Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
Including leading scientists, renowned experts in
technology, book authors, and leading academics,
and makes videos of these lectures freely available.
2016 © Microsoft Corporation. All ights reserved.

Cost/Performance in
Modern Data Stores

How Data Caching Systems Succeed

David Lomet
Microsoft Research
Redmond, WA 98052

Traditional Databases are Challenged

Main
Memory
Row Store

Traditional
Database
Systems

Column
Store Streaming

-/- /v g "“' 2 I_] -1 8 L) 9. f\.'1 5 .‘ N 1 ::':

Traditional Databases are Challenged

Main Memory

Row Store
And the threat is

Perceived to be growing

Traditional
Database

Column Store Streaming

7/3/2018 DaMoN 18

MSFT
SQL Serve

Traditional Data Caching Systems are Dead

Oracle
Database

Amazon
Aurora

IBM
DB2

s Dead

SystE

ing

Oracle
Database

ach

Traditior

-
L
v
=

o
)
-
g
n

The Elephants Still Dance

Here’s the story:

Main
Memory Niche market

Row Store

artnershi
absorbed P p

Traditional
Database Systems

Column Store

u

7/3/2018 DaMoN 18

Streaming

Economic Factors

* Hardware infrastructure needs to be
* Cheap => Commodity hardware

* Software infrastructure needs to be
e Efficient => high performance on this hardware

* Elastic Provisioning
* Free up expensive resources when otherwise under-utilized
* Give resources to those with higher value (willing to pay more)
* Under-provision for SLAs and “pocket” the difference

Money Talks!

7/3/2018 DaMoN 18

Traditional Database Systems
Are

Caching Data Stores

Traditional DBMSs have good Cost/Performance

* We need to move away from being fixated only on performance
* Costs vary enormously between systems

* We describe why traditional systems
* Have lower performance than recent research systems
* Yet succeed by having better cost/performance

* And suggest a change in focus for our field

Caching Data Store Uses a Cache

* Moves data from secondary storage into main memory when it is to
be operated on

* Removes data from main memory when it is no longer being
operated on
* Writes it back to secondary storage when it has been changed
* Drops it from main memory when unchanged

* Data lives permanently on secondary storage

Result: Two Forms of Operation

* MIM: main memory
* VERY fast— N*10**6 ops/sec

* SS: secondary storage

* About 5.8X execution time of MM operations (our system)

* Must do MM operation T+ 1/O to bring data into main memory

e Caching data stores look like a BAD idea

Mixed Operation Performance

weighted average of MM and SS operations: R = SS/MM ~ 5.8 +- 30%

-
« N
» - ®

09 | " Sa_ -=-=Expected Perf (max) ~ eee Expected Perf (min)
) : 20
2 038 be ~
i . -~
= 2 Taa A Actual Perf (1-core) ® Actual Perf (4-core)
5 07 ! ‘s\\
5 o ’ \‘s~
& 0.6 "... A \\sss
W A T~
> ® a o
% 0:3 — ~;~-~§
q) . r ------
C! 0‘4 .' = PP : -------- ‘

08— e

e (I I I (R M L e

0.1

0
0 10 20 30 40 50 60

Percent qf SS operations

A Performance Disaster?

* Each added SS operation pushes performance lower
* Toward SLOW SS performance

* Away from FAST MM performance
* Why Bother???

Mixed Operation Performance

weighted average of MM and SS operations: R = SS/MM ~ 5.8 +- 30%

N
N
» - ®
09 | Sa_ -=-=Expected Perf (max) ~ eeeo Expected Perf (min)
v N
S 038 . S
= 2 RS A Actual Perf (1-core) ® Actual Perf (4-core)
= 0.7 ! o
g ’ \\\s\
- ~
& 06 A S
v A ~a
> ® a S
= 05 = T
_(5 -...'. A s-r-~
o2 .., B St
0.4 e I s hee__
T T T T
e L) S N ity oL PP
0.1
0
0 10 20 30 40 50 60

Percent of SS operations

A Performance Disaster?

* Each added SS operation pushes performance lower
* Toward SLOW SS performance

* Away from FAST MM performance
* Why Bother???

