Neural networks and Bayes Rule

Geoff Gordon
Research Director, MSR Montreal
Joint work with Wen Sun and others
The “right answer” for inference

- Bayes rule
 - As implemented in graphical models
 - But, too expensive

- If we could do it, benefit: each node/edge has semantics
 - Helps model design, interpretation
OTOH, deep nets

- Efficient inference = simple matrix ops, fixed nonlinearities
- Efficient training = SGD FTW
- Not much semantics, but fast and successful
Can we get best of both worlds?

- Design deep nets that look more like graphical models (or vice versa)
- Want a model format that is both practical and “semantic”
- Take advantage of semantics for interpretation, model design, expressiveness, …
- Take advantage of SGD for performance on big problems
RNNs are Bayes nets already (sort of)

• Any RNN has to do approximate Bayesian inference (if it wants low loss)
• At each t, represents $P(\text{future} \mid \text{history})$ implicitly
 • E.g., can sample by rolling out
• Update rule has to implement approximate conditioning
Make implicit representation explicit

• In addition to predicting immediate next observation from latent state \(s_t\),
 • Predict richer statistics of future
 • E.g., mean and covariance of observation features over next few steps
 • E.g., how many steps until we next see a 1
 • …
• If we use enough features, predictions are a 1:1 map from latent state
 • And therefore from predicted \(P(\text{future} \mid \text{history})\)

• Called “predictive state”
 • A transformation of latent state to predictions about observables
Predictive state example
Predictive state example

\[\mathbb{E}(x_1 \mid s_1) = Os_1 \]
\[\mathbb{E}(x_2 \mid s_1) = OTs_1 \]
\[\mathbb{E}(x_3 \mid s_1) = OT^2s_1 \]

If this matrix has full column rank then \(s_1 \) is completely determined

so this vector is a state
Adding predictive state to an RNN

- ... is an inductive bias
- ... empirically helps prediction accuracy
- ... but like all RNNs, serious worry about local optima

<table>
<thead>
<tr>
<th></th>
<th>Swimmer</th>
<th>HalfCheetah</th>
<th>Hopper</th>
<th>Walker2d</th>
<th>Walker2d†</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPO</td>
<td>91.3 ± 25.5</td>
<td>330 ± 158</td>
<td>1103 ± 264</td>
<td>383 ± 96</td>
<td>1396 ± 396</td>
</tr>
<tr>
<td>TRPO + pred</td>
<td>97.0 ± 19.4</td>
<td>372 ± 143</td>
<td>1195 ± 272</td>
<td>416 ± 88</td>
<td>1611 ± 436</td>
</tr>
<tr>
<td>Rel. improvement</td>
<td>6.30%*</td>
<td>13.0%*</td>
<td>9.06%*</td>
<td>8.59%*</td>
<td>15.4%**</td>
</tr>
</tbody>
</table>

Venkatraman et al. Predictive-State Decoders: Encoding the Future into Recurrent Networks. arXiv, 2018
Idea: bootstrap from supervised learning

• Empirically, many fewer worries about local optima for supervised learning
 • And theoretically, in simple cases (e.g., linear)
• We hope to borrow this property

• Hope: solve some supervised learning problems, get good weights for our deep net
 • then we can also run SGD to fine-tune these weights
Bootstrap outline

1. Predict future features directly from a fixed window of history
 • Supervised learning problem
 • But suboptimal: finite memory

2. Add [predicted future at time \(t \)] as input when predicting future for \(t+1 \)
 • Chaining predictions allows infinite memory
 • To avoid introducing recurrence, use (fixed) predictions from a previous training iteration
 • Problem: training distribution changes across iterations

3. Fix the problem from step 2
 • imitation learning
Imitation for inference

• Inference is an RL problem (state = predictions so far, action = make another prediction conditioned on state, cost = sum of errors in predictions)
• Learning to do inference = finding a good policy
• Don’t need full RL: it’s much easier to imitate an “expert”
 • expert always gets its prediction from a labeled training set
• Which is good: unlike full RL, we can reduce imitation learning to supervised learning
 • via approximate policy iteration
(Exact) policy iteration

• Do at least once:
 • for all states s, actions a
 • calculate current total cost $Q^\pi(s, a)$, value $V^\pi(s) = E_{a \sim \pi(s)}[Q^\pi(s, a)]$, and
 (dis)advantage $A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)$ // evaluate
 • choose $\pi^{\text{new}}(s) = \arg\min_a A^\pi(s, a)$ // improve

• Doesn’t work in a real-size problem:
 • must sample (s, a) rather than iterating over all
 • can’t calculate A^π exactly, must estimate somehow
 • can’t choose new policy freely, must work in some hypothesis class
Approximate policy iteration (meta-algorithm)

• Do at least once:
 • estimate $A^\pi(s, a)$ // evaluate
 • update π^{new} to reduce $E_{\text{new}}[A^\pi(s, a)]$ // improve

• To instantiate: way to estimate $A^\pi(s, a)$, way to update π^{new}
 • also starting π, stopping criterion
Simple analysis of approximate policy iteration

- Guarantee: cost of π^{new} is $V^\pi(s_0) + T E_{\text{new}}[A^\pi(s, a)]$
 - via performance difference lemma (simple proof: telescoping sum)
 - improvement when $E_{\text{new}}[A^\pi(s, a)] < 0$ (i.e., π improvable within hypothesis class, training succeeds)
- Difficulty: expectation is under distribution of (s, a) from π^{new} (not the distribution we used to collect data)
- Can we develop algorithms that guarantee improvement (w/ assumptions) despite this difficulty?
 - Yes…
DAgger

- Sample states according to expert policy
- Estimate A^π for all actions in current state (error to gold label)
- Generate training examples: $(s, a, A^\pi(s, a))$
- Train π^{new} by no-regret cost-sensitive classification
 - sadly, deep nets aren’t no-regret

Ross, Gordon, Bagnell. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. \textit{AISTATS}, 2011
AggreVaTeD

• Sample states according to expert policy
• Estimate A^π for all actions in current state (error to gold label)
• Update π^{new} by policy gradient (or natural gradient) to reduce cost
 • works for any differentiable policy, including deep nets

Empirically, beats SGD w/ random init

![Graph showing performance over iterations](image)

![Graph showing performance over iterations](image)

![Graph showing performance over iterations](image)
Bonus: our network can explicitly encode Bayes rule

- Discrete observation x_t (as 1-hot vector)
- Choose future statistic t of the form $x_t \times \phi(x_{t+1:t+k})$
 - ϕ arbitrary, except should include a constant feature
- When predicting x_{t+1} from $E(\psi_t)$ and x_t:
 - First layer: compute $x_t^T E(\psi_t)$ then renormalize (using constant in ψ_t)
 - Remaining layers arbitrary
- Now can implement HMM learning and forward inference
 - use a single linear layer
 - If true model is an HMM, after learning, linear layer’s parameters encode transition, observation probabilities
Thank you!