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In a Stackelberg Security Game, a defender commits to a randomized deployment of security resources, and an attacker best-
responds by attacking a target that maximizes his utility. While algorithms for computing an optimal strategy for the defender
to commit to have had a striking real-world impact, deployed applications require significant information about potential
attackers, leading to inefficiencies. We address this problem via an online learning approach. We are interested in algorithms
that prescribe a randomized strategy for the defender at each step against an adversarially chosen sequence of attackers, and
obtain feedback on their choices (observing either the current attacker type or merely which target was attacked). We design
no-regret algorithms whose regret (when compared to the best fixed strategy in hindsight) is polynomial in the parameters of
the game, and sublinear in the number of times steps.
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1. INTRODUCTION
A Stackelberg game includes two players — the leader and the follower. The leader plays first by
committing to a mixed strategy. The leader’s commitment is observed by the follower, who then
plays a best response to the leader’s strategy.

When Heinrich Freiherr von Stackelberg published his model of competing firms in 1934, he
surely did not imagine that he is laying the foundations for an exciting real-world application of
computational game theory: Stackelberg Security Games (SSGs). On a conceptual level, the role of
the leader in an SSG is typically played by a security agency tasked with the protection of critical
infrastructure sites; it is referred to as the defender. The defender’s strategy space consists of assign-
ments of resources to potential targets. The follower — referred to as the attacker in this context —
observes the leader’s (possibly randomized) deployment, and chooses a target to attack in a way that
maximizes his own expected utility. Algorithms that help the defender compute an optimal strategy
to commit to are currently in use by major security agencies such as the US Coast Guard, the Fed-
eral Air Marshals Service, and the Los Angeles Airport Police; see the book by Tambe [2012] for an
overview. Strikingly, similar algorithms are currently being prepared for deployment in a completely
different domain: wildlife protection in Uganda and Malaysia [Yang et al. 2014].

These impressive applications have motivated a rapidly growing body of work devoted to under-
standing and overcoming the limitations of the basic SSG model. Here we focus on the model’s
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arguably most severe limitation: in order to compute the optimal strategy to commit to, the leader
must know the attacker’s utility function. In practice, estimates are obtained from risk analysis ex-
perts and historical data, but the degree of uncertainty (and, therefore, inefficiency) is typically high.

Several papers [Letchford et al. 2009; Marecki et al. 2012; Blum et al. 2014b] alleviate uncertainty
by learning an optimal strategy for the defender. Learning takes place through repeated interaction
with the attacker: at each round, the defender commits to a mixed strategy, and observes the at-
tacker’s best response; one can think of this process as learning with best-response queries. But (as
discussed in more detail in Section 1.3) these papers are restricted to a repeated interaction with a
single attacker type [Marecki et al. 2012; Blum et al. 2014b], or simple variations thereof [Letchford
et al. 2009]. Either way, the defender faces the exact same situation in each round — a convenient
fact that allows the learning process to ultimately converge to an (almost) optimal strategy, which is
then played until the end of time.

1.1. Model and Conceptual Contributions
In this paper we deal with uncertainty about attackers by adopting a fundamentally different ap-
proach, which makes a novel connection to the extensive literature on online learning. Similarly to
previous work [Letchford et al. 2009; Marecki et al. 2012; Blum et al. 2014b], we study a repeated
Stackelberg game; but in our setting the attackers are not all the same — in fact, they are chosen
adversarially from some known setK. That is, at each round the defender commits to a mixed strat-
egy based on the history of play so far, and an adversarially chosen attacker from K best-responds
to that strategy.

Even in the face of this type of uncertainty, we would like to compete with the best fixed mixed
strategy in hindsight, that is, the mixed strategy that yields the highest total payoff when played
against each attacker in the sequence generated by the adversary. The regret associated with an
online learning algorithm (which recommends to the defender a mixed strategy at each step) is
simply the difference between the utility of the best-in-hindsight fixed strategy and the expected
utility of the algorithm in the online setting. Our goal is to

... design online learning algorithms whose regret is sublinear in the number of time
steps, and polynomial in the parameters of the game.

Such an algorithm — whose average regret goes to zero as the number of time steps goes to infinity
— is known as a no-regret algorithm. While there has been substantial work on no-regret learning,
what makes our situation different is that our goal is to compete with the best mixed strategy in
hindsight against the sequence of attackers that arrived, not the sequence of targets they attacked.

1.2. Overview of Our Results
We provide two algorithmic results that apply to two different models of feedback. In the full infor-
mation model (Section 5), the defender plays a mixed strategy, and observes the type of attacker that
responds. This means that the algorithm can infer the attacker’s best response to any mixed strategy,
not just the one that was played. We design an algorithm whose regret is O(

√
Tn2k log nk), where

T is the number of time steps, n is the number of targets that can be attacked, and k is the number
of attacker types.

In the second model — the partial information model (Section 6) — the defender only observes
which target was attacked at each round. Our main technical result is the design and analysis of a no-
regret algorithm in the partial information model whose regret is bounded byO(T 2/3nk log1/3 nk).

For both results we assume that the attackers are selected (adversarially) from a set of k known
types. It is natural to ask whether no-regret algorithms exist when there are no restrictions on the
types of attackers. In Section 7, we answer this question in the negative, thereby justifying the
dependence of our bounds on k.

