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       a b s t r a c t

            Interactive model analysis, the process of understanding, diagnosing, and refining a machine learning

               model with the help of interactive visualization, is very important for users to efficiently solve real-world

              artificial intelligence and data mining problems. Dramatic advances in big data analytics have led to

               a wide variety of interactive model analysis tasks. In this paper, we present a comprehensive analysis

              and interpretation of this rapidly developing area. Specifically, we classify the relevant work into three

           categories: understanding, diagnosis, and refinement. Each category is exemplified by recent influential

         work. Possible future research opportunities are also explored and discussed.

           © 2017 Zhejiang University and Zhejiang University Press. Published by Elsevier B.V.

          This is an open access article under the CC BY-NC-ND license

( ).http://creativecommons.org/licenses/by-nc-nd/4.0/

 1. Introduction

         Machine learning has been successfully applied to a wide va-

        riety of fields ranging from information retrieval, data mining,
       and speech recognition, to computer graphics, visualization, and

      human–computer interaction. However, most users often treat

           a machine learning model as a black box because of its incom-

      prehensible functions and unclear working mechanism (Fekete,

           2013 Liu et al., 2017 Mühlbacher et al., 2014); ; . Without a clear

          understanding of how andwhyamodel works, thedevelopment of
      high-performance models typically relies on a time-consuming

        trial-and-error process. As a result, academic researchers and in-

       dustrial practitioners are facing challenges that demand more

       transparent and explainable systems for better understanding and

       analyzingmachine learningmodels, especially their inner working

mechanisms.
        To tackle the aforementioned challenges, there are some initial

         efforts on interactivemodel analysis. These efforts have shown that

        interactive visualization plays a critical role in understanding and

        analyzing a variety of machine learning models. Recently, DARPA

       I2O released Explainable Artificial Intelligence (XAI) ( )DAR, 2016

            to encourage research on this topic. The main goal of XAI is to
         create a suite ofmachine learning techniques that produce explain-

          able models to enable users to understand, trust, and manage the

      emerging generation of Artificial Intelligence (AI) systems.
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          In this paper, we first provide an overview of interactive model

       analysis. Then we summarize recent interactive model analysis
         techniques based on their target tasks (such as understanding how

        a classifier works) ( ). Research opportunitiesHeimerl et al., 2012

        and future directions are discussed for developing new interactive
    model analysis techniques and systems.

   2. Scope and overview

        We are focused on research and application problems within

          the context ofmachine learning. illustrates a typical machineFig. 1

          learning pipeline, fromwhichwe first obtain data. Thenwe extract

           features that areusable as input to amachine learningmodel. Next,
          the model is trained, tested, and gradually refined based on the

        evaluation results and experience of machine learning experts, a

          process that is both time consuming and uncertain in building a

          reliable model. In addition to an explosion of research on better
           understanding of learning results ( ;Cui et al., 2011, 2014 Dou et al.,

             2013 Dou and Liu, 2016 Liu et al., 2012, 2014a, 2016c Wang et al.,; ; ;

        2013, 2016), researchers have paid increasing attention to leverag-
       ing interactive visualizations to better understand and iteratively

          improve amachine learningmodel. Themain goal of such research

          is to reduce human effort when training a reliable and accurate

        model. We refer to the aforementioned iterative and progressive
    process as interactive model analysis.

         Fig. 2 illustrates the basic idea of interactive model analysis,

       where machine learning models are seamlessly integrated with

     state-of-the-art interactive visualization techniques capable of
      translating models into understandable and useful explanations

            for an expert. The strategy is to pursue a variety of visual analytics
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      Fig. 1. A pipeline of machine learning.

       Fig. 2. An overview of interactive model analysis.

        techniques in order to help experts understand, diagnose, and

       refine a machine learning model. Accordingly, interactive model
          analysis aims to create a suite of visual analytics techniques that

        • understand why machine learning models behave the way

         they do and why they differ from each other (understand-
ing);

           • diagnose a training process that fails to converge or does not

    achieve an acceptable performance ( );diagnosis
        • guide experts to improve the performance and robustness
    of machine learning models ( ).refinement

      3. Discussion and analysis of existing work

         Most recent efforts in interactive model analysis aim to help
        machine learning experts understand how the model works, such

         as the interactions between each component in the model. More

         recently, there have been some initial attempts to diagnose a

          training process that failed to converge or did not achieve the
         desired performance, or to refine the learning model for better

performance.

