
Sparse Multi-Prototype Classification

Vikas K. Garg
CSAIL, MIT

vgarg@csail.mit.edu

Lin Xiao
Microsoft Research

lin.xiao@microsoft.com

Ofer Dekel
Microsoft Research

oferd@microsoft.com

Abstract

We introduce a new class of sparse multi-
prototype classifiers, designed to combine
the computational advantages of sparse
predictors with the non-linear power of
prototype-based classification techniques.
This combination makes sparse multi-
prototype models especially well-suited for
resource constrained computational plat-
forms, such as the IoT devices. We cast our
supervised learning problem as a convex-
concave saddle point problem and design
a provably-fast algorithm to solve it. We
complement our theoretical analysis with
an empirical study that demonstrates the
merits of our methodology.

1 INTRODUCTION

As modern machine-learned models become more
accurate, they also tend to grow bigger and become
more expensive to compute. Deep neural networks,
massive decision tree ensembles, and other contem-
porary machine learning predictors can have hun-
dreds of millions of parameters, resulting in a large
memory footprint and a high computational cost.
These models become especially prohibitive when
the goal is to deploy them on resource impoverished
platforms, such as wearable computers or IoT de-
vices (Kumar et al. , 2017). Similarly, their high
cost makes it difficult to build systems that need to
keep track of many different models, such as those
that maintain a separate model per user. Unsurpris-
ingly, these issues have fostered a renewed interest in
learning models that strike a better balance between
accuracy and cost.

Efforts to develop machine learning techniques that

produce more compact models can be broadly bi-
furcated into two schools of thought. The first ap-
proach is to train a large and accurate model topol-
ogy, and subsequently compress it using an approxi-
mation method. Some of these approximation tech-
niques include pruning (Han et al. , 2016; Nan et al.
, 2016; Luo et al. , 2017), low-rank matrix approxi-
mation (Sainath et al. , 2013; Nakkiran et al. , 2015),
hashing (Chen et al. , 2015), and parameter quan-
tization or binarization (Hubara et al. , 2016; Han
et al. , 2016). Another popular technique is to use a
large model to generate training data for a smaller
model (Bucila et al. , 2006).

The second approach incorporates compression more
intimately into the training objective. For example,
the well-known Lasso (Tibshirani, 1996) and Elastic-
Net (Zou & Hastie, 2005) algorithms use a sparsity-
inducing regularization term to control the sparsity
of a linear model. The resulting sparse predictor re-
lies only on a small subset of the available features,
and is therefore economical to store and make pre-
dictions. The weakness of these approaches is that
linear predictors are typically not expressive enough
to achieve state-of-the-art accuracy. Another com-
mon idea is to define models that are specified by a
small number of prototypes, for example, by learn-
ing a Support Vector Machine (SVM) with a small
support set (Dekel & Singer, 2007; Dekel et al. ,
2008), or by finding a compressed set of reference
points for a Nearest Neighbor model (Kusner et al.
, 2014; Zhong et al. , 2017; Gupta et al. , 2017). A
main drawback of these techniques is that they typi-
cally require solving highly non-convex optimization
problems, which makes it difficult to guarantee their
convergence and optimality. Another shortcoming of
many of these approaches is that the prototypes that
they learn are typically dense.

In this paper, we subscribe to the second approach
mentioned above, and address the cost-accuracy

tradeoff by designing the training objective appro-
priately. Specifically, we introduce a class of models
that we call Sparse Multi-Prototype (SMP) classi-
fiers. SMP classifiers attempt to combine the spar-
sity benefits of linear models with the non-linear
power of multi-prototype methods. Namely, each
class is associated with a small set of prototypes,
and each of those prototypes is sparse. But for their
sparsity, SMP classifiers are reminiscent of multi-
class SVMs (Weston & Watkins, 1999; Crammer &
Singer, 2001), and their multi-prototype extensions
(Aiolli & Sperduti, 2005).

We formulate the training procedure for SMP clas-
sifiers as a convex optimization problem. Specifi-
cally, we cast the SMP training problem as a convex-
concave saddle point optimization problem and show
that this formulation admits fast convergence via a
primal-dual proximal point algorithm due to Cham-
bolle and Pock (Chambolle & Pock, 2011, 2016; He
et al. , 2017; Zhang & Xiao, 2015; Yu et al. , 2017).
On one hand, our formulation induces sparsity by
incorporating a regularization term, similar to the
`1 term used in Lasso and Elastic-Net. On the other
hand, it controls the number of prototypes using an-
other regularization term, similar to the one used
to derive convex formulations of clustering (Hocking
et al. , 2011) and regression (Feng et al. , 2012). Our
optimization formulation and algorithm are different
from the ones used in these papers.

The rest of the paper is organized as follows. We
set up the problem in Section 2. We then show,
in Section 3, how our problem can be posed as a
saddle point problem that admits fast and provable
convergence via the Chambolle-Pock procedure. We
present the results of our experiments in Section 4.

2 PROBLEM FORMULATION

Let Y be a finite set of labels. Suppose that we
are given a set of training examples {(xi, yi)}mi=1 ,
where each xi ∈ Rn and yi ∈ Y. Without loss of
generality, we assume an ordering of the training
examples: examples from first class precede those in
second, examples from second precede those in third,
and so on.