Let us make two brief remarks regarding central issues that are discussed at length in Section 8.
First, throughout the paper we view information, rather than computation, as the main bottleneck,



and therefore aim to minimize regret without worrying (for now) about computational complexity.
Second, our exposition focuses on Stackelberg Security Games, but our framework and results apply
to Stackelberg games more generally.

1.3. Related work
To the best of our knowledge, only three previous papers take a learning-theoretic approach to the
problem of unknown attackers in SSGs (and none study an online setting):

(1) Blum et al. [2014b] study the case of a repeated interaction with a single unknown attacker; they
design an algorithm that learns an almost optimal strategy for the defender using a polynomial
number of best-response queries.

(2) Letchford et al. [2009] also focus on interaction with a single unknown attacker. Their algorithm
learns the attacker’s actual utility function on the way to computing an optimal strategy for the
defender; it requires a polynomial number of queries in the explicit representation of the given
Stackelberg game, which could be exponential in the size of the Stackelberg security game.
They note that their results can be extended to Bayesian Stackelberg games, where there is a
known distribution over attacker types: to learn the utility function of a each attacker type, they
simply run the single-attacker learning algorithm but repeat each best response query until the
response of the desired attacker type is observed. This simple reduction is incompatible with
the techniques of Blum et al. [2014b].

(3) Marecki et al. [2012] discuss Bayesian Stackelberg games, but, again, concentrate on the case of
a single attacker type (which is initially drawn from a distribution but then played repeatedly).
Similarly in spirit to our work, they are interested in the exploration-exploitation tradeoff ; their
algorithm is shown empirically to provide good guarantees in the short term, and provably
converges to the optimal strategy in the long term. No other theoretical guarantees are given; in
particular the algorithm’s convergence time is unknown.

It is also worth mentioning that other papers have taken different approaches to dealing with at-
tacker uncertainty in the context of SSGs, e.g., robust optimization [Pita et al. 2010] and representing
utilities via continuous distributions [Kiekintveld et al. 2011].

Our paper is also closely related to work on online learning. For the full information feedback
case, the seminal work of Littlestone and Warmuth [1994] achieves a regret bound of O(

√
T logN)

for N strategies. Kalai and Vempala [2005] show that when the set of strategies is a subset of Rd
and the loss function is linear, this bound can be improved toO(

√
T log d). This bound is applicable

when there are infinitely many strategies. In our work, the space of mixed strategies can be translated
to a n-dimensional space, where n is the number of targets. However, our loss function depends on
the best response of the attackers, hence is not linear.

For the partial feedback case (also known as the bandit setting), Auer et al. [1995] introduce an
algorithm that achieves regret O(

√
TN logN) for N strategies. Awerbuch and Kleinberg [2008]

extend the work of Kalai and Vempala [2005] to the partial information feedback setting for online
routing problems, where the feedback is in the form of the end-to-end delay of a chosen source-
to-sink path. Their approach can accommodate exponentially or infinitely large strategy spaces, but
again requires a linear loss function.

2. PRELIMINARIES
We consider a repeated Stackelberg security game between a defender (the leader) and a sequence of
attackers (the followers). At each step of this repeated game, the interactions between the defender
and the attacker induce a Stackelberg security game, where the defender commits to a randomized
allocation of his security resources to defend potential targets, and the attacker, in turn, observes this
randomized allocation and attacks the target with the best expected payoff. The defender and the
attacker then receive payoffs. The defender’s goal is to maximize his payoff over a period of time,
even when the sequence of attackers is unknown.

More precisely, a repeated stackelberg security game includes the following components:



◦ Time horizon T : the number of rounds.
◦ Set of targets N = {1, . . . , n}.
◦A defender with:

— Resources: A set of resources R.
— Schedules: A collection D ⊆ 2N of schedules. Each schedule D ∈ D represents a set of

targets that can be simultaneously defended by one resource.
— Assignment function: Function A : R → 2D indicates the set of all schedules that can be de-

fended by a given resource. An assignment of resources to schedules is valid if every resource
r is allocated to a schedule in A(r).

— Strategy: A pure strategy is a valid assignment of resources to schedules. The set of all pure
strategies is determined by N,D, R, and A and can be represented as follow. Let there be m
pure strategies, and letM be a zero-one n×mmatrix, such that the rows represent targets and
columns represent pure strategies, with Mi,j = 1 if and only if target i is covered by some
resource in the jth pure strategy.
A mixed strategy is a distribution over the set of pure strategies and is represented by an
m × 1 probability vector s, such that for all j, sj is the probability with which pure strategy
j is played. Every mixed strategy induces a coverage probability vector p ∈ [0, 1]n, where
pi is the probability with which target i is defended under that mixed strategy. The mapping
between a mixed strategy, s, and its coverage probability vector, p, is given by p = Ms.

◦A set of all attacker types K = {α1, . . . , αk}.
— An adversary selects a sequence of attackers a = a1, . . . , aT , such that for all t, at ∈ K.
— Throughout this work we assume that K is known to the defender, while a remains unknown.
◦Utilities: The defender and attacker both receive payoffs when a target is attacked.