 3.1. Understanding

        Many techniques have been developed to help experts better

        understand classification models ( ; ;Paiva et al., 2015 Turner, 2016
          Tzeng and Ma, 2005) and regression models (Zahavy et al., 2016).
         Among all models, neural networks have received the most atten-

         tion. They have beenwidely used and achieved state-of-the-art re-
         sults in many machine learning tasks, such as image classification

         and video classification ( ). To better understandLeCun et al., 2015
        the working mechanism of neural networks, researchers have de-

       veloped various visualization approaches, which can be classified
     into two categories: point-based and network-based.

         Point-based techniques ( ; )Zahavy et al., 2016 Rauber et al., 2017

      reveal the relationships between neural network components,
        such as neurons or learned representations, by using scatterplots.
       Each learned representation is a high-dimensional vector whose
           entries are the output values of neurons in one hidden layer. Typi-

         cally, each component is represented by a point. Components with
          similar roles are placed adjacent to each other by using dimen-

       sion reduction techniques such as Principal Component Analysis
          (PCA) ( ) and t-SNE ( ).Wold et al., 1987 Maaten and Hinton, 2008

      Point-based techniques facilitate the confirmation of hypothesis

        on neural networks and the identification of previously unknown
       relationships between neural network components (Rauber et al.,

2017).
         Fig. 3 Rauber etshowsa point-basedvisualization developedby

          al. 2017)( . In this figure, each point denotes the learned represen-

            tation of a test sample. The color of each point encodes the class
           label of each test sample. As shown in the figure, after training,
       the visual separation between classes is significantly improved.
        This observation provides evidence for the hypothesis that neu-

         ral networks learn to detect representations that are useful for
        class discrimination. (b) also helps with the understandingFig. 3

         ofmisclassified samples, which aremarked by triangle glyphs. The
        figure illustrates that many misclassified samples are visual out-
        liers whose neighbors have different classes. Also, many outliers

          correspond to test samples that are difficult for even humans to
           classify. For example, an image of digit 3 is misclassified because it

        is very similar to some images of digit 5.
       Although point-based techniques are useful for presenting the
        relationships between a large number of neural network com-

        ponents, they cannot reveal the topological information of the

                Fig. 3. Comparison of test sample representations (a) before and (b) after training ( ).Rauber et al., 2016
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            Fig. 4. Topology of a neural network trained to classify brain and non-brain

    materials ( ).Tzeng and Ma, 2005

          networks. As a result, they fail to provide a comprehensive under-

           standingof the roles of different neurons in different layers and the

     interactions between them. Network-based techniques (Harley,
          2015 Streeter et al., 2001 Craven and Shavlik, 1992); ; solve this

       problem by displaying the network topology. These techniques

         usually represent a neural network as a directed acyclic graph

         (DAG) and encode important information from the network by the

           size, color, and glyphs of the nodes or edges in the DAG.

         Fig. 4 shows the visualization generated by a pioneer network

         based technique ( ). This figure presents aTzeng and Ma, 2005

         neural network trained to classify whether a voxel within the

           head belongs to the brain or not. Here, each voxel is represented

           by its scalar value , gradient magnitude , scalar values of itss g

           neighbors , and its position . The width of each edge encodesn p

        the importance of the corresponding connection. The nodes in
          the input and output layers are colored based on their output

            values. The color of the node in the output layer indicates that the

            neural network is able to correctly classify the voxel on the left to

          non-brain materials (low output value) and the voxel on the right

         to brain materials (high output value). The network topologies in

            Fig. 4 Fig. 4(a) and (c) demonstrate that the voxel on the left is

        classified to non-brain materials mainly because of its position,

            while the voxel on the right needs all inputs except for the gradient
        magnitude to be correctly classified to brain materials.g

      The aforementioned technique can effectively visualize neural

         networkswith several dozens of neurons. However, as the number

        ofneurons and connections increase, the visualizationmaybecome

         cluttered and difficult to understand ( ). ToTzeng and Ma, 2005
         solve this problem, ( ) developed CNNVis, a vi-Liu et al. 2017

        sual analytics system that helps machine learning experts under-

       stand and diagnose deep convolutional neural networks (CNNs)

         with thousands of neurons and millions of connections ( ).Fig. 5

          To display large CNNs, the layers and neurons are clustered. A

        representative layer (neuron) is selected for each layer (neuron)
       cluster. To effectively display many connections, a biclustering-

          based algorithm is used to bundle the edges and reduce visual

        clutter. Moreover, CNNVis supports the analysis of multiple facets

          of each neuron. To this end, CNNVis visualizes the learned features

         of each neuron cluster by using a hierarchical rectangle packing
        algorithm. A matrix reordering algorithm was also developed to

     reveal the activation patterns of neurons.

