
II-A: whether or not a failed request is on the list of 100
most common passwords. Armed with an accurate estimate of
P (Top-100 fail|mal) from one of our subsets of unattacked
accounts we can accurately calculate Θ(Top-100 fail)(k).
For example, if 97% of the attacker’s guesses are among
the Top-100, but only 0.5% of benign failures are then
Θ(Top-100 fail)(k) = 0.97/0.005 = 194.0.

Thus, the odds of a request that fails with a Top-100
password being malicious will be

Θ(Top-100 fail)(k) ·Ψ(k) = 194× 0.4167 ≈ 80.8

if the account is in one of the subsets that receives attack
traffic, while it will be

Θ(Top-100 fail)(k) ·Ψ(k) = 194× 0 = 0

if it is not.

IV. SENSITIVITY ANALYSIS

Our main source of error is the possibility that, instead of
being free of attack traffic, we estimate c from a subset that is
not entirely benign. We can see how this affects the value that
we get for ĉ and then examine how that inaccuracy ripples
through to the other quantities. Let’s consider the case where
we estimate c over a bin with α(k0) 6= 1 so that we end up
with an over-estimate.

When we mistakenly believe that we’ve found an un-
attacked bin we use (8) and instead of c we estimate

ĉ = c+
Fm(k0)

Lb(k0)
= c+

1− α(k0)

α(k0)
· (1 + c). (13)

For each k, we next get, from (7), that:

Ψ̂(k) =
P̂ (mal)(k)

P̂ (mal)(k)
=

F (k)

L(k) · (1 + ĉ)
− p̂

= (Ψ(k) + p) · 1 + c

1 + ĉ
− p̂

= (Ψ(k) + p) · α(k0)− p̂. (14)

The equality α(k0) = (1 + c)/(1 + ĉ) used in the last line
follows from (13). From this we estimate α̂(k) = 1/(1 +
Ψ̂(k)); i.e., use Ψ̂ instead of Ψ in (11). Observe, for a given
value of p, and estimate p̂, that Ψ̂(k) depends on only the
single independent variable Ψ (since α(k0) can be calculated
from p̂ and vice versa). Thus, we can graph Ψ̂(k) as a function
of Ψ(k), which we do in Figures 1(a) and 2(a) below.

Finally, we estimate, from (12):

Θ̂(x)(k) =
P (x)(k)

α̂(k) · P̂ (x|mal)
− 1

= (Θ(x)(k) + 1) · α(k)

α̂(k)
· P (x|mal)

P̂ (x|mal)
− 1

= α(k0) · Θ(x)(k) + 1

α(k0) + (1− α(k0)) ·Θ(x)(k0)
− 1.

The last line follows from the (easy to show) fact that
α(k0) = α(k)/α̂(k). Note, for a given value of p, and estimate
p̂, that Θ̂(x)(k) involves two independent variables: Θ(x) and
Θ(x)(k0). Recall that Θ(x)(k0) = P (x|mal)(k0)/P (x|mal)
is the ratio of how common x is in the attack traffic of
subset k0 to how common it is in the benign traffic. If a
value of x is more common in attack traffic of subset k0 than
benign traffic then Θ(x)(k0) > 1 and if it’s less common
then Θ(x)(k0) < 1. Obviously, since both P (x|mal)(k0) and
P (x|mal) sum to 1 we can’t have that Θ(x)(k0) is always
greater than, or always less than 1. In the figures below, we’ll
use a range of values for Θ(x)(k0) centered about 1. Thus,
for a particular over-estimate p̂ > p we can graph Θ̂(x)(k) as
a function of Θ(x)(k) by including curves for different values
of Θ(x)(k0).

Example 1: Suppose that p = 0.071 but we fail to identify
a subset free of attack traffic and substantially over-estimate
p̂ = 0.0826 (i.e., our estimate of p is off by almost 20%).
Figure 1 (a) shows Ψ̂(k) as a function of Ψ(k) for this
particular over-estimate. Observe that for small attack volumes
(e.g., Ψ(k) < 0.05) the estimate is inaccurate, but it becomes
very accurate as the amount of attack traffic increases. This
means that in subsets that contain ≥ 10% or so attack traffic,
that our estimate of the bad-to-good traffic ratio Ψ is extremely
accurate even though we made a grossly inaccurate estimate
of p. Figure 1 (b) shows Θ̂(k) for the same choices of
p and p̂. The different curves show a range of values for
Θ(x)(k0) ∈ {0.25, 0.5, 1, 2, 4}. In the absence of assumptions
about the attack traffic in subset k0 the value Θ(x)(k0) = 1 is
most representative. Again, observe that the estimate is good
when Θ(x)(k) ≥ 0.1 . That is, we get a very accurate estimate
of the true odds when x is at least 1/10-th as common in
attack traffic as it is in benign even though we made a grossly
inaccurate estimate of p.