Our goal is to learn a classifier c : Rn 7→ Y. Assume
(without loss of generality) that c is defined by a set
of scoring functions {φy}y∈Y , where the value φy(x)
is interpreted as the score of predicting the label y
for the instance x. Using these scoring functions,

our classifier takes the form

c(x) = arg max
y∈Y

φy(x).

The classifier c(x) correctly classifies the example
(x, y) if and only if

φy(x)−max
y′ 6=y

φy′(x) > 0. (1)

We use this property to define the empirical loss
m∑
i=1

`

(
φyi(xi)−max

y 6=yi
φy(x)

)
,

where ` is a convex monotonically non-increasing
loss function that upper bounds the error indica-
tor function (for instance, ` could be hinge-loss or
log-loss). Clearly, this loss is an upper-bound on the
number of multiclass classification mistakes.

If we use a linear score function for each class, i.e.,

φy(x) = wy · x, y ∈ Y,

where each wy ∈ Rn is called a class prototype, and
· denotes the inner product of two vectors, then we
obtain the multi-class support vector machine (We-
ston & Watkins, 1999; Crammer & Singer, 2001).

In this paper, we allow multiple prototypes for each
class (Aiolli & Sperduti, 2005). Suppose we have
in total N prototypes w1, . . . , wN ∈ Rn, and let Jy
be the set of the prototype indices associated with
class y for each y ∈ Y. We let the score function for
class label y be

φy(x) = max
j∈Jy

wj · x.

Since ` is monotonically non-increasing, we have

`

(
φyi(xi)−max

y 6=yi
φy(xi)

)
= `

(
max
j∈Jyi

wj · xi − max
j /∈Jyi

wj · xi
)

≤ `

(
wj(i) · xi − max

j /∈Jyi
wj · xi

)
= max

j /∈Jyi
`
(
(wj(i) − wj) · xi

)
,

where j(i) ∈ Jyi is any fixed assignment of prototype
to the example (xi, yi). The last expression above is
a convex function in all the prototypes w1, . . . , wN ,
and so is the average loss function

1
m

m∑
i=1

max
j /∈Jyi

`
(
(wj(i) − wj) · xi

)
. (2)

Note that j(i) needs to be fixed before we optimize
over the prototypes, but is not required to maximize
wj ·xi over j ∈ Jyi . This relaxation helps us to obtain
a convex upper bound on the loss in the general case.

Setting N = |Y| and |Jy| = 1 recovers the loss
for the multi-class SVM, and we have j(i) =
arg maxj∈Jyi wj · xi. In the other extreme case, we
can let N = m and associate each training exam-
ple (xi, yi) with a prototype wi. In this case, we
can have φyi(xi) = wi · xi = arg maxj∈Jyi wj · xi.
However, this approach requires excessive amount
of storage and computation, and also may cause sig-
nificant overfitting.

In practice, we can cluster the training examples in
each class into p groups, where p is much smaller
than the number of examples in the class. Then we
can have p prototypes for each class y ∈ Y, and as-
sociate the examples in each cluster within the class
with a common prototype: j(i) = j(i′) if yi = yi′ ,
and xi and xi′ belong to the same cluster.

2.1 SMOOTHING THE LOSS

In order to leverage the fast algorithms designed for
smooth convex optimization, we focus on smooth
loss functions. In particular, we use the log-loss

`(α) = log(1 + exp(−α)).

Although this is a smooth function, the average
loss function defined in (2) is non-smooth, due to
the max operators in the sum. We can make the
loss function smooth using the usual trick of soft-
max. Specifically, we can replace the function u(z) =
maxj `(zj) with

ũ(z) = log
(

1 +
∑
j exp(−zj)

)
. (3)

As a result, the smoothed loss function is

f(W) = 1
m

m∑
i=1

log
(

1+
∑
j /∈Jyi

exp
(
(wj − wj(i)) · xi

))
,

(4)
where W ∈ RN×n is a matrix formed by stacking
the vectors wT1 , . . . , wTN as its rows.

2.2 ENFORCING GROUP SPARSITY

Instead of relying on a separate clustering stage to
reduce the number of prototypes, we can use a more
principled approach based on convex optimization.
Suppose we start with a large number of prototypes,
for example, by having a separate prototype for each

training example. While minimizing the average loss
function, we may add the regularization term∑

y∈Y

∑
j>i
i,j∈Jy

‖wi − wj‖∞, (5)

which encourages some of the prototypes in each
class to merge, forming a smaller set of distinct pro-
totypes.

We introduce some notations to simplify our presen-
tation. Let Wy ∈ R|Jy|×n be the matrix formed by
stacking the set of prototypes {wTj : j ∈ Jy} as its
rows. For each class y ∈ Y, we form a by × |Jy| ma-
trix By, where by =

(|Jy|
2
)
. Specifically, each row of

By corresponds to a pair (i, j) such that i < j and
i, j ∈ Jy, with value 1 at index i, -1 at index j, and
0 elsewhere. Then the penalty function in (5) can
be written as ∑

y∈Y
‖ByWy‖∞,1,

where the matrix norm ‖ · ‖∞,1 is defined as

||U ||∞,1 =
∑
i

||Ui,·||∞ =
∑
i

max
r∈[n]

|Ui,r|.

Therefore, the regularized loss can be written as

f(W) + λ
∑
y∈Y
‖ByWy‖∞,1,

where λ > 0 is a regularization parameter and f is
the smoothed average loss defined in (4).