 3.2. Diagnosis

      Researchers have developed visual analytics techniques that

        diagnose model performance for binary classifiers (Amershi et al.,

          2015) Alsallakh et al., 2014,multi-class classifiers (Liu et al., 2017; ;
            Ren et al., 2017), and topic models (Chuang et al., 2013). The goal

         of these techniques is to helpmachine learning experts understand

          why a training process did not achieve a desirable performance so

          that they can make better choices (e.g., select better features) to

        improve the model performance. To this end, current techniques
         utilize the prediction score distributions of themodel (i.e., sample-

          class probability) to evaluate the error severity and study how the

                         Fig. 5. CNNVis, a visual analytics approach to understanding and diagnosing deep convolutional neural networks (CNNs) ( ) with a large number of neuronsLiu et al., 2016b

 and connections.
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                           Fig. 6. A visual analytics tool that helps machine learning experts diagnose model performance with (a) a confusion wheel and (b) a feature analysis view (Alsallakh et al.,

2014).

                         Fig. 7. Squares, a visual analytics tool that supports performance diagnosis of multi-class classifiers within a single visualization to reduce the cognitive load of users during

    analysis ( ).Ren et al., 2016

      score distributions correlate with misclassification and selected

features.

        One typical example is the model performance diagnosis tool

           developed by ( ). This tool consists of a con-Alsallakh et al. 2014
          fusion wheel ( (a)) and a feature analysis view ( (b)).Fig. 6 Fig. 6

        The confusion wheel depicts the prediction score distributions by

     using histograms. For each class ci      , bins that correspond to samples

      with low (high) prediction scores of ci     are placed close to the

          inner (outer) ring. The chords in the confusion wheel visualize the

       number of samples that belong to class ci   misclassified to class
cj        (between-class confusion). This view enables users to quickly

         identify the samples that are misclassified with a low probabil-

       ity (e.g., the false-negative samples (FNs) in c7   ). These samples

         are easier to improve compared with other samples. The feature

         analysis view illustrates how two groups of samples (e.g., true-

        positive samples and false-positive samples) can be separated by
          using certain features. This view helpsusers tomake better choices

    in terms of feature selection.

     Although the aforementioned technique provides valuable

       guidance for performance improvement, the confusion wheel can

        introduce distortion by displaying histograms in a radial display.

       Researchers also point out thatmultiple coordinated visualizations

           may add complexity to the diagnosis process ( ). ToRen et al., 2017
          eliminate the distortion and reduce the cognitive load of users, Ren

           et al. proposed Squares ( ), a visual analytics toolRen et al., 2017

       that supports performance diagnosis within a single visualization.

            As shown in , Squares is able to show prediction score dis-Fig. 7

         tributions at multiple levels of detail. The classes, when expanded

        to show the lowest level of detail (e.g., c3  and c5    ), are displayed as
          boxes. Each box represents a (training or test) sample. The color

          of the box encodes the class label of the corresponding sample

         and the texture represents whether a sample is classified correctly

            (solid fill) or not (striped fill). The classes with the least number of

  details (e.g., c0  and c1        ) are displayed as stacks. Squares also allows
       machine learning experts to explore between-class confusion (see

       polylines in ) within the same visualization.Fig. 7

         More recently, there have been some initial efforts on diagnos-

            ing deep learningmodels ( ; ). OneLiu et al., 2017 Zahavy et al., 2016
           example is CNNVis ( ) ( ). By revealing multi-Liu et al., 2016b Fig. 5

         ple facets of the neurons, the interactions between neurons, and

       relative weight changes between layers, CNNVis allows machine

          learning experts to debug a training process that fails to converge
           or does not achieve an acceptable performance. It also helps to find

        potential directions to prevent the training process from getting

        stuck or improve the model performance. Another example is

         the method developed by ( ), which employsZahavy et al. 2016
      t-SNE to disclose relationships between learned representations

         and uses saliency maps to help users analyze influential features.

          Case studies on three ATARI games demonstrate the ability of this

          method to find problems that pertain to gamemodeling, initial and
     terminal state modeling, and score over-fitting.