— For the defender, let ucd(i) and uud(i) be the defender’s payoffs when target i is attacked
and is, respectively, covered or not covered by the defender. Then, under coverage proba-
bility p, the expected utility of the defender when target i is attacked is given by Ud(i,p) =
ucd(i)pi + uud(i)(1 − pi). Note that Ud(i,p) is linear in p. All utilities are normalized such
that ucd(i), u

u
d(i) ∈ [−1, 1] for all i ∈ N .

— For an attacker of type αj , let ucαj (i) and uuαj (i) be the attacker’s payoffs from attacking
target i when the target is, respectively, covered or not covered by the defender. Then under
coverage probability p, the expected utility of the attacker from attacking target i is given by
Uαj (i,p) = ucαj (i)pi + uuαj (i)(1− pi). Note that Uαj (i,p) is linear in p.

At step t of the game, the defender chooses a mixed strategy to deploy over his resources. Let pt
be the coverage probability vector corresponding to the mixed strategy deployed at step t. Attacker
at observes pt and best-responds to it by attacking target bat(p) = arg maxi∈N Uat(i,p). When
multiple targets have the same payoff to the attacker, each attacker breaks ties in some arbitrary but
consistent order.

Note that given a coverage probability vector, the utilities of all players and the attacker’s best-
response is invariant to the mixed strategy that is used to implement that coverage probability.
Therefore, we work directly in the space of valid coverage probability vectors, denoted by P . For
ease of exposition, in the remainder of this work we do not distinguish between a mixed strategy
and its coverage probability vector.

3. PROBLEM FORMULATION
In this section, we first formulate the question of how a defender can effectively protect targets in
a repeated Stackelberg security game when the sequence of attackers is not known to him. We then
give an overview of our approach.

Consider a repeated Stackelberg security setting with one defender and a sequence of attackers,
a, that is selected beforehand by an adversary. When a is not known to the defender a priori, the
defender has to adopt an online approach to maximize his overall payoff during the game. That is,
at every time step t the defender plays, possibly at random, a mixed strategy pt and receives some



“feedback” regarding the attacker at that step. The defender subsequently adjusts his mixed strategy
pt+1 for the next time step. The expected payoff of the defender is given by

E

[
T∑
t=1

Ud(bat(pt),pt)

]
,

where, importantly, the expectation is taken only over internal randomness of the defender’s online
algorithm.

The feedback the defender receives at each time step plays a major role in the design of the
algorithm. In this work, we consider two types of feedback, full information and partial information.
In the full information case, after attacker at best-responds to pt by attacking a target, the defender
observes at, that is, the defender know which attacker type just attacked. In the partial information
case, even after the attack occurs the defender only observes the target that was attacked, i.e. bat(pt).
More formally, in the full-information and partial-information settings, the choice of pt depends on
ai for all i ∈ [t− 1] or bai(pi) for all i ∈ [t− 1], respectively. As a sanity check, note that knowing
ai is sufficient to compute bai(pi), but multiple attacker types may respond by attacking the same
target; so feedback in the full information case is indeed strictly more informative.

To examine the performance of our online approach, we compare its payoff to the defender’s
payoff in a setting where a is known to the defender. In the event that the sequence of attackers, or
merely the frequency of each attacker type in the sequence, is known, the defender can pre-compute
a fixed mixed strategy with the best payoff against that sequence of attackers and play it at every
step of the game. We refer to this mixed strategy as the best mixed strategy in hindsight and denote
it by

p∗ = arg max
p

T∑
t=1

Ud(bat(p),p).1

Our goal is to design online algorithms for the defender with payoff that is almost as good as the
payoff of the best mixed strategy in hindsight. We refer to the difference between the utility of the
online algorithm and the utility of the best-in-hindsight mixed strategy as regret, i.e.,

T∑
t=1

Ud(bat(p
∗),p∗)− E

[
T∑
t=1

Ud(bat(pt),pt)

]
.

Our results are stated as upper and lower bounds on regret. For upper bounds, we show both in the
case of full information feedback (Theorem 5.1) and partial information feedback (Theorem 6.1)
that

T∑
t=1

Ud(bat(p
∗),p∗)− E

[
T∑
t=1

Ud(bat(pt),pt)

]
≤ o(T ) · poly(n, k).

In particular, the average regret goes to zero as T goes to infinity, that is, our algorithms are no-regret
algorithms. In contrast, we show that even in the full-information case, when K is large compared
to T , our regret must be linear in T (Theorem 7.1).

3.1. Methodology
This formulation of our problem, which involves comparison between online and offline decision
making, closely matches (by design) the classic online learning framework. To formally introduce
this setup, consider a set of actionsM, time horizon T , an online learner, and an adaptive adversary.

1As we explain in Section 4, for a general tie breaking rule, it is possible that the optimal strategy p∗ may not be well-
defined. However, the value of the optimal strategy is always well-defined in the limit. Slightly abusing notation for ease of
exposition, we use p∗ to refer to a strategy that acheives this optimal value in the limit.



For every t ∈ [T ], the learner chooses a distribution qt over the actions in M, and then picks a
random action based on this distribution, indicated by jt. The adversary then chooses a loss vector,
`t, such that for all j, `t(j) ∈ [−κ, κ]. The adversary is adaptive, in the sense that the choice of `t
can depend on the distributions at every step q1, . . . ,qt, and on the realized actions in the previous
steps j1, . . . , jt−1. The online learner then incurs an expected loss of qt · `t.