2.3 IMPOSING PROTOTYPE SPARSITY

In addition to the group sparsity aimed at having
fewer prototypes, we can also induce sparsity in each
prototype by adding the following regularization:

hη(Wy) , ||Wy||1,1 + η

2 ||Wy||2F ,

where ‖ · ‖F denotes the matrix Frobenius norm and

‖U‖1,1 =
∑
i

||Ui,·||1 =
∑
i

∑
r∈[n]

|Ui,r|.

In other words, hη is an elastic-net type of regular-
ization, where η is a parameter to trade off between
the `1 and `2 regularizations.

In summary, we would like to solve the following
sparse multi-prototype (SMP) classification prob-
lem:

min
W

{
f(W) + λ

∑
y∈Y
‖ByWy‖∞,1 + µ

∑
y∈Y

hη(Wy)
}
,

(6)

Algorithm 1 The Chambolle-Pock (CP) Algorithm
input: parameters τ , σ, and initial point (w0, v0)
Set w̄0 = w0

for t = 0, 1, 2, . . . do
vt+1 = proxσg (vt + σKw̄t)
wt+1 = proxτh

(
wt − τ

(
∇f(wt) +KT vt+1))

w̄t+1 = 2wt+1 − wt

where λ, µ > 0 are regularization hyperparameters.
This is a convex optimization problem. However,
due to the complex structure of the regularization
terms, it is not clear how to solve this minimization
problem directly in an efficient manner (e.g., how to
compute the proximal mapping of the group sparsity
regularization). In the next section, we tackle this
problem using a primal-dual first-order algorithm.

3 PRIMAL-DUAL ALGORITHM

Chambolle & Pock (2011, 2016) developed a class
of primal-dual first-order algorithms for solving the
following form of convex-concave saddle-point prob-
lems with bilinear coupling:

min
w∈Rd

max
v∈Rd′

f(w) + h(w) + 〈Kw, v〉 − g?(v), (7)

where f is convex and differentiable, and both h and
g? are convex but may be non-differentiable. In par-
ticular, g? can be considered as the conjugate func-
tion of some convex function g. Here K is a bilinear
coupling matrix of dimension d′ × d. In addition, it
is assumed that the proximal mappings of h and g?,

proxh(w) = arg min
u∈Rd

{
f(u) + 1

2 ||u− w||
2
2

}
,

proxg?(v) = arg min
z∈Rd′

{
g?(z) + 1

2 ||z − v||
2
2

}
,

can be computed efficiently. Intuitively, the proxi-
mal map proxh(w) looks for a point u that has a low
cost f(u) and is not too far from w.

Algorithm 1 shows the CP algorithm (Chambolle &
Pock, 2016) for solving the convex-concave saddle-
point problem (7). Suppose ∇f is Lipschitz contin-
uous with Lipschitz constant Lf , i.e.,

‖∇f(u)−∇f(w)‖2 ≤ Lf‖u− w‖2, ∀u,w ∈ Rd,

and the spectral norm of K is bounded by L, i.e.,
‖K‖ ≤ L. Chambolle & Pock (2016) showed that
this algorithm enjoys an O(1/t) convergence rate
(the reduction of optimization error after t itera-
tions) provided that the step size parameters σ and

τ satisfy the condition(
1
τ
− Lf

)
1
σ
≥ L2. (8)

In the rest of this section, we show how to transform
the SMP problem (6) into the form of (7), and how
to compute the relevant proximal mappings as well
as choose the step sizes.

3.1 SADDLE-POINT FORMULATION

Let g(U) = ‖U‖∞,1, and let 〈U, V 〉 denote the in-
ner product between the two matrices, i.e., 〈U, V 〉 =
Tr(UTV). The conjugate function of g is defined as

g?(V) = max
U

{
〈U, V 〉−g(U)

}
=
{

0 if ‖V ‖1,∞ ≤ 1
+∞ otherwise,

where ‖V ‖1,∞ = maxi ‖Vi,·‖1 = maxi
∑
j |Vi,j | is the

dual norm of ‖ · ‖∞,1. We replace the group sparsity
regularizations gy(ByWy) = ‖ByWy‖∞,1 in (6) by

max
Vy

{
〈ByWy, Vy〉 − g?y(Vy)

}
,

which yields the convex-concave saddle-point prob-
lem

min
W

max
V

{
f(W) + µ

∑
y∈Y

hη(Wy)

+ λ
∑
y∈Y

(
〈ByWy, Vy〉 − g?y(Vy)

)}
. (9)

Here the subscript y in gy and g?y indicates that their
arguments may have different dimensions; more
specifically, Vy ∈ Rby×n with by =

(|Jy|
2
)
. With some

delicate vectorization of the matrix variables, we can
put the formulation from (9) in the exact form of (7).

Without loss of generality, let the multi-class labels
be {1, 2, . . . , |Y|}. Denote by vec(A) the column vec-
tor formed by stacking the columns of matrix A on
top of one another. By a slight abuse of notation,
we define

vec(W) , [vec(W>1)> vec(W>2)> . . . vec(W>|Y|)]>.