 3.3. Refinement

        After they gain an understanding of how machine learning

          models behave and why they do not achieve a desirable per-
        formance, machine learning experts usually wish to refine the

        model by incorporating the knowledge learned. To facilitate this

       process, researchers have developed visual analytics systems that

       provide interaction capabilities for improving the performance of
         supervised ( ) or unsupervised models (Paiva et al., 2015 Wang et

     al., 2016 Liu et al., 2016); .
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                       Fig. 8. Interactive training sample selection that enables classifier refinement ( ). Candidate samples are represented by (a) circles and (b) images.Paiva et al., 2015

                Fig. 9. UTOPIAN ( ), a visual analytics system for interactive refinement of topic models.Choo et al., 2013

       Current techniques for refining supervised models mainly fo-

          cus on multi-class classifiers ( ;Paiva et al., 2015 Alsallakh et al.,

         2014). These techniques allow users to insert their knowledge by

      controlling factors that significantly affect classification results.

      Commonly considered factors include training samples, features,

         types of classifiers, and parameters used in training. For example,

          the technique developed by ( ) allows users toPaiva et al. 2015

       interactively select training samples, modify their labels, incre-

          mentally update the model, and rebuild the model by using new

         classes. shows how this technique supports informed train-Fig. 8

           ing sample selection. Here, each sample is displayed as a point in

            Fig. 8 Fig. 8(a) and an image in (b). These samples are organized by

         using Neighbor Joining trees ( ). After observingPaiva et al., 2011

           the trees, the user carefully selected 43 samples from the core of

           the tree and the end of the branches. Training with these samples

       generates a classifier with an accuracy of 97.43%.

       The techniques for refining unsupervised models usually in-

        corporate user knowledge into the model in a semi-supervised

             manner ( ; ; ). ATzeng andMa, 2004 Choo et al., 2013 Liu et al., 2014b

            typical example in this field isUTOPIAN ( ), a visualChooet al., 2013

         analytics system for refining topic model results. In UTOPIAN, the

       topics are initially learned using Nonnegative Matrix Factorization

          (NMF) ( ) and the learned topics are displayedLee and Seung, 1999

          using a scatterplot visualization. As shown in , UTOPIAN al-Fig. 9

          lows users to interactively (1)merge topics, (2) create topics based

          onexemplar documents, (3) split topics, and (4) create topics based

       on keywords. Moreover, UTOPIAN also supports topic keyword

        refinement. All these interactions are centered around a semi-

        supervised formulation of NMF that enables an easy incorporation

          of user knowledge and an incremental update of the topic model.

          There are also some refinement tools that aim to help business

        professionals who are not familiar with complex machine learning

         models. For example, Wang et al. developed a visual analytics

         system, TopicPanorama ( ; ),Wang et al., 2016 Liu et al., 2014b

         to help business professionals analyze and refine a full picture

         of relevant topics discussed in multiple textual sources. The full

         picture is generated by matching the topic graphs extracted from

         different sourceswith a scalable algorithm to learn correlated topic

         models ( ). TopicPanorama allows users to iden-Chen et al., 2013

       tify potentially incorrect matches by examining the uncertainties
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                          Fig. 10. TopicPanorama ( ), a visual analytics system for analyzing a full picture of relevant topics from multiple sources: (a) Panorama visualization, (b) aWang et al., 2016

                        matching result with two incorrect matches and , (c) the updated matching result with corrected matches and , and (d) an uncertainty glyph.A B C D

        of the matches. Moreover, by incorporating metric learning and

       feature selection into the graph matching model, TopicPanorama
        allows users to incrementally improve and refine the matching

model.
            Fig. 10(a) shows a full picture of the topics related to three IT

        companies: Google, Microsoft, and Yahoo. Here, the topic nodes
       of different companies (sources) are represented with different
            colors and the common topics are encoded in a pie chart. A public

         relationsmanager cared about game related topics, so she enabled
        the uncertainty glyphs ( (d)) to examine potential incor-Fig. 10

        rect matches. After some exploration, she identified two incorrect
          matches, and , that match Microsoft Xbox games to YahooA B

           sport games ( (b)). After she unmatched , she found wasFig. 10 B A
           changed to and was changed to , which correctly matchedC B D
        Google sport games to Yahoo sport games ( (c)).Fig. 10