* Costs matter in addition to performance

So let’s look at Cost/Performance

Two Costs for Operating on Data

* Storage Cost
* Always paid
* Most of cost for cold data
* Or when data becomes cold

* Execution Cost
* Paid only when data is operated on

* Most of cost for hot data
* Or when data becomes hot

7/3/2018

12

10

Its All About Relative Costs

Relative Storage Costs

Main Memory Flash Storage
W Per Byte

12

10

Relative Execution Costs

New SSDs
support
n*100K IOPS

Main Memory Flash Storage
m Op Execution m|/O Path m Flash |/O Op

Approximate Bw-tree Relative Numbers

DaMoN 18

16

Cost Analysis
* We compute cost/sec and plot it against operations/sec executed

* Cost is a linear function of storage and execution costs:
* C=A + BX, where we will plot C vs X

* Cost/sec = (storage-rental/sec) + (cost/operation)*(operations/sec)
e (C = A + B S

* A: Storage cost = (cost/byte)*(size of data) and is constant for an
operation on a piece of data
* DRAM cost/byte ~ 10X Flash cost/byte
* At ops/sec =0, all cost is storage cost: [storage cost is y-intercept]

* Execution cost = (cost/operation)*(operations/sec)
* B: Cost/operation: SS op ~ 12X MM op
* Cost/operation determines the slope of the cost “curve”

RELATIVE COST

20 Cost/Performance
18 Gray 5 min Rule
16 Now ~ 1 min for
4K page
14 |
12
. s 1
8
6 Storage Caching System uses
4 S lowest cost OP:
Either SS or MM
2
T Storage Cost " High Performance
| PERFORMANCE
«===* Data Caching Op = =MM Op ——Flash Op Ops/(unit time)

4/9/2018 ICDE Lightning Talk

How About Other Kinds of Systems

Main Memory Systems Perform Better

indeed, data caching systems perform better when fully cached
— but with worse cost/performance

* MassTree: high performance main memory data store
* Deuteronomy: high performance caching data store
* MassTree has higher performance than Deuteronomy’s Bw-tree

* Relative costs
* Execution cost: Deuteronomy is 2.6 X MassTree
* because MassTree is 2.6X faster

* Storage cost: MassTree is 2.3 X Deuteronomy
* Because MassTree uses 2.3X the storage of Deuteronomy

Cost/Performance: [Not to Scale] Data Caching Frequently Better
Deuteronomy vs MassTree

40
35
Deuteronomy has

30 Better cost/performance
w 25
v
S

P P & emm——1 = e

2 20 — e —— — Y
Ao - -
© -
s - i

15 S

o=
- -
10 e \
= =MM OP ——SS OP|
. |
5 -
no operations Breakeven High High+ High++ High+++

Performance: Ops/Unit-time

7/3/2018 DaMoN 18 21

Lowering Storage Cost

* Facebook problem:
* huge data volume
* almost all cold
* But requiring high performance and decent latency

Cost/Performance: [Not to Scale] Data Caching Frequently Better
Deuteronomy vs MassTree

40
35
Deuteronomy has

30 Better cost/performance
w 25
v
S

P — ¢ wmmEn * >

g 20 — — N -- -
Aan - -—
© e
4 = il

15 e

-
- -
10 - \
- =MMOP ——5S OP|
5 -
SS and MM ops
5 ~
no operations Breakeven High High+ High++ High+++

Performance: Ops/Unit-time

7/3/2018 DaMoN 18 21

Lowering Storage Cost

* Facebook problem:
* huge data volume
* almost all cold
* But requiring high performance and decent latency

* Buying processors to be able to attach more SSDs
* To accommodate volume of data

* Solution: data caching system + data compression
* Use SSD storage for decent latency

* Scale out processors for good performance

* Data compression to lower storage cost
* Recall that storage cost is (cost/byte)*(size of data)

* At the expense of increased execution cost

Cost/Performance: Not to Scale About 1 minute

50 . . 4K page
With Compressed Data(hypothetical) $S and MM ops
45
©
40 / /
< 4 ﬁ”
\ / L me "
2 30 Cold Data is ™\ "
7 in this range -
g 25 g - S5
E - - - - - : ;
< 20 - \
.2 Caching system can use
15 } lowest cost operation from
A choice of three

10 /°
5 ' / - e \/\M OP S S OP
5 /.°" CSS used here - CSS eee CAOP
for cold data

0

1 3 6 5 7 3 9

Performance: Ops/Unit-time

7 /r ;"“'2 (.] -1 :;'ﬁ [.) (;i r\"‘ & ‘\l' 1 ":"

Making a High Performance anad
Low Cost Data Caching Systems

How do we provide good cost/perf?