Note that vec(W) ∈ RNn, where N is the total num-
ber of prototypes. Likewise, we form vec(V) ∈ Rbn,
where b ,

∑
y∈Y by, by concatenating the vectoriza-

tions of {Vy}. Let Id and 0d be, respectively, the
identity matrix and the zero matrix of order d. Let
1d be a d-dimensional vector with all coordinates
set to 1. We use A1 ⊗ A2 to denote the Kronecker

product of any two vectors or matrices A1 and A2.
Finally, we represent the kth standard basis in R|Y|

by ek, i.e., ek has coordinate k set to 1 and all the
others set to 0.

With the above notations, and letting w̃ = vec(W)
and ṽ = vec(V), we can show that the saddle-point
problem in (9) can be expressed as

min
w̃∈RNn

min
ṽ∈Rbn

f̃(w̃) + 〈B̃w̃, ṽ〉 − g̃?(ṽ),

with appropriate definitions of f̃ , B̃ and g̃?. First,
we have (with some tedious algebra)

λ
∑
y∈Y
〈ByWy, Vy〉 = 〈B̃w̃, ṽ〉,

where

B̃ ,

 |Y|∑
k=1

eke
>
k ⊗Bk

⊗ λIn. (10)

We define abs(z) , [|z1|, |z2|, . . . , |zk|] for any vector
z ∈ Rk. We note that

∑
y∈Y λg

?
y(Vy) is finite (when

it is 0) only if g?y(Vy) = 0, i.e. only if ||Vy||1,∞ ≤ 1,
for all y ∈ Y. Moreover, for λ finite and positive, we
have λg?y(Vy) = g?y(Vy). This lets us define

g̃?(ṽ) , g?(Cg abs(ṽ)), where

Cg =
|Y|∑
k=1

eke
>
k ⊗ 1>n

is a block diagonal matrix with |Y| blocks each equal
to 1>n , and g?(z) = 0 if zk ∈ [−1, 1] for all k ∈
{1, . . . , |Y|} and ∞ otherwise.

Finally, we can write the smoothed loss function
f(W) defined in (4) as

f(W) = f̃(w̃) = 1
m

m∑
i=1

ũ(Aiw̃), (11)

where ũ is the soft-max function defined in (3), and

Ai = Ci(IN ⊗ x>i).

Here Ci is a matrix with (N − |Iyi |) rows and
N columns. Each row of Ci corresponds to some
j /∈ Jyi , with its j(i)th coordinate being 1, jth co-
ordinate being −1, and all the other coordinates be-
ing 0.

3.2 BOUNDS ON THE LIPSCHITZ
CONSTANTS

In order to choose the step sizes σ and τ in the CP
algorithm appropriately, we need to estimate the two
parameters Lf and L that appeared in (8). First, we
give an upper bound on Lf .
Proposition 1. The Lipschitz constant Lf of
∇f̃(w̃) defined in (11) is bounded as

Lf ≤ NR2,

where N is the total number of prototypes and R is
an upper bound on ‖xi‖ for all i = 1, . . . ,m.

Proof. We derive the desired result by bounding the
spectral norm of the Hessian matrix of f̃ defined
in (11). It is sufficient to consider the Hessian of
each ũ(Aiw̃), which can be written as

Hi = A>i ∇2ũ(Aiw̃)Ai.

It is not hard to check that ∇2ũ(Aiw̃) � I, i.e., the
matrix I−∇2ũ(Aiw̃) is positive semidefinite for any
w̃. Therefore we have

Hi � A>i Ai = (IN ⊗ x>i)>C>i Ci(IN ⊗ x>i).

In terms of their spectral norm, we have

‖Hi‖ ≤ ‖C>i Ci‖ ‖IN ⊗ x>i ‖2. (12)

If ‖xi‖2 ≤ R, then we have ‖IN ⊗ x>i ‖ ≤ R.

It remains to bound ‖C>i Ci‖, which is the same as
‖CiC>i ‖. By construction of Ci at the end of Sec-
tion 3.1, we have

CiC
>
i = Idi + 1di1

>
di

where di = N − |Jyi |. Therefore we have

‖C>i Ci‖ = ‖CiC>i ‖ = N − |Jyi |+ 1 ≤ N.

Combining with (12), we conclude that ‖Hi‖ ≤
NR2. Finally, since ‖∇2f̃(w̃)‖ ≤ (1/m)

∑m
i=1 ‖Hi‖,

we obtain the desired result.

Next we derive the precise value of L = ‖B̃‖.
Proposition 2. The singular values of the matrix
B̃ defined in (10) belong to the set{

λ
√
|J1|, . . . , λ

√
|J|Y||, 0

}
.

Therefore, the spectral norm of B̃ is

L = max
k=1,...,|Y|

λ
√
|Jk|.

Proof. We first claim that Bk has two distinct sin-
gular values, viz.,

√
|Jk| (with multiplicity |Jk| -

1) and 0 (with multiplicity 1). We invoke a char-
acterization of the singular values in terms of the
eigen decomposition of positive semidefinite matrix
B>k Bk ∈ R|Jk|×|Jk| to argue for the full spectrum of
Bk. Specifically, if η2 is an eigenvalue of the matrix
B>k Bk, then η is a singular value of Bk.

Now note that B>k Bk has all the off-diagonal co-
ordinates equal to -1 and all the diagonal coordi-
nates equal to |Jk| − 1. This is precisely the Lapla-
cian of the complete graph with |Jk| nodes, which is
known to have the eigenvalue |Jk| with multiplicity
|Jk| − 1 and 0 with multiplicity one. This completes
the analysis for the spectrum of Bk.