Let Lalg =
∑T
t=1 qt · `t be the total expected loss of the online learner over time period T for a

choice of an algorithm. On the other hand, let Lmin = minj∈M
∑T
t=1 `t(j), be the loss of the best

fixed action for the sequence `1, . . . , `T . Define regret as RT,M,κ = Lalg − Lmin.
In our work we leverage a well-known result on no-regret learning, which can be stated as follows

(see, e.g., [Blum and Mansour 2007]).

PROPOSITION 1. There is an algorithm such that

RT,M,κ ≤
√
Tκ log(|M|)

In this work, we can use any algorithm that satisfies the above guarantee as a black box. Many
algorithms fall into this category, e.g., Polynomial Weights [Cesa-Bianchi et al. 2007] and Follow
the Lazy Leader [Kalai and Vempala 2005]. In Section 8, we discuss the choice of algorithm further.
Also note that any utility maximization problem has an equivalent loss minimization formulation.
To be consistent with the notation used by the learning community, we adopt the notion of loss
minimization when dealing with results pertaining to online learning.

Although our problem is closely related to classic regret minimization, our goal cannot be readily
accomplished by applying Proposition 1. Indeed, each mixed strategy in a security game corresponds
to one action in Proposition 1. This creates an infinitely large set of actions, which renders the
guarantees given by Proposition 1 meaningless. Previous work resolves this issue for a subset of
problems where the action space is itself a vector space and the loss function has some desirable
properties, e.g., linear or convex with some restrictions [Bubeck and Cesa-Bianchi 2012; Kalai and
Vempala 2005; Zinkevich 2003]. However, the loss function used in our work does not have such
nice structural properties: the loss function at step t depends on the best response of the attacker,
which leads to a loss function that is not linear, convex, or even continuous in the mixed strategy.

4. CHARACTERISTICS OF THE OFFLINE OPTIMUM
In this section, we examine the characteristics of the best-in-hindsight mixed strategy. Using this
characterization, we choose a set of mixed strategies that are representative of the continuous space
of all mixed strategies. That is, rather than considering all mixed strategies in P , we show that
we can limit the choices of our online algorithm to a subset of mixed strategies without incurring
(significant) additional regret.

To this end, we first show that the given attacker types partition the space of mixed strategies into
convex regions where the attacker’s best response remains fixed.

Definition 4.1. For every target i ∈ N and attacker type αj ∈ K, let Pji indicate the set of all
valid coverage probabilities where an attacker of type αj attacks target i, i.e.,

Pji = {p ∈ P | bαj (p) = i}.

It is known that for all i and j, Pji is a convex polytope [Blum et al. 2014b].

Definition 4.2. For a given function σ : K → N , let Pσ indicate the set of all valid coverage
probability vectors such that for all αj ∈ K, αj attacks σ(j). In other words, Pσ =

⋂
j∈K P

j
σ(j).

Note that Pσ is an intersection of finitely many convex polytopes, so it is itself a convex polytope.
Let Σ indicate the set of all σ for which Pσ is a non-empty region. Figure 1 illustrates these regions.

The next lemma essentially shows that the optimal strategy in hindsight is an extreme point of
one of the convex polytopes defined above. There is one subtlety, though: due to tie breaking, for
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Fig. 1: Best-response regions. The first two figures define Pji in a game where one resource can
cover one of two targets, and two attacker types. The third figure illustrates Pσ for the intersection
of the best-response regions of the two attackers.

some σ, Pσ is not necessarily closed. Hence, some of the extreme points of the closure of Pσ are not
within that region. To circumvent this issue, instead we prove that the optimal strategy in hindsight
is approximately an extreme point of one of the regions. That is, for a given ε > 0, we define E to
be a set of mixed strategies as follow: for all σ and any p that is an extreme point of the closure of
Pσ , if p ∈ Pσ , then p ∈ E , otherwise there exists p′ ∈ E such that p′ ∈ Pσ and ||p− p′||1 ≤ ε.

LEMMA 4.3. Let E be as defined above, then for any sequence of attackers a,

max
p∈E

T∑
t=1

Ud(bat(p),p) ≥
T∑
t=1

Ud(bat(p
∗),p∗)− 2εT.

PROOF. Recall that p∗ is the optimal strategy in hindsight for a sequence of attackers a. Since
the set of regions Pσ for all σ : K → N partitions the set of all mixed strategies, p∗ ∈ Pσ for some
σ. We will show that there is a point p′′ ∈ E that is near optimal for the sequence a.

For any coverage probability p ∈ Pσ , let Ua(p) be the defender’s expected payoff for playing p
against sequence a. Then,

Ua(p) =

T∑
t=1

Ud(bat(p),p) =

T∑
t=1

Ud(σ(at),p) =

N∑
i=1

Ud(i,p)

T∑
t=1

I(σ(at) = i),

where I is the indicator function. Note that
∑T
t=1 I(σ(at) = i), which is the total number of times

target i is attacked in the sequence a, is constant over Pσ . Moreover, by the definition of utilities,
Ud(i,p) is a linear function in p. Therefore, Ua(p) is a summation of linear functions, and as a
result, is itself a linear function in p over Pσ .

Let P ′σ be the closure of Pσ . So, P ′σ is a closed convex polytope. Since Ua(p) is a linear function
over the convex set P ′σ , there is an extreme point p′ ∈ P ′σ such that

T∑
t=1

Ud(σ(at),p
′) ≥ Ua(p∗).