Data caching system is part of answer
But how do we optimize cost/performance in a data caching system

dincrease in-memory multi-core performance
* |Increased performance reduces cost — must be relevant to data caching
* Improve single core performance, and multi-core scale-out

JReduce number of |/Os

* Blind writes, log structuring, record cache

JReduce data movement cost: SSD to/from main memory

* Reduce execution cost of |/O: e.g., user-level /O
* Reduce SSD I/O cost: e.g., SSD with more IOPS

* Modify SSD: summer project with Jae Young Do and Ivan Picoli

JReduce cost of secondary storage

* Compress Data for fewer bytes
* Use flash, not NVRAM (NVRAM ~ 3X cost of Flash)

CAVEATS

Two important ones

Our Numbers are ApR2ONIMATE

* Performance based on
* Set of point experiments
* Executed on our machines
* Using our Deuteronomy system

* Costs from web prices
* Variable at any one time
* Changing over time

* General thrust of the results is solid
* But your mileage may vary!

Best cost/performance is NOT always best

* Low costs are a plus, but not the only thing

 We want max/value — cost]
* |f value is high enough, low cost may be secondary

* Value might depend on latency (or peak performance)

* Some of the time, lowest latency wins the game and captures all the value

* E.g.some stock trading applications
* But this is not the common case

* Most of time, interactive system latency is adequate
* Anything less than a millisecond per op should be fine
* E.g. online shopping

Recap

* Two costs
* Storage: always present
* Execution: only when operations execute

* When data is:

* Cold: storage cost dominates
* Hot: execution cost dominates

* Data Caching Systems “win” on cost/performance because they
* Move hot data to (high cost) main memory cache for low execution cost
* Move cold data to (low cost) secondary storage for low storage cost

* We should be focusing on data caching improvements!

Talk brought to you by Bw-Tree in Production
* SQL Server Hekaton: Key-sequential index aon 10X .. 50x. OLTP

* Lock-free for high concurrency
* consistent with Hekaton’s non-blocking main memory

architecture
* In-memory Bw-tree
 Azure DocumentDB: Indexing engine ity s sibosani RO R R
* Rich query processing over a schema-free JSON SN B
model, with automatic indexing ey s o
* Sustained document ingestion at high rates et et

{ "city™: "Lima" }

* Bw-tree + LLAMA

* Bing ObjectStore: Sorted key-value store
e Supports range queries e
* Optimized for flash SSDs =i \
* Bw-tree + LLAMA e | T e ,r:::‘

7/3/2(}18 [)3 r\‘1-’.‘N 1::"

Some References

* David B. Lomet: Cost/performance in modern data stores: how data
caching systems succeed. DaMoN 2018: 9:1-9:10
https://dl.acm.org/citation.cfm?doid=3211922.3211927

* Justin J. Levandoski, David B. Lomet, Sudipta Sengupta: The Bw-Tree: A B-
tree for new hardware platforms. ICDE 2013: 302-313

* Justin J. Levandoski, David B. Lomet, Sudipta Sengupta: LLAMA: A
Cache/Storage Subsystem for Modern Hardware. PVLDB 6(10): 877-888
(2013) http://www.vidb.org/pvidb/vol6/p877-levandoski.pdf

* Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, Ryan Stutsman, Rui
Wang: High Performance Transactions in Deuteronomy. CIDR 2015
http://cidrdb.org/cidr2015/Papers/CIDR15 Paperl5.pdf

RELATIVE COST

20 Cost/Performance
18 Gray 5 min Rule
16 Now ~ 1 min for
14
12
10 R .
8
6 Storage Caghing System uses
, ot lowest cost OP:
Either SS or MM
2
T Storage Cost " High Performance
| PERFORMANCE
»=*= Data Caching Op = =MM Op ——Flash Op Ops/(unit time)

4/9/2018 ICDE Lightning Talk