Next, we note the term within the parentheses
in the definition of B̃ is a block diagonal matrix
with blocks B1, . . . , B|Y|, and therefore, the set of
the singular values of this set is simply the union
of the singular values of each block, i.e., the set
{
√
|J1|, . . . ,

√
|J|Y||, 0}. Finally, the distinct singu-

lar values of B̃ are {λ
√
|J1|, . . . , λ

√
|J|Y||, 0}, since

λ is the unique singular value (multiplicity n) of the
matrix λIn. This follows since every singular value
µ12 of A1 ⊗ A2 can be expressed as the product of
singular values µ1 of A1 and µ2 of A2.

We can rewrite the condition in (8) as

τ ≤ 1
Lf

,
στ

1− τLf
L2 ≤ 1.

Given the bounds for Lf and L derived in Proposi-
tion 1 and Proposition 2, we can choose the step sizes
τ and σ to satisfy the conditions above, which lead
to O(1/t) convergence of the CP algorithm. For ex-
ample, if we start with p prototypes for each class,
then |Jk| = p for k ∈ {1, . . . , |Y|} and N = p|Y|.
Therefore we have Lf ≤ p|Y|R2 and L2 = λ2p, and
can choose

τ = 1
2pR2|Y|

, σ ≤ 1
2λ2p

1
τ
.

We note that the bound on Lf can be very loose.
Some trial-and-error for tuning the step sizes is ex-
pected in practice.

3.3 COMPUTING PROXIMAL MAPS

We denote the sign of a real number p by sign(p) ∈
{0,±1}, and the positive part max(0, p) by (p)+. For
clarity of presentation, in this section, we use A(i, j)
to denote the entry of the matrix A at the ith row

and jth column. Our next result shows that the
Chambolle-Pock (CP) update for each Wy, y ∈ Y,
can be computed via a closed form expression.
Proposition 3. The CP update rule for Wy is

W t+1
y (i, j) =

sign(U ty(i, j))
µτη + 1

(
|U ty(i, j)| − µτ

)
+ ,

where U ty ,W t
y − τ

(
∇yf(W t) + λB>y V

t+1
y

)
.

Proof. In the CP algorithm, the matrix Wy is up-
dated as

W t+1
y = proxµτhη

(
W t
y − τ(∇yf(W t) + λB>y V

t+1
y)

)
,

where ∇yf(W t) denotes the partial gradient of f
with respect to Wy at the previous iterate W t. We
can equivalently write the above proximal mapping
as

W t+1
y = argmin

Z

{
hη(Z) + 1

2µτ ||Z − U
t
y||2F

}
. (13)

Since W t+1
y is optimal for the above minimization

problem, the (sub-)gradient of the corresponding ob-
jective function must vanish. Recall that

hη(Wy) = ‖Wy‖1,1 + (η/2)‖Wy‖2
F .

The optimality condition for (13) means that there
exists Z(i, j) ∈ ∂|W t+1

y (i, j)| such that

Z(i, j)+ηW t+1
y (i, j)+ 1

µτ
(W t+1

y (i, j)−U ty(i, j)) = 0.

When W t+1
y (i, j) = 0, we have ∂|W t+1

y (i, j)| ∈
[−1, 1], which implies |U t(i, j)| ≤ µτ . Otherwise,
we have ∂Z∗(i, j) = sign(Z∗(i, j)), whence

|U t(i, j)| > µτ and sign(Z∗(i, j)) = sign(U t(i, j)).

So, we can perform soft thresholding to obtain Z∗,
i.e. W t+1

y , for all cases, and it turns out as claimed.

We next derive an expression for updating Vy.
Proposition 4. The CP update rule for Vy is

V t+1
y = arg min

||Z||1,∞≤1

1
2
∥∥Z − (V ty + λσtByW̄

t
y)
∥∥2
F
.

Proof. Since the empirical loss term and the sparsity
term depend only on W , the update rule for Vy is

V t+1
y = arg max

Z

{
λ(〈ByW̄ t

y , Z〉 − g?y(Z))

− 1
2σ ||Z − V

t
y ||2F

}
.

Figure 1: Visual comparison of the decision boundary of classifiers on a run of the vineyard
dataset. The instances for two classes are shown in red and blue, with the test data, additionally, encircled.

We note that

λ(〈ByW̄ t
y , Z〉 − g?y(Z)) − 1

2σ ||Z − V
t
y ||2F

= −λg?y(Z)− 1
2σ

(
||Z − V ty ||2F − 2σλ〈ByW̄y

t
, Z〉

)
= −λg?y(Z)− 1

2σ ||Z − (V ty + σλByW̄y
t)||2F .

Since g?y(Z) is the indicator function of the unit norm
ball ‖Z‖1,∞, i.e., g?y(Z) = 0 if ‖Z‖1,∞ ≤ 1 and ∞
otherwise, we have V t+1

y

= argmin
Z

{
λg?y(Z)+ 1

2σ
∥∥Z−(V ty + σλByW̄

t
y)
∥∥2
F

}
= arg min

||Z||1,∞≤1

1
2
∥∥Z − (V ty + λσtByW̄

t
y)
∥∥2
F
,

which is what we set out to prove.