Now, let p′′ ∈ E ∩Pσ be the point that corresponds to extreme point p′, i.e. ||p′−p′′||1 ≤ ε. Since
for each target i ∈ N , ucd(i), u

u
d(i) ∈ [−1, 1] we have

Ud(i, p
′′
i ) = ucd(i)p

′′
i + uud(i)(1− p′′i ) ≥ ucd(i)(p′′i + ε) + uud(i)(1− p′′i − ε)− 2ε ≥ Ud(i, p′i)− 2ε.



Hence,

Ua(p′′) =

T∑
t=1

Ud(σ(at),p
′′) ≥

T∑
t=1

Ud(σ(at),p
′)− 2εT ≥ Ua(p∗)− 2εT.

The above lemma shows that by only considering strategies in E , our online algorithm will merely
incur an additional loss of εT . For a small enough choice of ε this only adds a lower-order term to
our regret analysis, and as a result can effectively be ignored. For the remainder of this paper, we
assume that E is constructed with ε ∈ O( 1√

t
). Next, we derive an upper bound on the size of E .

LEMMA 4.4. For any repeated security game with n targets and k attacker types, |E| ∈
O((2n + kn2)nnk).

PROOF. Any extreme point of a convex polytope in n dimensions is the intersection of n linearly
independent defining half-spaces of that polytope. To compute the number of extreme points, we
first compute the number of defining half-spaces. For a given attacker type αj , there are

(
n
2

)
half-

spaces each separating Pji and Pji′ for two targets i 6= i′. Summing over all attacker types, there
are O(kn2) such half-spaces. Moreover, the region of the valid coverage probabilities is itself the
intersection of O(m+ n) half-spaces, where m is the number of subsets of targets that are covered
in some pure strategy [Blum et al. 2014b]. In the worst case, m = 2n. Therefore, each extreme
point is an intersection of n halfspaces chosen from O(2n + n + kn2) half-spaces, resulting in at
most

(
m+n+kn2

n

)
∈ O((2n + kn2)n) extreme points. Each extreme point can give rise to at most

nk other ε-approximate extreme points. Therefore, |E| ∈ O((2n + kn2)nnk).

5. UPPER BOUNDS – FULL INFORMATION
In this section, we establish an upper bound on regret in the full information setting. With the
machinery of Section 4 in place, the proof follows quite easily from Proposition 1.

THEOREM 5.1. Given a repeated security game with full information feedback, n targets, k
attacker types, and time horizon T 2, there is an online algorithm that for any unknown sequence of
attackers, a, at time t plays a randomly chosen mixed strategy pt, and has the property that

E

[
T∑
t=1

Ud(bat(pt),pt)

]
≥

T∑
t=1

Ud(bat(p
∗),p∗)−O

(√
Tn2k log nk

)
,

where the expectation is taken over the algorithm’s internal randomization.

Before proving the theorem, a comment is in order. The algorithm is playing a distribution over
mixed strategies at any stage; isn’t that just a mixed strategy? The answer is no: the attacker is best-
responding to the mixed strategy drawn from the distribution over mixed strategies chosen by the
defender. The best responses of the attacker could be completely different if he responded directly
to the mixed strategy induced by this distribution over mixed strategies.

PROOF OF THEOREM 5.1. We use any algorithm that satisfies Proposition 1. Let the set of
extreme points E denote the set of actions to be used in conjunction with this algorithm. At ev-
ery round, after observing at, we compute the loss of all mixed strategies p ∈ E by setting
`t(p) = −Ud(bat(p),p). Note that the problem of maximizing utility is now transformed to mini-

2If T is unknown, we can use the guess and double technique, adding to the regret bound an extra constant factor.



mizing the loss. Using Proposition 1 and Lemma 4.4, we have

E

[
T∑
t=1

Ud(bat(pt),pt)

]
≥ max

p∈E

T∑
t=1

Ud(bat(p),p)−O(
√
T log |E|)

≥ max
p∈E

T∑
t=1

Ud(bat(p),p)−O
(√

T (n log(2n + kn2) + k log n)
)

≥ max
p∈E

T∑
t=1

Ud(bat(p),p)−O
(√

Tn2k log nk
)
.

Using Lemma 4.3 with an appropriate choice of ε ∈ O( 1√
T

), we have

E

[
T∑
t=1

Ud(bat(pt),pt)

]
≥

T∑
t=1

Ud(bat(p
∗),p∗)−O

(√
Tn2k log nk

)
.

6. UPPER BOUNDS – PARTIAL INFORMATION
In this section, we establish an upper bound on regret in the partial information setting. Recall
that under partial information feedback, after an attack has occurred, the defender only observes
the target that was attacked, not the attacker type that initiated the attack. Our goal is to prove the
following theorem.

THEOREM 6.1. Given a repeated security game with partial information feedback, n targets, k
attacker types, and time horizon T , there is an online algorithm that for any unknown sequence of
attackers, a, at time t plays a randomly chosen mixed strategy pt, and has the property that

E

[
T∑
t=1

Ud(bat(pt),pt)

]
≥

T∑
t=1

Ud(bat(p
∗),p∗)−O

(
T 2/3 nk log1/3(nk)

)
,

where the expectation is taken over algorithm’s internal randomization.

