Research Faculty Summit 2018
Systems | Fueling future disruptions
Elevating the Edge to be a Peer of the Cloud

Kishore Ramachandran
Embedded Pervasive Lab, Georgia Tech
Acknowledgements

Enrique Saurez Harshit Gupta Zhuangdi Xu Adam Hall
IoT boom: Sensor-rich environment
A Broad Set of IoT Applications

- Predictive maintenance
- Enable New Knowledge
- Agriculture
- Smart Grid
- Energy Saving (I2E)
- Intelligent Buildings
- Transportation and Connected Vehicles
- Defense
- Industrial Automation
- Enhance Safety & Security
- Healthcare
- Smart Home

Thanks to CISCO for this slide
Future Internet Applications on IoT

• Sense -> Process -> Actuate
• Common Characteristics
 • Dealing with real-world data streams
 • Real-time interaction among mobile devices
 • Wide-area analytics
• Requirements
 • Dynamic scalability
 • Low-latency communication
 • Efficient in-network processing
Cloud Computing

- Good for web apps at human perception speeds
 - Throughput oriented web apps with human in the loop
- Not good for many latency-sensitive IoT apps at computational perception speeds
 - sense -> process -> actuate
- Other considerations
 - Limited by backhaul bandwidth for transporting plethora of 24x7 sensor streams
 - Not all sensor streams meaningful
 - => Quench the streams at the source
 - Privacy and regulatory requirements
Fog/Edge Computing

- Extending the cloud utility computing to the edge
- Provide utility computing using resources that are
 - Hierarchical
 - Geo-distributed
Fog/edge computing today

- Edge is slave of the Cloud
 - Platforms: IoT Azure Edge, CISCO Iox, Intel FRD, ...
- Mobile apps beholden to the Cloud
Vision for the future

- Elevate Edge to be a peer of the Cloud
 - Prior art: Cloudlets (CMU+Microsoft), MAUI (Microsoft)
- In the limit
 - Make the Edge autonomous even if disconnected from the Cloud
Why

- Interacting entities (e.g., connected vehicles) connected to different edge nodes
- Horizontal (p2p) interactions among edge nodes essential
Why ?

- Autonomy of edge (disaster recovery)
Challenges for making

- Need for powerful frameworks akin to the Cloud at the edge
 - Programming models, storage abstractions, pub/sub systems, ...
- Geo-distributed data replication and consistency models
 - Heterogeneity of network resources
 - Resilience to coordinated power failures
- Rapid deployment of application components, multi-tenancy, and elasticity at the edge
 - Cognizant of limited computational, networking, and storage resources
Thoughts on meeting these challenges

• Geo-distributed programming model for Edge/Cloud continuum
 • Foglets (ACM DEBS 2016)
• Geo-distributed data replication and resource management
 • FogStore (ACM DEBS 2018)
 • DataFog (HotEdge 2018)
• Applications using autonomous Edge
 • STTR: Space Time Trajectory Registration (ACM DEBS 2018)
 • Social Sensing *sans* Cloud (SocialSens 2017)
Geo-distributed programming model

Foglets

App as dataflow graph
Geo-distributed programming model

Foglets

- Provides event handlers for communication

onChildMsg()
onParentMsg()

App as dataflow graph
Geo-distributed programming model

Foglets

App as dataflow graph

Provides event handlers for communication

Transparent state migration
Geo-distributed programming model

Foglets

- onMigration
- Start()
- onNewChild()

App as dataflow graph
Provides event handlers for communication
Transparent state migration
Handlers for migration events
Geo-distributed programming model

Foglets

Summary:
- Sense->process->actuate app as a data flow graph with latency SLAs
- Auto discovery and placement of app components in Fog-Cloud continuum
- Migration of computation and state commensurate with mobility and/or resource constraints
- Spatio-temporal KV store for stashing state
- Multi-tenancy in the Fog nodes via virtualization
Summary:

- Sense->process->actuate app as a data flow graph with latency SLAs
- Auto discovery and placement of app components in Fog-Cloud continuum
- Migration of computation and state commensurate with mobility and/or resource constraints
- Spatio-temporal KV store for stashing state
- Multi-tenancy in the Fog nodes via virtualization

ACM DEBS 2016 for details
Replication: Consistency/Latency tradeoff

FogStore

Low-latency quorum read/update
Replication: Consistency/Latency tradeoff

FogStore

- Low-latency quorum read/update
- Poor fault-tolerance
Replication: Consistency/Latency tradeoff

FogStore

- Good fault tolerance
- Poor latency
Define Context of Interest (COI) region which needs consistent data.

Strong consistency only to clients in COI.

Eventual consistency for out of COI region for fault-tolerance.

Utilize spatio-temporal locality nature of queries.

Replication: Consistency/Latency tradeoff.
Replication: Consistency/Latency tradeoff

FogStore

Quorum always involves replicas in proximity

Low-latency with strong consistency

ACM DEBS 2018 for details
Capacity conscious data replication

DataFog

Continuous data generation

Pressure on low storage capacity of edge nodes
Capacity conscious data replication

DataFog

Skews in workload distribution
Capacity conscious data replication

DataFog

- Edge used only for critical data
- Important for real-time queries
Capacity conscious data replication

DataFog

Agile load balancing for skew tolerance
DataFog

Capacity conscious data replication

Agile load balancing for skew tolerance

- Data-items are indexed based on their spatio-temporal attributes (e.g., Geohash)
- Consistent hashing for the location, timestamp and item-type attributes is used for partitioning data across nodes
- Multiple replicas on Edge nodes for low latency
- Multiple replicas on remote datacenter nodes for tolerance from geographically correlated failures
- Mechanisms for adapting to hotspots
DataFog