Using the results of Propositions 3 and 4, we arrive
at the customized CP algorithm in Algorithm 2 for
solving the SMP problem. For the updates on Vy,
we can compute V t+1

y by projecting independently
the rows of (V ty +σλByW̄

t
y) on the `1 unit ball. This

can be done efficiently (Brucker, 1984; Pardalos &
Kovoor, 1990; Duchi et al. , 2008).

4 EXPERIMENTS

We conducted several experiments1 to substantiate
the benefits of our framework. Our experiments are
designed to convey two salient aspects of our ap-
proach. First, we attempt to position our method
as an alternative to the standard classification algo-
rithms. Second, we underscore the aptness of our ap-
proach as a viable means to obtaining highly sparse
yet accurate representations. Before we dive into the
details, we provide some visual intuition to differen-
tiate our method from the other models.

We consider the following classifiers for the picto-
rial depiction: linear SVM (LSVM), SVM with a
non-linear kernel (RSVM) selected from radial basis
function, polynomial, and sigmoid via cross valida-
tion, Logistic Regression (LR), Decision Trees (DT),
Random Forest (RF), k-Nearest Neighbor (kNN),
Gaussian Process (GP), Gradient Boosting (GB),
AdaBoost (AB), and Quadratic Discriminant Anal-
ysis (QDA). Our baselines are popular in the ma-
chine learning literature, have varying degrees of

1All our experiments used the average loss function
from (2) in Algorithm 2 directly (i.e. without any
smoothing), and we set T = 200.

Table 1: Comparison of test accuracy of the different classification algorithms on low dimensional OpenML
datasets. The number of prototypes per class for the proposed algorithm, i.e. SMP, was set to 2.

LSVM RF AB LR DT kNN RSVM GB QDA GP SMP
sleuth1714 .82±.03 .83±.08 .81±.14 .83±.04 .83±.06 .82±.04 .76±.03 .82±.06 .63±.13 .80±.03 .87±.06

vis env .66±.04 .65±.08 .66±.03 .65±.08 .62±.04 .57±.03 .69±.06 .64±.03 .62±.07 .65±.09 .70±.03
sleuth2016 .71±.04 .70±.03 .70±.05 .72±.03 .65±.07 .67±.06 .72±.04 .65±.03 .62±.07 .73±.03 .74±.02
sleuth1605 .66±.09 .70±.06 .66±.07 .70±.07 .63±.09 .66±.05 .65±.09 .65±.09 .62±.05 .72±.07 .70±.06
sleuth2002 .65±.04 .59±.04 .60±.04 .64±.04 .55±.04 .63±.07 .64±.04 .60±.05 .65±.05 .62±.04 .68±.06
rmftsa cto .75±.02 .70±.02 .74±.02 .75±.00 .69±.03 .71±.03 .74±.02 .72±.03 .76±.02 .75±.02 .76±.02
rabe266 .93±.04 .90±.04 .91±.04 .92±.04 .91±.03 .92±.03 .93±.04 .90±.04 .94±.03 .95±.04 .94±.04
rabe265 .58±.07 .64±.05 .60±.10 .63±.02 .54±.05 .55±.03 .62±.06 .56±.09 .61±.04 .60±.08 .64±.06
rabe148 .95±.04 .94±.02 .91±.08 .95±.04 .89±.07 .92±.05 .91±.06 .91±.08 .92±.09 .95±.02 .96±.02

prnn synth .82±.02 .84±.02 .84±.02 .83±.02 .83±.01 .83±.02 .83±.03 .84±.01 .83±.03 .84±.02 .85±.02
hutsof99 .74±.07 .69±.06 .65±.09 .73±.07 .60±.10 .66±.11 .66±.14 .67±.05 .59±.07 .70±.05 .77±.04

humandev .88±.03 .86±.02 .85±.03 .89±.04 .85±.03 .87±.04 .88±.03 .86±.03 .88±.03 .88±.02 .89±.04
elusage .90±.05 .84±.06 .84±.06 .89±.04 .84±.06 .87±.05 .89±.04 .84±.06 .90±.04 .89±.04 .92±.04
baskball .70±.02 .65±.04 .68±.02 .71±.03 .71±.03 .63±.02 .66±.05 .69±.04 .69±.04 .68±.02 .71±.03

michiganacc .72±.06 .60±.09 .71±.05 .71±.04 .67±.06 .68±.05 .71±.05 .69±.04 .72±.04 .71±.05 .73±.05
election2000 .92±.04 .91±.04 .91±.03 .92±.02 .91±.03 .92±.01 .90±.07 .92±.02 .72±.06 .92±.03 .93±.02
cyyoung9302 .80±.04 .83±.05 .83±.02 .86±.04 .75±.10 .83±.02 .84±.02 .83±.05 .83±.07 .84±.03 .87±.04
bankruptcy .84±.07 .84±.06 .82±.04 .90±.05 .80±.05 .78±.07 .89±.06 .81±.05 .78±.15 .90±.05 .95±.02

asbestos .65±.04 .60±.05 .60±.03 .65±.07 .60±.05 .59±.04 .56±.06 .60±.06 .65±.05 .60±.06 .68±.06
MindCave2 .70±.04 .65±.06 .63±.05 .72±.04 .66±.04 .64±.05 .67±.06 .69±.06 .65±.03 .71±.04 .73±.06