6.1. Overview of the Approach
The central idea behind our approach is that any regret-minimization algorithm in the full informa-
tion setting also works with partial feedback if, instead of observing the loss of every action at a
time step, it receives an unbiased estimator of the loss of all actions. For time horizon T and range
of action loss [−κ,+κ], let RT,κ represent the loss of a full-information algorithm. For any action
j and any time step t, let ˆ̀

t(j) be an unbiased estimator of the loss of action j at time step t. Run
the full-information regret-minimization algorithm with the values of the loss estimators, i.e. ˆ̀

t(j),
and let qt(j) be the probability that our full-information algorithm picks action j at time t. Then,
the expected loss of this algorithm (denoted LEst.) is as follows.

LEst. =

T∑
t=1

∑
j∈M

qt(j)`t(j) =

T∑
t=1

∑
j∈M

qt(j)E[ˆ̀t(j)] = E

 T∑
t=1

∑
j∈M

qt(j)ˆ̀
t(j)


≤ E

[
min
j

T∑
t=1

ˆ̀
t(j) +RT,κ

]
≤ min

j
E

[
T∑
t=1

ˆ̀
t(j)

]
+RT,κ = min

j

T∑
t=1

`t(j) +RT,κ.

(1)

This means that, in the partial information setting, we can use a full-information regret-
minimization algorithm in combination with a mechanism to estimate the loss of all actions. This is



similar to the approach first introduced by Awerbuch and Mansour [2003]. Informally speaking, we
simulate one time step of a full information setting by a window of time, where we mostly use the
mixed strategy that is suggested by the full information algorithm (exploitation), except for a few
time steps where we invoke a mechanism for getting an estimate for the loss of all mixed strategies
in that window of time (exploration). We then pass these estimates to the full-information algorithm
to be used for future time steps.

A naı̈ve approach for getting unbiased estimators of the loss of all mixed strategies involves
sampling each mixed strategy once at random in a window of time and observing its loss. Note that,
at every time step in which we sample a random strategy, we could incur significant regret. That is,
the strategy that is being sampled may have significant loss compared to the strategy suggested by
the full-information regret minimization algorithm. Therefore, sampling each strategy individually
once at random adds regret that is polynomial in the number of mixed strategies sampled, which
in our case is exponential in the number of targets and types (See Lemma 6.2 for more details).
Therefore, a more refined mechanism for finding an unbiased estimator of the loss is needed. That
is, the question is: How can we get an unbiased estimator of the loss of all mixed strategies while
sampling only a few of them?

To answer this question, we first notice that the loss of different mixed strategies is not indepen-
dent, rather they all depend on the number of times each target is attacked, which in turn depends
on the type frequency of attackers. The challenge, then, is to infer an unbiased estimator of the type
frequencies, by only observing the best responses (not the types themselves).

As an example, assume that there is a mixed strategy where each attacker type responds differ-
ently (See Figure 1). Then by observing the best-response, we can infer the type with certainty. In
general, such a mixed strategy, where each attacker responds differently, might not exists. This is
where insights from bandit linear optimization prove useful.

In more detail, in order to estimate the loss of a mixed strategy p ∈ Pσ , it is sufficient to estimate
the total frequency of the set of attacker types that attack target i in region Pσ , for any i ∈ N .
This value itself is a linear function in Rk. That is, let I(σ=i) be the indicator vector of the set of
attackers that attack i in region Pσ and let f = (f1, . . . , fk) ∈ Rk be the vector of frequencies
of attacker types. The loss of mixed strategy p can be determined using values f · I(σ=i) for all
i ∈ N . Moreover, even though we cannot observe the above inner products directly under partial
information feedback, we can create an unbiased estimator of any f ·I(σ=i) by sampling any p ∈ Pσ
and observing how often target i is attacked in response. Therefore our problem reduces to creating
“good” unbiased estimators for the above inner products, which lie in a k-dimensional vector space.
This can be achieved by only sampling a set of k strategies (See Lemmas 6.3 and 6.4)

One subtle obstacle remains, and that is the range of the new loss estimator (where the notion of
a “good” estimator comes in). Indeed, as shown in Eq. 1, the regret also depends on the range of the
loss estimator. To this end, we use the concept of barycentric spanners [Awerbuch and Kleinberg
2008] that is also used in bandit linear optimization, to ensure that the range of the loss estimator
remains small even after inferring it through frequency estimation.

6.2. Partial Information to Full Information
As briefly discussed earlier, any regret-minimization problem with partial-information feedback
can be reduced to the full information case, assuming that we can estimate the loss of all actions by
sampling a subset of the actions. The next lemma gives an upper bound on regret in terms of the
number of actions sampled, the quality of the estimator (in terms of its range), and the total number
of actions.

LEMMA 6.2. LetM be the set of all actions. For any time block (set of consecutive time steps)
T ′ and action j ∈ M, let cT ′(j) be the average loss of action j over T ′. Assume that S ⊆ M is
such that by sampling all actions in S, we can compute ĉT ′(j) for all j ∈ M with the following



properties:

E[ĉT ′(j)] = cT ′(j) and ĉT ′(j) ∈ [−κ, κ].

