Research Faculty Summit 2018
Systems | Fueling future disruptions
Wolong: A Back-end Optimizer for Deep Learning Computation

Jilong Xue
Researcher, Microsoft Research Asia
System Challenge in Deep Learning

• Innovations are emerging very fast in deep learning area
 • New DNN models and workload patterns
 • RNN, CNN, GAN, reinforcement learning, graph neural network, etc.
 • Diverse and emerging hardware accelerators,
 • GPU, FPGA, ASICs, edge devices, NV-Link, RDMA, etc.

• Compiler stack is key to bridge framework and hardware
 • Combine information of computation graph and hardware
 • Optimize for both local execution and distributed scalability
 • Critical for both training and inference
Wolong: Optimizer Stack for Deep Learning

- **System innovation to bridge application and hardware**
 - General computation graph optimization
 - Software and hardware co-design
 - Just-in-time compiler

- **Transparent optimization**
 - Communication efficiency
 - Accelerator execution efficiency
 - Memory efficiency

Intermediate Representation (graph of operators)

Global Optimizer:
- Optimize distributed training over RDMA
- Graph analyzer/ RDMA memcpy library

Local Optimizer:
- Optimize execution with JIT compiler
- Operator batching/ kernel fusion

Execution Runtime
- CPU, GPU, RDMA devices

Tensor Placement Optimizer:
- Memory layout and placement optimization
Global Optimizer

Fast Distributed Deep Learning Computation over RDMA
Distributed Dataflow Graph Execution

- Deep learning computation is modeled as dataflow graph
 - Achieve parallel manner through graph partitioning
 - Model parallelism vs. data parallelism
 - Tensor transmission across server becomes bottlenecks

![Graph Execution Diagram](image)

Send-Recv Benchmark

<table>
<thead>
<tr>
<th>message size (MB)</th>
<th>gRPC</th>
<th>RDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10x</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>512</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td>10000</td>
</tr>
</tbody>
</table>

gRPC vs. RDMA: 10x improvement
General Message Passing Library (e.g., RPC)

• Unavoidable memory copy overhead in RPC
 • Generally designed for dynamic data structure
 • Lacks knowledge of actual data placement and size
 • Extra memory copy from data serialization

• Software/hardware co-design to completely remove memory copy overhead
 • Leverage runtime application information
 • RDMA network
Combine Dataflow Graph Computation with RDMA

- **Tensor abstraction in deep learning computation**
 - Consists of a plain byte array with sufficiently large size (tens of KB to MB)
 - Do NOT require variant data serialization/deserialization
 - Do NOT require extra batching since access pattern is already sequential

- **RDMA enables to manage local and distributed memory in a unified view**
 - One-side RDMA R/W : efficient memory copy between host memory
 - GPU-Direct RDMA : efficient memory copy between host and device memory

- **Global graph optimizer for distributed computation**
 - Has the entire view and control of memory placement among devices and servers
 - Capable of making globally optimized strategy for tensor data placement in runtime
Optimized Communication Mechanism

- Transfer statically placed tensor through one-side RDMA write
- Phase I: graph analyzing
- Phase II: graph execution

RDMA-based zero-copy communication

Source Tensor

RDMA lib:
- Conduct remote memory copy
One-sided RDMA write
(Polling flag byte)

Dest Tensor

Tensor Manager:
- Detect the source tensor place
- Re-allocate as RDMA memory

Server\(_0\)

Server\(_1\)

Tensor Manager:
- Pre-allocate RDMA compatible receive tensor
Global Optimizer: Performance Evaluation

- Improve training throughput, convergence speed and scalability

![Deep Learning Benchmarks](image)

Throughput (mini-batches/sec)
- AlexNet: 4.2x
- Inception: 2.6x
- FC: 4.0x
- LSTM: 2.3x
- GRU: 1.8x
- VGG16: 8.1x

![Convergence of Seq2Seq Translation](image)

Perplexity
- TensorFlow(gRPC)
- Wolong(RDMA)

2-3x speed up

More details in our paper: *RPC Considered Harmful: Fast Distributed Deep Learning on RDMA*

* Experiments are conducted on 8 servers 8 Nvidia GTX 1080 GPUs; The translation model uses WTM’15 datasets;
Local Optimizer

Kernel Fusion for Deep Learning on GPU
Motivation

- Deep learning frameworks model computation as graph of primitive operators
 - **Expressivity** to represent arbitrary neural network structure
 - **Flexibility** to run on multi-device and multi-server through graph partitioning

- Significant framework overhead to schedule thousands of operators
 - Kernel-launch overhead
 - Cross operator communication overhead
 - Too fine-grained to leverage vendor’s library

- Example: 80-step LSTM model
 - Contains 1686 operators in TensorFlow
DL Frameworks vs. Vendor Provided Library