Example 2: Suppose, again, that p = 0.07 and we estimate
somewhat accurately p̂ = 0.0732; the error is 2× the 95% con-
fidence interval that we’d expect with 100k benign samples.
Figure 2 shows how the estimates Ψ̂(k) and Θ̂(x)(k) evolve
as functions of the actual ratios. Observe that the estimates
are extremely accurate (in the case of Θ̂(x)(k) for all values
of Θ(x)(k0)). Thus, if we identify an unattacked subset we
get an extremely accurate estimate of the true odds. For large
sites, where we might easily have millions of benign requests

1Chatterjee et al [39] estimated password typos at 4.5% of legitimate
attempts, so this allows for additional effects such as username typos and
mis-remembered passwords.
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Fig. 1: Sensitivity analysis showing the effect of gross inaccuracies in p̂ on our estimate of the test statistic Θ(x)(k) ·Ψ(k). The
fail rate for benign requests is p = 0.07 but we estimate it as p̂ = 0.0826; i.e., we overestimate by almost 20%. Solid line is the
actual value, dashed lines are estimates. (a) Effect on our estimate Ψ̂(k) versus the actual value Ψ(k) = P (mal)(k)/P (mal)(k).
Note that in subsets where the ratio of bad to good traffic is high (e.g., Ψ(k) > 0.10) the estimate is very accurate. (b) Effect
on our estimate Θ̂(x)(k) versus the actual value Θ(x)(k) = P (x|mal)(k)/P (x|mal). Different curves show different values
of the ratio of x in attack to benign traffic Θ(x)(k0) (in the subset used to estimate ĉ). Note that Θ(x)(k0) = 1 is the most
representative value. Note that when x is relatively common in the attack traffic (e.g., Θ(x)(k) > 0.10) the estimate is very
accurate despite the gross error in estimating p.

per time interval, we should be able to have great confidence
in our estimates.

V. DISCUSSION

A. Limitations

This approach works best for large sites. The more accurate
the estimate of c (and hence p) the better our final estimate of
the odds ratio will be. A large site has several advantages in
getting an accurate estimate of c. First, it may be able to divide
its user population (or other feature) into fractions that are 5%,
or 1%, or 0.1% of the total while still being large enough to
produce very small confidence intervals. It’s very likely that at
least 1% of the accounts are unattacked at most services, but
only at very large services does this constitute enough data to
allow us to estimate c and P (x|mal) accurately.

The features must be dense. Even, if we identify a subset
that is free of attack traffic in (9) to get an accurate estimate
of P (x|mal) we require that each category of the categorical
feature x be densely populated. If our subsets each contain
one million benign requests and the categorical feature x has
10 distinct categories then each value of P (x|mal) in (9) will
be estimated from 100,000 benign samples on average. This
again favors services with large user bases: the more benign
data in the subset we use to estimate P (x|mal) the better our
results will be.

This technique provides accurate estimates of the odds ratio
when the assumptions are met. However, as with any statistical

technique, it is important that we use features that distinguish
well between attack and benign traffic. An accurate estimate
of the odds is helpful only if those odds are high enough
or low enough to allow us to discriminate; if Θ(x) ≈ 1∀x
(i.e., the distributions of x in the attack and benign traffic are
very similar) then it doesn’t matter how accurate our estimates
are. An example of a weak feature might be hour-of-day. An
attacker might send guesses at a uniform rate throughout the
day, while legitimate traffic typically exhibits a diurnal patter.
Thus, requests at 3am might have a higher fraction of attack
traffic than those at 3pm, but only by a modest factor. An
example of a strong feature might be whether a failed attempt
involved a Top-100 password. As shown in Section III-F this
gives a very strong indication of malice: the distribution of x
is almost certainly very different between attack and benign
traffic, and thus Θ(x) can be expected to be very high. Tian et
al. [40] give examples of features that can be used to identify
online guessing.

Note that from Figures 1 and 2 we always under-estimate
rather than over-estimate the odds of a request being mali-
cious. Thus our estimates of malice are always conservative
and biased toward benign rather than malicious interpretation
of observations. This fact is also easily shown directly by
examining the formulae for Ψ̂ and Θ̂(x)(k).
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Fig. 2: Sensitivity analysis when p is estimated fairly accurately. The fail rate for benign requests is p = 0.07 but we estimate it
as p̂ = 0.0732. Solid line is the actual value, dashed lines are estimates. (a) Effect on our estimate Ψ̂(k) versus the actual value
Ψ(k) = P (mal)(k)/P (mal)(k). (b) Effect on our estimate Θ̂(x)(k) versus the actual value Θ(x)(k) = P (x|mal)(k)/P (x|mal).
Note that the estimates are extremely accurate, even though we’ve over-estimated p by about 5% (which is twice the confidence
interval that (4) yields with 100k benign samples).

B. Mobile clients and touchscreen keyboards
A key assumption is that the benign failure rate p is the

same across whatever subsets we use to divide the data. The
simple model of a user typing both username and password
on a conventional keyboard might have accounted for the
majority of traffic in 2008, but the enormous growth in
mobile clients has altered this picture. In 2018 many sites
probably see a majority of their traffic come from dedicated
apps on phones or tablet devices. Chatterjee et al measure a
significant difference between fail rates on regular as opposed
to touchscreen keyboards [39]. This confirms the importance
of separating these two types of traffic.

The simplest solution is to treat mobile and non-mobile
requests separately. It is generally easy to identify mobile
devices, since web-sites do this already to serve content that is
more appropriate for a smaller screen size. Thus, we can treat
mobile and non-mobile as different problems and estimate c
differently for each.

VI. CONCLUSION

We address the problem of protecting an authentication
server from online guessing attacks. We give a simple robust
procedure to estimate the ratio of bad-to-good traffic and show
how this can be used to calculate the likelihood that any
particular observation is indicative of malice. We perform a
sensitivity analysis that shows our estimates are very robust
to likely sources of bias. Our approach has the advantage
over three strikes type lockout and variants that it has no
dependence on arbitrary thresholds and we avoid base rate
neglect. It has the advantages over machine learning schemes

that it requires no labels, and does not assume stationarity of
attack traffic.
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