Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
Including leading scientists, renowned experts in
technology, book authors, and leading academics,
and makes videos of these lectures freely available.
2016 © Microsoft Corporation. All ights reserved.



Cost/Performance in
Modern Data Stores

How Data Caching Systems Succeed

David Lomet
Microsoft Research
Redmond, WA 98052



Traditional Databases are Challenged

Main
Memory
Row Store

Traditional
Database
Systems

Column
Store Streaming

-/- /v g "“' 2 I\_] -1 8 L) 9. f\.'1 5 .‘ N 1 ::':



Traditional Databases are Challenged
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The Elephants Still Dance




Here’s the story:
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Economic Factors

* Hardware infrastructure needs to be
* Cheap => Commodity hardware

* Software infrastructure needs to be
e Efficient => high performance on this hardware

* Elastic Provisioning
* Free up expensive resources when otherwise under-utilized
* Give resources to those with higher value (willing to pay more)
* Under-provision for SLAs and “pocket” the difference



Money Talks!
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Traditional Database Systems
Are

Caching Data Stores



Traditional DBMSs have good Cost/Performance

* We need to move away from being fixated only on performance
* Costs vary enormously between systems

* We describe why traditional systems
* Have lower performance than recent research systems
* Yet succeed by having better cost/performance

* And suggest a change in focus for our field



Caching Data Store .... Uses a Cache

* Moves data from secondary storage into main memory when it is to
be operated on

* Removes data from main memory when it is no longer being
operated on
* Writes it back to secondary storage when it has been changed
* Drops it from main memory when unchanged

* Data lives permanently on secondary storage



Result: Two Forms of Operation

* MIM: main memory
* VERY fast— N*10**6 ops/sec

* SS: secondary storage

* About 5.8X execution time of MM operations (our system)

* Must do MM operation T+ 1/O to bring data into main memory

e Caching data stores look like a BAD idea



Mixed Operation Performance

weighted average of MM and SS operations: R = SS/MM ~ 5.8 +- 30%
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A Performance Disaster?

* Each added SS operation pushes performance lower
* Toward SLOW SS performance

* Away from FAST MM performance
* Why Bother???
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A Performance Disaster?

* Each added SS operation pushes performance lower
* Toward SLOW SS performance

* Away from FAST MM performance
* Why Bother???

* Costs matter in addition to performance



So let’s look at Cost/Performance



Two Costs for Operating on Data

* Storage Cost
* Always paid
* Most of cost for cold data
* Or when data becomes cold

* Execution Cost
* Paid only when data is operated on

* Most of cost for hot data
* Or when data becomes hot
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Its All About Relative Costs

Relative Storage Costs

Main Memory Flash Storage
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Cost Analysis
* We compute cost/sec and plot it against operations/sec executed

* Cost is a linear function of storage and execution costs:
* C=A + BX, where we will plot C vs X

* Cost/sec = (storage-rental/sec) + (cost/operation)*(operations/sec)
e (C = A + B S

* A: Storage cost = (cost/byte)*(size of data) and is constant for an
operation on a piece of data
* DRAM cost/byte ~ 10X Flash cost/byte
* At ops/sec =0, all cost is storage cost: [storage cost is y-intercept]

* Execution cost = (cost/operation)*(operations/sec)
* B: Cost/operation: SS op ~ 12X MM op
* Cost/operation determines the slope of the cost “curve”



RELATIVE COST
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How About Other Kinds of Systems



Main Memory Systems Perform Better

indeed, data caching systems perform better when fully cached
— but with worse cost/performance

* MassTree: high performance main memory data store
* Deuteronomy: high performance caching data store
* MassTree has higher performance than Deuteronomy’s Bw-tree

* Relative costs
* Execution cost: Deuteronomy is 2.6 X MassTree
* because MassTree is 2.6X faster

* Storage cost: MassTree is 2.3 X Deuteronomy
* Because MassTree uses 2.3X the storage of Deuteronomy