- **Deep learning frameworks**
 - E.g., TensorFlow, PyTorch, CNTK
 - Embrace flexibility and expressivity
 - Performance inefficiency

- **DL framework + Compiler**
 - Generate library-like code in runtime
 - Win both of the worlds

- **Hardware specific library**
 - E.g., cuDNN, cuBlas, MKL
 - Designed for extreme efficiency
 - Impossible to handle customized or new network structure
Wolong Compiler Design

- **Computation graph level optimization**
 - Graph rewriting based on computational equivalence
 - Common subexpression elimination, constant folding etc.
 - **Operator batching**: automatically batch same type operators to better leverage batch efficiency

- **Target and application specific runtime compilation**
 - Static shape and type inference
 - Static memory planning
 - Aggressive kernel fusion
Wolong Compiler Execution Workflow

Before Graph Execution

Input graph

Detect optimize subgraph

Operator batching

Shape inference

Memory planning

Cache hit in later iterations

Runtime Optimization

Code generation

JIT compile

Rewrite graph

FusedKernel

Output

FusedKernel

Input

Input

Research Faculty Summit 2018
Systems | Fueling future disruptions
Graph Level Optimization: Operator Batching

- Automatically conduct GEMM fusion and static memory placement optimization
JIT Compilation: Kernel Fusion

- Leverage aggressive kernel fusion to completely remove scheduling overhead
- Element-wise (i.e., point-wise) operators
 - No cross-element dependency between operators
 - Better leverage cache, register locality

\[h = \text{sigmoid}(x_1 + x_2) \]

```c
__global__
void kernel_0(float *x1, float *x2, float *h) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < 1024) {
        float temp0 = x1[idx] + x2[idx];
        float temp1 = sigmoidf(temp0);
        h[idx] = temp1;
    }
}
```
JIT Compilation: Kernel Fusion

- Fuse arbitrary (non element-wise) operators into single kernel
 - Operator data dependency may introduce cross threads data dependency in kernel
 - Need global synchronization to guarantee correctness
 - Cross operator communication uses device memory

- E.g., fuse two matrix multiplications: \(Z = A \times B \times C \)

```c
void kernel_0(float *A, float *B, float *C, float *Z) {
    if (idx < 1024) {
        buffer[idx] = MatMul_f(A, B);
        Global_Sync();
        Z[idx] = MatMul_f(buffer, C);
        h[idx] = temp1;
    }
}
```
Graph Computation in DL Frameworks

- Operators (kernels) are scheduled (launched) one by one

Overhead of kernel launching, DAG scheduling, memory copy, etc.
Arbitrary Kernel Fusion Is Limited by GPU Architecture

- Hard to conduct global synchronization across all threads
Our Solution: Persistent Threads and Virtual Blocks

- Assign virtual block task to persistent threads

![Diagram showing persistent threads and virtual blocks]
Kernel Packing

- Explore graph level parallelism in static code generation
Code Generation

Operator kernels: device functions

```c
__device__ float sigmoidf(float in) {
    return 1.f / (1.f + expf(-in));
}

__device__ float reluf(float in) {
    return fmaxf(0.f, in);
}

__device__ float MatMul(float *a, float *b, float *c, int m, int n, int k) {
    if (thread_ix < m && thread_iy < k) {
        float temp = 0.f;
        for (int i = 0; i < n; ++i) {
            temp += a[thread_ix*n+i] * b[k*i+thread_iy];
        }
        c[thread_ix*m+thread_iy] = temp;
    }
}
```

MatMul, Add, Mul, Sub, Div, Relu, Sigmoid, Tanh, Split, Max, Min, Convolution, etc.
Performance of End-to-end Kernel Fusion

- RNN inference benchmark (LSTM-128uints-80steps)

Experiments are conducted on Nvidia GTX 1080 Ti GPUs

Fused 1686 operators into 1 kernel

LSTM Benchmark

- TensorFlow
- XLA
- OpBatch
- Fusion

Fusion shows a 10.9x improvement in average runtime vs. TensorFlow.
Conclusion

• A compiler infrastructure is critical for both cloud and edge AI
 • Optimize for fast distributed training in cloud
 • Optimize for efficient inference on accelerator devices

• System innovations to bridge applications and diverse hardware
 • Common intermediate representation (IR)
 • Co-design software and hardware for extreme efficiency

• Wolong prototype has demonstrated the initial improvements
 • Up to 8x speedup on training workloads
 • Up to 10x speedup on inference benchmark
Thank You!
Distributed Graph Optimizer of Wolong

- Transfer dynamically allocated tensor through RDMA write/read
- Phase I: graph analyzing
- Phase II: graph execution

Supports GPUDirect RDMA as well