         Another example is MutualRanker ( ), a visualLiu et al., 2016
          analytics tool to retrieve salient posts, users, andhashtags. To effec-

          tively retrieve salient posts, users and hashtags, they built amutual
         reinforcement graph (MRG) model ( ) that jointlyWei et al., 2008

          considers the content quality of posts, the social influence of users,
         and the popularity of hashtags. They also analyzed the uncertainty
           in the results. Based on the retrieved data and the uncertainty, they

       developed a composite visualization that visually illustrates the
        posts, users, hashtags, their relationships, and the uncertainty in

        the results. With this visualization, business professionals are able
         to easily detect the most uncertain results and interactively refine

          the MRG model. To efficiently refine the model, they developed a
       random-walk-basedMonteCarlo samplingmethod that can locally

           update the model based on user interactions. A typical use case of

           MutualRanker is shown in , where an expert found that theFig. 11
      cluster ‘‘nationalparks’’ shared the uncertainty propagated from

       the ‘‘shutdown’’, ‘‘democrats’’, and ‘‘republicans’’ cluster. This indi-
           cates there is high uncertainty in the ranking scores of the hashtags

        in the ‘‘nationalparks’’ cluster. According to his domain knowledge,
         the expert increased the ranking scores of ‘‘#nationalparks’’ in that

         cluster and the ranking scores of other relevant hashtags were
 automatically updated.

  4. Research opportunities

          We regard existing methods as an initial step and there are
        many research opportunities to be further explored and pursued,

          which will be discussed in the following subsection in terms of

    technical challenges and future research.

   4.1. Creating explainable models

        Although machine learning models are widely used in many
         applications, they often fail to explain their decisions and actions

            to users.Without a clear understanding, it may be hard for users to

        incorporate their knowledge into the learning process and achieve

        a better learning performance (e.g., prediction accuracy). As a
         result, it is desirable to developmore explainablemachine learning

          models, which have the ability to explain their rationale and con-

          vey an understanding of how they behave in the learning process.

          The key challenge here is to design an explanationmechanism that
       is tightly integrated into the machine learning model.

        Accordingly, one interesting future work is to discover which

         part(s) in the model structure explains its different functions and

          play a major role in the performance improvement or decline of
         each iteration. Another interesting venue for future work is to

         better illustrate the rationale behind the model and the decisions

          made. Recently, there have been some initial efforts in this direc-

            tion ( ; ). For example,Letham et al., 2015 Lake et al., 2015 Lake et
       al. 2015)( developed a probabilistic program induction algorithm.

        Theybuilt simple stochastic programs to represent concepts, build-

        ing them compositionally from parts, subparts, and spatial re-

       lations. They also demonstrated that their algorithm achieved
       human-level performance on a one-shot classification task, while

       outperforming recent deep learning approaches. However, for the

          tasks that have abundant training data, such as object and speech

       recognition, the less explainable deep learning still outperforms
            the algorithm. Thus, there is still a long way to go for researchers

       to develop more explainable models for these tasks.

     4.2. Analysis of online training process

          Most of the existing methods focus on analyzing the final re-

             sults ( ) or one snapshot ( ) of theRen et al., 2017 Liu et al., 2017

          model in the interactive training process. In many cases, only ana-

           lyzing the results or a single snapshot is not enough to understand
         why a training process did not achieve a desirable performance.

         Thus, it is necessary to analyze the online training process.
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                       Fig. 11. MutualRanker ( ), a visual analytics toolkit to retrieve salient posts, users, and hashtags. MutualRanker enables interactive refinement of uncertainLiu et al., 2016a

results.

         One challenge in analyzing the online training process is the

      difficulty of selecting and comparing representative snapshots
        from a large number of snapshots. When comparing different

        snapshots, one possible solution is to adopt progressive visual
         analytics ( ) to shorten the period of timeStolper et al., 2014

         between user interactions and the execution of the model. The
         basic idea of progressive visual analytics is to produce meaningful

        partial results during the training process and integrating these
        partial results into an interactive visualization, which allows users

     to immediately explore the partial results.
      Another challenge is automatically and accurately detecting

        anomalies in the training process. Currently, the training process
           is sometimes too long (e.g., more than one week for an expert

          to supervise the whole training process of a large deep neural

          network ( )). In these scenarios, it is nec-Krizhevsky et al., 2012
        essary to automatically detect anomalies and timely notify the

        expert. Automatic and accurate identification of anomalies is still
           a challenging research topic ( ). Thus, it is desirableTam et al., 2017

        to employ an interactive visualization, which can better combine
          the human ability to detect anomalies and the power of machines

          to process large amounts of data, which has been initially studied
           in some recent work ( ; ).Cao et al., 2016 Zhao et al., 2014