Then there is an algorithm with loss

Lalg ≤ Lmin +O
(
T 2/3|S|1/3κ1/3 log1/3(|M|)

)
,

where Lmin is the loss of the best action in hindsight.

PROOF. Our proposed algorithm is as follows. Let Z =
(
T 2|S|−2κ log(|M|)

)1/3
. Divide T

into Z (roughly) equal blocks, B1, . . . , BZ . In each block, pick a uniformly random permutation of
S together with |S| uniformly random time steps in that block, and assign them to the exploration
phase. At any time step that is dedicated to exploration, sample the actions in S in the order they
appear in the random permutation. At the end of each block, by the assumptions of the lemma, we
receive ĉτ (j), which is the average loss of action j during Bτ . We pass this loss information to
any regret-minimization algorithm that works in the full information feedback model. At every time
step that is not designated for exploration, we use the action that is computed by the full-information
algorithm based on the loss from the previous time block.

Next, we compute the regret of the proposed algorithm: Let qτ (·) be the fixed probability distri-
bution over actions suggested by the full information algorithm for block Bτ . On the other hand,
let qt(·) be the probability distribution over actions used by the partial information algorithm. That
is, during exploitation time steps t in block Bτ , qt(·) = qτ (·), and during the exploration phase
qt(·) refers the action that is being sampled at round t. For any action j, let `t(j) represent the ac-
tual loss at round t, and Lτ (j) and cτ (j) indicate the aggregate and average loss of j in block Bτ ,
respectively. That is

Lτ (j) =
∑
t∈Bτ

`t(j) and cτ (j) =
Lτ (j)

|Bτ |
.

We have

Lalg =

Z∑
τ=1

∑
t∈Bτ

∑
j∈M

qt(j)`t(j)

≤
Z∑
τ=1

∑
j∈M

qτ (j)Lτ (j) + Z · |S| (Each j ∈ S is sampled once and has loss ≤ 1)

≤
Z∑
τ=1

∑
j∈M

qτ (j)E[ĉτ (j)]

(
T

Z

)
+ Z · |S| (Definition of cτ (·) and unbiasedness of ĉτ (·))

≤ T

Z
E

 Z∑
τ=1

∑
j∈M

qτ (j)ĉτ (j)

+ Z · |S|

≤ T

Z
E

[
min
j

Z∑
τ=1

ĉτ (j) +RZ,κ

]
+ Z · |S| (Regret bound under full information)

≤ T

Z

(
min
j

E

[
Z∑
τ=1

ĉτ (j)

]
+RZ,κ

)
+ Z · |S| (Jensen’s Inequality)

≤ T

Z

(
min
j

Z∑
τ=1

cτ (j) +RZ,κ

)
+ Z · |S| (Unbiasedness of ĉτ (j))



≤ min
j

T∑
t=1

`t(j) +
T

Z
RZ,κ + Z · |S| (Because

T∑
t=1

`t(j) =

Z∑
τ=1

cτ (j)|Bτ |)

≤ LTmin +
T

Z

√
Zκ log(|M|) + Z · |S|

≤ LTmin +O
(
T 2/3|S|1/3κ1/3 log1/3(|M|)

)
(Because Z =

(
T 2|S|−2κ log(|M|)

)1/3
)

6.3. Creating Unbiased Estimators
Constructing an unbiased loss estimator for each mixed strategy is a pre-requisite for our reduc-
tion to the full information case (as in Lemma 6.2). Here, we show how such estimators can be
constructed for all mixed strategies, by sampling only a small number of mixed strategies.

For any τ , let fτ : Rk → R be a function that for any w = (w1, . . . , wk) returns the number of
times attacker types α1, . . . , αk were active in block Bτ , weighted by coefficients of w. That is

fτ (w) =

k∑
j=1

wj
∑
t∈Bτ

I(at=αj),

where I is an indicator function. For the majority of this section, w denotes an indicator vector
— a binary vector in Rk indicating the set of attacker types that best-respond to a mixed strategy
by attacking a certain target. In this case, fτ (w) is the number of times that we encounter these
specified attacker types in block Bτ . That is, for some K ′ ⊆ K and its corresponding indicator
vector w, fτ (w) is the total number of times attackers in K ′ are active in Bτ . Furthermore, note
that

∑
t∈Bτ I(at=αj) is a constant for any fixed τ and j, therefore fτ (·) is a linear function.

For any mixed strategy p ∈ Pσ and any τ , let cτ (p) represent the average utility of p against
attackers in block Bτ . Then,

cτ (p) =
1

|Bτ |

N∑
i=1

Ud(i,p)fτ (I(σ=i)),

where I(σ=i) is an indicator vector representing all the attackers that respond to a mixed strategy in
region Pσ (including p) by attacking i.

Our goal is to construct an unbiased estimator for cτ (p) for any p. To do so, we first construct an
estimator for fτ (·). Since fτ (·) is linear in Rk, it suffices to construct an estimator for a spanning
set of Rk. To this end, we defineW = {I(σ=i)| for all i ∈ N and σ ∈ Σ}, which is a set of vectors
I(σ=i) for any i and σ, each corresponding to attacker types that attack target i in region Pσ . Next,
we introduce a result by Awerbuch and Kleinberg [2008] that helps us in choosing an appropriate
basis forW .