Algorithm 2 Sparse Multi-Prototype Classification
1: Choose parameters λ, η, µ and τ, σ
2: Initialize W 0 = {W 0

y }y∈Y and V 0 = {V 0
y }y∈Y

3: Populate B = {By}y∈Y
4: W̄ 0 = W 0

5: for t = 0, 1, . . . , T do
Update V t+1 using `1 projections

6: Zty = V ty + λσByW̄
t
y

7: V t+1
y = arg min

||Z||1,∞≤1
(1/2)||Z − Zty||2F

Update W t+1 using soft thresholding
8: U ty = W t

y − τ
(
∇fy(W t

y ,W
t
\y) + λB>y V

t+1
y

)
9: Qty(i, j) =

sign(U ty(i, j))
µτη + 1

10: W t+1
y (i, j) = Qty(i, j)

(
|U ty(i, j)| − µτ

)
+

Update W̄ t+1

11: W̄ t+1
y = 2W t+1

y −W t
y

(non-)linearity, and include models from both the
generative and the discriminative families.

Fig. 1 shows the decision boundaries obtained by the
different classifiers on the vineyard data. The two
classes are depicted in red and blue. The test data
have been encircled to distinguish them from the

training instances. We observe that, on this prob-
lem, the different instantiations of our model provide
a better separation of the two classes compared to
the other models. For instance, both the linear clas-
sifiers, i.e. Logistic Regression and SVM with lin-
ear kernel, seem to underfit the data. On the other
hand, the SMP models are able to carve out good
decision boundaries. We further observe that our
model trained with five prototypes performs better
than that trained with two on this data. However,
this phenomenon does not hold in general, since hav-
ing multiple prototypes might lead to overfitting, es-
pecially in small datasets, for low values of λ.

4.1 LOW-DIMENSIONAL REGIME
(NO SPARSITY)

We found that the SMP performed very well on
several low-dimensional (i.e. n ≤ 20) OpenML
datasets.2 We now describe the results of our ex-
periments with these datasets. We preprocessed all
the data to normalize each feature to have zero mean
and unit variance. We split each dataset evenly into
train and test sets using random partitioning. For
SMP, we clustered the training examples in each
class into p = 2 clusters using k-means, and initial-

2Available at https://www.openml.org/

Figure 2: Comparison on high dimensional OpenML datasets. Each stacked bar shows two numbers:
average test accuracy on the left, and total number of selected features (including multiplicities) on the right.

ized the class prototypes with the cluster centers.
We followed 5-fold cross-validation (CV) for each
method to obtain a good setting of hyperparame-
ters. The details are given in the Supplementary.
We report the average test accuracy and standard
deviation over five random partitions per dataset.

The results on test accuracy are documented in Ta-
ble 1. Evidently, SMP is seen to perform very well
on many of these datasets. Note that these results
should not be misconstrued as implying that SMP
would generally work well with arbitrary data. In-
deed, we discovered that the performance of SMP
was suboptimal on many other datasets, where al-
gorithms like RSVM and GB performed much better
due to highly non-linear structure in the data.

4.2 HIGH-DIMENSIONAL REGIME

In this section, we explicate the results of our ex-
periments on high dimensional data, where feature
selection becomes especially critical. Our objective
is to demonstrate the efficacy of SMP in recovering
discriminative sparse features.

We first describe the experimental setup. We com-
pare SMP with six baselines that induce sparsity
by minimizing an `1-regularized loss function (Bach
et al. , 2012). These baselines minimize a regular-
ized empirical loss function, namely hinge loss, log
loss, or the binary-classification Huber loss, where

the regularization consisted of either `1 or elastic net
penalty (i.e. both `1 and `2 terms). We call these six
baselines as L1Hi (`1, hinge), L1L (`1, log), L1Hu
(`1, Huber), EnHi(elastic net, hinge), ENL(elastic
net, log) and ENHu(elastic net, huber) respectively.

The amount of sparsity achieved by different base-
lines at any fixed penalty is method specific. There-
fore, we first observed the sparsity obtained with
SMP on each method, and then modulated the `1
penalty for other methods to have roughly the same
number of selected features. Then, we retrained
these classifier using only the selected features, us-
ing the same loss (hinge, loss, or log) and an addi-
tional `2 penalty. Our procedure ensured that each
baseline benefited, in effect, from an elastic net-like
regularization while having the most important fea-
tures at its disposal. We followed 5-fold CV to find
a good setting of hyperparameters for each method.

Our results on several high dimensional OpenML
datasets are summarized in Fig. 2. The first number
in the name of a dataset represents the number of
instances in the dataset, while the second term rep-
resents dimensionality. In SMP, since some features
might be selected in more than one prototype, for
fairness of evaluation, we included the multiplicity
while computing the selected feature count. These
results underscore the merits in combining the power
of multiple prototypes with sparse representations.

References
Aiolli, F., & Sperduti, A. 2005. Multiclass Classifi-

cation with Multi-Prototype Support Vector Ma-
chines. Journal of Machine Learning Research
(JMLR), 6, 817–850.

Bach, F., Jenatton, R., Mairal, J., & Obozinski, G.
2012. Optimization with Sparsity-Inducing Penal-
ties. Foundations and Trends in Machine Learn-
ing, 4(1), 1–106.