Capacity conscious data replication

HotEdge 2018 for details

Agile load balancing for skew tolerance

- Data-items are indexed based on their spatio-temporal attributes (e.g., Geohash)
- Consistent hashing for the location, timestamp and item-type attributes is used for partitioning data across nodes
- Multiple replicas on Edge nodes for low latency
- Multiple replicas on remote datacenter nodes for tolerance from geographically correlated failures
- Mechanisms for adapting to hotspots
Applications using Autonomous Edge

Space Time Trajectory Registration (STTR)

Forward/Backward propagation between cameras

Greedy/Lazy trajectory aggregation

Storage is bounded by the activities within each camera

Edge as real-time processing
Cloud as history

ACM DEBS 2018 for details
Applications using Autonomous Edge

Social sensing

Multi-component applications

Deployed across edge-cloud continuum
Applications using Autonomous Edge
Social sensing

Multi-component applications
Deployed across edge-cloud continuum
Large-scale outages lead to connectivity loss
Social sensing

Applications using Autonomous Edge

Network partition

- Multi-component applications
- Deployed across edge-cloud continuum
- Large-scale outages lead to connectivity loss
- Application reconfiguration to resume operation
Applications using Autonomous Edge

Social sensing

Multi-component applications

Deployed across edge-cloud continuum

Large-scale outages lead to connectivity loss

Application reconfiguration to resume operation

Opportunistic networking for talking between partitions
Applications using Autonomous Edge

Social sensing

Design a generic multi-tier architecture for apps

Provide APIs for developing application logic

Network partition
Applications using Autonomous Edge
Social sensing

Network partition

Design a generic multi-tier architecture for apps
Provide APIs for developing application logic

SocialSens 2017 for details
Ongoing work: Logically centralized control plane

1. Extension of Foglets programming model to add QoS requirements
 - Max data staleness at each level
2. Centralized control for end-to-end allocation respecting SLAs
3. Enables high level resource management policies
 - E.g. resource consolidation for energy minimization
Ongoing work: Logically centralized control plane

1. How distributed can the control plane be?
 ○ Tradeoff between control plane latency and end-to-end decision making
2. How to efficiently monitor vastly geo-distributed resources?
 ○ Necessary for adaptive reconfigurations
 ○ Devise decentralized monitoring schemes
 ○ Piggyback on data plane
3. How to deal with inconsistent resource state at control plane?
 ○ Controller’s world view may be stale due to failures
Concluding Remarks

- Inflection point in systems research spurred by large-scale deployment of sensors and novel situation awareness applications
- Edge/Fog emerging as a serious disruption to the Cloud status quo
- Vision for the future
Questions?
Horizontal communication
Why horizontal communication across edge nodes?

- Can’t expect multiple interacting entities to be connected to the same edge node at a time
 - Assumption: Each cell tower (eNB) has an edge-cluster
 - A vehicle connects to edge-cluster on the cell tower it’s connected to
 - Cell tower (eNB) selection done locally based on best SNR
 - Two clients very close-by may be connected to different eNBs
- Allows a more flexible model, wherein low-latency messaging is provided not just to clients connected to same eNB
- In future networks, the size of base stations is going to become smaller (small cells in 5G), which would require more cross-base-station communications
- Avoiding redundancy: Nearby edge nodes share context, and making them independent would mean increased redundancy in their actions
- Load balancing: Hotspot formation is much more likely if each edge node works in isolation. P2P communication needed for better load balancing.
Running a red light!

Illegal crossing of red light at 21st and 6th!

Potential collision

Prepare to Stop!

Stop!
In worst case scenario, the object detection technology on each car would detect this jay-walking pedestrian. Proactive alerts are necessary to avoid such situations.
Edge without cloud
People of the same colour are 1 family. Concerned about other family members
Exchange messages opportunistically

OK : +1-494-552-9433
OK: +1-494-552-9433

OK: +1-494-552-9433
Use case: Suspicious vehicle tracking

- Spatio-temporal range queries such as select all vehicle detections within 5km and 10 minutes to be efficient
- The distribution of workload is dependent on the distribution of vehicles in space, leading to hotspots
- For continuous operation, continuous streams of vehicle detections have to be saved in a datastore
DataFog
Locality-aware distributed indexing

- Data-items are indexed based on their spatio-temporal attributes (e.g. Geohash)
- Consistent hashing for the location, timestamp and item-type attributes is used for partitioning data across nodes

```
{  
  "metric" : "ACV2351",
  "location" : {
    "latitude" : "33.42553",
    "longitude" : "-84.74456"
  }
  "timestamp" : "1520123197"
}
```

Geohash	H(metric)	H(timeId)
```
djgw | 258709251 | 2039412664
```
Replication Policy

- Load-balancing and fault-tolerance
- Multiple replicas on Edge nodes for low latency
- Multiple replicas on remote datacenter nodes for tolerance from geographically correlated failures
Handling workload skews

- Load-balancing region
- Partition key -> virtual node -> physical node
- Mechanisms for adapting to hotspots
 - Long-lived: launch and attach new datastore nodes to the running cluster
 - Short-lived: offload heavily loaded nodes’ data items to lightly loaded nodes
Handling scarce resources at the edge

- TTL-based data eviction
 - Real-time analytics on temporal data
 - Batch-processing requires data spanning over a large period of time

- Data aggregation and compression
 - Omit redundant metadata to increase efficiency of storage utilization
 - Isomorphism of time series data
Non-closed Region and Boundary Cameras

- Create virtual cameras to connect all boundary cameras to force a closed region
- No theoretical activity upper bound for these virtual cameras
- However, in reality, vehicles active in a specified geographic region are largely "return" customers
- Archive trajectories from the virtual cameras into the cloud
Thank you