5G is a **Software** Play

Edge-Cloud will Power Tomorrow’s Wireless

Kyle Jamieson* and Lin Zhong**

*Princeton University **Rice University
Are we ready?

1G
1st Generation wireless network
- Basic voice service
- Analog-based protocols

2G
2nd Generation wireless network
- Designed for voice
- Improved coverage and capacity
- First digital standards (GSM, CDMA)

3G
3rd Generation wireless network
- Designed for voice with some data consideration (multimedia, text, internet)
- First mobile broadband

4G
4th Generation wireless network
- Designed primarily for data
- IP-based protocols (LTE)
- True mobile broadband

5G

The Need for Speed in kilobits per second

2.4 kbps 64 kbps 2,000 kbps 100,000 kbps
Takeways

• Software enables **rapid innovation** in telecom

• Rethink software stack for **efficiency** and **availability**

• **Re-architect** the Edge Cloud for 5G networks

• Explore novel **value-added services**
Hardware is cheap and getting cheaper

(even post Moore’s Law)
Spectrum is scarce

Poor spatial reuse; poor power efficiency; high inter-cell interference
More hardware (antennas + computing)
Higher spectrum efficiency
5G: more hardware, higher spectral efficiency, lower latency

- Massive MIMO
- Small cell/dense deployment
- mm-Wave radios
Argos V1 (2011): World’s first Massive MIMO Testbed
Platforms for Advanced Wireless Research

TESTBED

POWDER-RENEW

THE UNIVERSITY OF UTAH RICE

Salt Lake City, UT

PAWR PROJECT OFFICE

usignite Northeastern University
It took seven years!

2011

Ph.D. 2017

Skylark Wireless
CTO
Specialized equipment => Slow innovation

<table>
<thead>
<tr>
<th>1G</th>
<th>2G</th>
<th>3G</th>
<th>4G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Generation wireless network</td>
<td>2nd Generation wireless network</td>
<td>3rd Generation wireless network</td>
<td>4th Generation wireless network</td>
</tr>
<tr>
<td>• Basic voice service</td>
<td>• Designed for voice</td>
<td>• Designed for voice with some data consideration (multimedia, text, internet)</td>
<td>• Designed primarily for data</td>
</tr>
<tr>
<td>• Analog-based protocols</td>
<td>• Improved coverage and capacity</td>
<td>• First mobile broadband</td>
<td>• IP-based protocols (LTE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THE NEED FOR SPEED in kilobits per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 kbps</td>
</tr>
</tbody>
</table>

5G
Specialized equipment => Slow innovation

1980s

1G
1ST GENERATION wireless network
- Basic voice service
- Analog-based protocols

1990s

2G
2ND GENERATION wireless network
- Designed for voice
- Improved coverage and capacity
- First digital standards (GSM, CDMA)

2000s

3G
3RD GENERATION wireless network
- Designed for voice with some data consideration (multimedia, text, internet)
- First mobile broadband

2010s

4G
4TH GENERATION wireless network
- Designed primarily for data
- IP-based protocols (LTE)
- True mobile broadband

2020s

5G

THE NEED FOR SPEED in kilobits per second

2.4 kbps
64 kbps
2,000 kbps
100,000 kbps
5G infrastructure needs a **software** approach
Lessons:

#1: **Software** innovates **faster**
#2: Resource **integration** is **bad**
Basestation=RF+Accelerator+software
• Slow technology evolution
• Impossible inter-cell resource sharing
• Difficult inter-cell coordination

Basestation = RF + Accelerator + Software
Disaggregated radio access

Disaggregated local data center = Accelerator + Software

Basestation = RF + Accelerator + Software
Cellular network recent past

Small cell, MU-MIMO, inter-cell coordination
Software has already eaten Internet and cellular core

Cellular network today

Small cell, massive MIMO
Cellular network tomorrow

Disaggregated local data centers

Small cell, massive MIMO

Internet

Core Network

SDN and NFV

Radio Access

Server cluster

Accelerator rack
• Fast technology evolution
• Resource consolidation
• Value-adding services
Software enables inexpensive dense deployment and fast innovation.

An array of cheap access points serving mobiles.

Overarching challenge: Handover at vehicular speeds, picocell cell sizes.

Song et al (SIGCOMM’17)
ParkMaster: Smartphone-based on-the-road parking intelligence

- Close to zero-cost system for parking availability monitoring
- In-frame car localization algorithm
- Lightweight car tracking algorithm

Grassi et al (SEC 2017)
Continuous mobile vision

2012
Continuous mobile vision

2012
Continuous mobile vision

2020
Software systems must be Efficient (like baremetal) Available (like commodity data center)

Accelerator Rack

Heterogeneous edge data center

FlexCore, NSDI’17
Rethink the software stack for **efficiency** & **availability**
Linux is fundamentally flawed for these goals

- C is not safe
- Weak modularization
If Linux/C is airport security check we need TSA Pre

Time of enforcement

Theseus/Rust

Linux/C

Design time Implmtn. time Compile time Install time Load time Run time Post mortem
5G is a **Software** Play

- Software enables **rapid innovation** in telecom

- Rethink software stack for **efficiency** and **availability**

- **Re-architect** the Edge Cloud for 5G networks

- Enable novel **value-added services**
Thank you!