Cost/Performance: [Not to Scale] Data Caching Frequently Better
Deuteronomy vs MassTree
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Lowering Storage Cost

* Facebook problem:
* huge data volume
* almost all cold
* But requiring high performance and decent latency
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Lowering Storage Cost

* Facebook problem:
* huge data volume
* almost all cold
* But requiring high performance and decent latency

* Buying processors to be able to attach more SSDs
* To accommodate volume of data

* Solution: data caching system + data compression
* Use SSD storage for decent latency

* Scale out processors for good performance

* Data compression to lower storage cost
* Recall that storage cost is (cost/byte)*(size of data)

* At the expense of increased execution cost



Cost/Performance: Not to Scale About 1 minute

50 . . 4K page
With Compressed Data(hypothetical) $S and MM ops
45
©
40 / /
< 4 ﬁ”
\ / L me "
2 30 Cold Data is ™\ "
7 in this range -
g 25 g - S5
E - - - - - : ;
< 20 - \
.2 Caching system can use
15 } lowest cost operation from
A choice of three

10 /°
5 ' / - e \/\M OP S S OP
5 /.°" CSS used here - CSS eee CAOP
for cold data

0

1 3 6 5 7 3 9

Performance: Ops/Unit-time

7 /r ;"“'2 (.] -1 :;'ﬁ [.) (;i r\"‘ & ‘\l' 1 ":"



Making a High Performance anad
Low Cost Data Caching Systems



How do we provide good cost/perf?

Data caching system is part of answer
But how do we optimize cost/performance in a data caching system

dincrease in-memory multi-core performance
* |Increased performance reduces cost — must be relevant to data caching
* Improve single core performance, and multi-core scale-out

JReduce number of |/Os

* Blind writes, log structuring, record cache

JReduce data movement cost: SSD to/from main memory

* Reduce execution cost of |/O: e.g., user-level /O
* Reduce SSD I/O cost: e.g., SSD with more IOPS

* Modify SSD: summer project with Jae Young Do and Ivan Picoli

JReduce cost of secondary storage

* Compress Data for fewer bytes
* Use flash, not NVRAM (NVRAM ~ 3X cost of Flash)



CAVEATS

Two important ones



Our Numbers are ApR2ONIMATE

* Performance based on
* Set of point experiments
* Executed on our machines
* Using our Deuteronomy system

* Costs from web prices
* Variable at any one time
* Changing over time

* General thrust of the results is solid
* But your mileage may vary!



Best cost/performance is NOT always best

* Low costs are a plus, but not the only thing

 We want max/value — cost]
* |f value is high enough, low cost may be secondary

* Value might depend on latency (or peak performance)

* Some of the time, lowest latency wins the game and captures all the value

* E.g.some stock trading applications
* But this is not the common case

* Most of time, interactive system latency is adequate
* Anything less than a millisecond per op should be fine
* E.g. online shopping



Recap

* Two costs
* Storage: always present
* Execution: only when operations execute

* When data is:

* Cold: storage cost dominates
* Hot: execution cost dominates

* Data Caching Systems “win” on cost/performance because they
* Move hot data to (high cost) main memory cache for low execution cost
* Move cold data to (low cost) secondary storage for low storage cost

* We should be focusing on data caching improvements!



Talk brought to you by Bw-Tree in Production
* SQL Server Hekaton: Key-sequential index aon 10X .. 50x. OLTP

* Lock-free for high concurrency
* consistent with Hekaton’s non-blocking main memory

architecture
* In-memory Bw-tree
 Azure DocumentDB: Indexing engine ity s sibosani RO R R
* Rich query processing over a schema-free JSON SN B
model, with automatic indexing ey s o
* Sustained document ingestion at high rates et et

{ "city™: "Lima" }

* Bw-tree + LLAMA

* Bing ObjectStore: Sorted key-value store
e Supports range queries e
* Optimized for flash SSDs =i \
* Bw-tree + LLAMA e | T e ,r:::‘
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