Brucker, P. 1984. An O(n) algorithm for quadratic
Knapsack problems. Operations Research Letters,
3(3), 163–166.

Bucila, B., Caruana, R., & Niculescu-Mizil, A. 2006.
Model Compression. Pages 535–541 of: The
Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining.

Chambolle, A., & Pock, T. 2011. A First-Order
Primal-Dual Algorithm for Convex Problems with
Applications to Imaging. Journal of Mathematical
Imaging and Vision, 40(1), 120–145.

Chambolle, A., & Pock, T. 2016. On the ergodic
convergence rates of a first-order primal-dual al-
gorithm. Math. Program., 159(1-2), 253–287.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., &
Chen, Y. 2015. Compressing neural networks with
the hashing trick. Pages 2285–2294 of: ICML.

Crammer, K., & Singer, Y. 2001. On the Algorith-
mic Implementation of Multiclass Kernel-based
Vector Machines. JMLR, 2, 265–292.

Dekel, O., & Singer, Y. 2007. Support vector ma-
chines on a budget. Pages 345–352 of: NIPS.

Dekel, O., Shalev-Shwartz, S., & Singer, Y. 2008.
The Forgetron: A kernel-based perceptron on a
budget. SIAM Journal on Computing, 37(5),
1342–1372.

Duchi, J., Shalev-Shwartz, S., Singer, Y., & Chan-
dra, T. 2008. Efficient projection onto the `1-ball
for learning in high dimensions. Pages 272–279
of: ICML.

Feng, J., Yuan, X., Wang, Z., Xu, H., & Yan, S.
2012. Auto-Grouped Sparse Representation for
Visual Analysis. 23, 640–653.

Gupta, C., Suggala, A. S., Goyal, A., Simhadri,
H. V., Paranjape, B., Kumar, A., Goyal, S.,
Udupa, R., Varma, M., & Jain, P. 2017. ProtoNN:
Compressed and Accurate kNN for Resource-
scarce Devices. Pages 1331–1340 of: ICML.

Han, S., Mao, H., & Dally, W. J. 2016. Deep com-
pression: Compressing deep neural networks with

pruning, trained quantization and huffman cod-
ing. In: ICLR.

He, B., Ma, F., & Yuan, X. 2017. An Algorith-
mic Framework of Generalized Primal–Dual Hy-
brid Gradient Methods for Saddle Point Prob-
lems. Journal of Mathematical Imaging and Vi-
sion, 58(2), 279–293.

Hocking, T. D., Joulin, A., Bach, F., & Vert, J-
P. 2011. Clusterpath an algorithm for clustering
using convex fusion penalties. In: ICML.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv,
R., & Bengio, Y. 2016. Binarized Neural Net-
works. Pages 4107–4115 of: NIPS.

Kumar, A., Goyal, S., & Varma, M. 2017. Resource-
efficient Machine Learning in 2 KB RAM for the
Internet of Things. Pages 1935–1944 of: ICML.

Kusner, M., Tyree, S., Weinberger, K. Q., &
Agrawal, K. 2014. Stochastic neighbor compres-
sion. Pages 622–630 of: ICML.

Luo, J.-H., Wu, J., & Lin, W. 2017. ThiNet: A Filter
Level Pruning Method for Deep Neural Network
Compression. Pages 5068–5076 of: ICCV.

Nakkiran, P., Alvarez, R., Prabhavalkar, R., &
Parada, C. 2015. Compressing deep neural net-
works using a rank-constrained topology. In:
Sixteenth Annual Conference of the International
Speech Communication Association.

Nan, F., Wang, J., & Saligrama, V. 2016. Pruning
Random Forests for Prediction on a Budget. Pages
2334–2342 of: NIPS.

Pardalos, P. M., & Kovoor, N. 1990. An algorithm
for a singly constrained class of quadratic pro-
grams subject to upper and lower bounds. Math-
ematical Programming, 46, 321–328.

Sainath, T., Kingsbury, B., Sindhwani, V., Arisoy,
E., & Ramabhadran, B. 2013. Low-rank ma-
trix factorization for deep neural network train-
ing with high-dimensional output targets. Pages
6655–6659 of: ICASSP.

Tibshirani, R. 1996. Regression Shrinkage and Se-
lection via the lasso. Journal of the Royal Sta-
tistical Society. Series B (methodological), 58(1),
267–288.

Weston, J., & Watkins, C. 1999. Support vector ma-
chines for multi-class pattern recognition. Pages
219–224 of: Proceedings of the 6th European Sym-
posium on Artificial Neural Networks (ESANN).

Yu, Y., Liu, S., & Pan, S. J. 2017. Communication-
Efficient Distributed Primal-Dual Algorithm for
Saddle Point Problems. In: UAI.

Zhang, Y., & Xiao, L. 2015. Stochastic primal-dual
coordinate method for regularized empirical risk
minimization. Pages 353–361 of: ICML.

Zhong, K., Guo, R., Kumar, S., Yan, B., Simcha, D.,
& Dhillon, I. 2017. Fast Classification with Binary
Prototypes. Pages 1255–1263 of: AISTATS.

Zou, H., & Hastie, T. 2005. Regularization and Vari-
able Selection via the Elastic Net. Journal of the
Royal Statistical Society. Series B (methodologi-
cal), 67(2), 301–320.