   4.3. Mixed initiative guidance

        To improve the performance of machine learning models and

       better incorporate the knowledge of experts, researchers have
         developed a set of guidance techniques. Such efforts have arisen

        from two main research communities: machine learning and in-
      formation visualization. From the machine learning community,

         researchers have developed a wide array of techniques for system
         initiated guidance ( ; ;Settles, 2012 Cohn et al., 1994, 1996 McCal-

          lumzy and Nigamy, 1998), where the system plays a more active
        role, for example, by making suggestions about appropriate views

          ornext steps in the iterative andprogressive analysis process. From
      the information visualization community, researchers have de-

         signed a number of techniques for user initiative guidance (Wang
              et al., 2016 Liu et al., 2016 Choo et al., 2013 Liu et al., 2014b; ; ; ;

           Pezzotti et al., 2016), where the user is the active participant in

       improving and refining the performance and learning results.
          Inmany tasks, it is preferable to combine system imitative guid-

         ance and user initiative guidance as mixed initiative guidance to
        maximize the value of both. Accordingly, mixed initiative guidance

            isdefined as a typeof visual reasoningor feedbackprocess inwhich
          the human analyst and the machine learning system can both ac-

         tively foster the guidance to improve the machine learning model.
         Although mixed initiative guidance is very useful, supporting it is

        technically demanding. There are two major challenges that we
  need to address.

         First, it is not easy to seamlessly integrate system initiative
        guidance and user initiative guidance in one unified framework.

         System initiative guidance is usually based on the learning process

          and the evaluation of the results, while user initiative guidance is
         typically based on the experience and domain knowledge of the

          expert. Accordingly, we need to study how to define an efficient
        working mechanism to integrate them and support smooth com-

       munication between them. For example, one interesting research
         problem is how to reveal the provenance of system initiative

          guidance to illustrate why a suggestion is made by the system.
          Then, based on this, the expert can better understand the rationale

       behind the suggestion and provide his/her feedback accordingly.
        Another potential research problem is to effectively extract appro-

          priate and sufficient user/system data to create a unified model for
     both the user and the system.

        Second, there may be several conflicts between system initia-
        tive guidance and user initiative guidance in real-world applica-

          tions. For example, for a given training sample, the system and
           the user may have different opinions on which class it belongs to.

           As a result, how to solve these conflicts is an interesting research
    problem that needs further exploration.

 4.4. Uncertainty

         While visual analytics is veryuseful in helpingmachine learning

         experts gain insights into the working mechanisms of models and
         devise ways to improve model performance, it may also introduce
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         uncertainties into the analysis process. It has been shown that

      uncertainty awareness positively influences human trust building

          and decision making ( ). Thus, it is importantSacha et al., 2016
          to quantify and analyze uncertainties ( ;Correa et al., 2009 Wu et

          al., 2010) in interactive model analysis, which is challenging for a

  number of reasons.

         First, uncertainties may originate from each stage of the inter-
       active model analysis process (e.g., training, visualization, refine-

         ment) and increase, decrease, split, and merge during the whole

           process ( ). Thus, it is difficult to effectively quantifyWu et al., 2012

         theuncertainties. One interesting direction for future research is to
       develop visual analytics techniques that effectively measure and

        quantify the uncertainty in data processing, model building, and

         visualization ( ) and help experts quickly identifySacha et al., 2016

         the potential issues in a machine learning model of interest.
         Second, it is challenging to model different types of uncertain-

          ties as well as their interactions by using a unified framework.

        During the interactivemodel analysis process, there are uncertain-

         ties that originate from the machine side (e.g., imperfect machine
        learning models) and uncertainties that originate from the human

         side (e.g., incorrect expert feedback). These two kinds of uncertain-

           tieswill interact with and influence each other. For example, if the
        system presents misleading information to the experts, they may

       return incorrect feedback that results in problematic modification

           of themodel. Another example is that allowing experts to viewand

         refine results ofmany test samplesmayencourageoverfitting (Ren
          etal., 2017). Accordingly, an interesting research problem is howto

        model different types of uncertainties and their interactions with

  a unified model.
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