PROPOSITION 2. ([Awerbuch and Kleinberg 2008, Proposition 2.2] ) IfW is a compact subset
of d-dimensional vector space V , then there exists a set B = {b1, . . . ,bd} ⊆ W such that for all
w ∈ W , w may be expressed as a linear combination of elements of B using coefficients in [−1, 1].
That is, for all w ∈ W , there exist coefficients λ1, . . . , λd ∈ [−1, 1], such that w =

∑
λjbj . Such

B is called a barycentric spanner forW .

Consider the set W . First, note that W is finite, so it is compact and it has a barycentric
spanner of size k. Using the methods of Awerbuch and Kleinberg [2008], we can construct a
barycentric spanner forW by performing linear optimization overW . Alternatively, for a choice of
{b1, . . . ,bk} ∈ W , and for all w ∈ W , we can solve the following feasibility LP:

∀j ∈ [k],
∑
i

λibi,j = wj ,



∀i, − 1 ≤ λi ≤ +1.

Let B be the barycentric spanner for W as defined above. For any b ∈ B, there must be a
mixed strategy p ∈ Pσ and target i ∈ N such that I(σ=i) = b (otherwise b /∈ W); call such
strategy and target pb and ib, respectively. We use pb and ib for the purpose of creating a loss
estimator for fτ (b) as follows: In the exploration phase, once at random (based on a chosen random
permutation), we play pb and observe target ib. If ib is attacked in response we set p̂τ (b) = 1,
otherwise p̂τ (b) = 0. The next lemma shows that p̂τ (b)|Bτ | is an unbiased estimator for fτ (b).

LEMMA 6.3. For any b ∈ B, E [p̂τ (b) · |Bτ |] = fτ (b).

PROOF. Note that p̂(b) = 1 if and only if at the time step that pb was played for the purpose
of recording b, target ib was attacked. Because pb is played once for the purpose of recording b
uniformly at random over the time steps and the adversarial sequence is chosen before the game
play, the attacker that responded to pb is also picked uniformly at random over the time steps.
Therefore, E[p̂(b)] is the probability that a randomly chosen attacker from Bτ responds in a way
that is consistent with any one of the attackers who responds by attacking ib. Formally,

E[p̂τ (b)] =

∑
i:bi=1 fτ (ei)

|Bτ |
=
fτ (b)

|Bτ |
.

SinceW ⊆ {0, 1}k, the rank ofW is at most k. Let B = {b1, . . . ,bk} be the barycentric spanner
forW . For any w ∈ W , let λ(w) be the representation of w in basis B. That is,

∑k
j=1 λj(w) bj =

w. Now, consider any mixed strategy p and let σ be such that p ∈ Pσ . Let

ĉτ (p) =

n∑
i=1

k∑
j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p). (2)

The next lemma shows that for all p, ĉτ (p) is indeed an unbiased estimator of cτ (p) with a small
range.

LEMMA 6.4. For any mixed strategy p, E[ĉτ (p)] = cτ (p) and ĉτ (p) ∈ [−nk, nk].

PROOF. Let σ be such that p ∈ Pσ . We have,

E[ĉτ (p)] = E

 n∑
i=1

k∑
j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p)


=

n∑
i=1

k∑
j=1

λj(Iσ=i) E[p̂τ (bj)] Ud(i,p) (linearity of expectation)

=

n∑
i=1

Ud(i,p)

k∑
j=1

λj(Iσ=i) fτ (bj)

|Bτ |
(by Lemma 6.3 )

=

n∑
i=1

Ud(i,p)

|Bτ |
fτ

 k∑
j=1

λj(Iσ=i) bj

 (by linearity of fτ )

=

n∑
i=1

Ud(i,p)

|Bτ |
fτ (I(σ=i)) (by definition of λ(·))

= cτ (p).



Since B is barycentric, for any w ∈ W , λj(w) ∈ [−1, 1]. Moreover, p̂τ (·) ∈ {0, 1}, and Ud(i,p) ∈
[−1, 1]. So,

ĉτ (p) =

n∑
i=1

k∑
j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p) ∈ [−nk, nk].

6.4. Putting It All Together
Using the machinery developed in previous subsections, we can now proceed to prove the theorem.

PROOF OF THEOREM 6.1. We use Algorithm 1 along with Proposition 1 as a black-box full-
information regret minimization algorithm. We use E as the set of mixed strategies described in
Section 4.

ALGORITHM 1: REPEATED SECURITY GAMES WITH PARTIAL INFORMATION

Oracle: Black-box access to an algorithm that satisfies Proposition 1, FULL-INFORMATION(·), which takes
as input the loss of all actions and produces a distribution q over them.
Algorithm:

(1) Z ← n
(
T 2 lognk

)1/3
(2) Create setW = {I(σ=i)| for all i ∈ N and σ ∈ Σ}.
(3) Find a barycenteric spanner B = {b1, . . . ,bk} forW . For every b ∈ B such that b = I(σ=i) for some i

and σ, let ib ← i and pb be any mixed strategy in Pσ .
(4) For all w ∈ W let λ(w) be the representation of w in basis B. That is

∑k
j=1 λj(w) bj = w.

(5) Let q1 be the uniform distribution over E .
(6) For τ = 1, . . . , Z

(a) Choose a random permutation π over [k] and t1, . . . , tk time steps at random from [T/Z].
(b) For t = (τ − 1)(T/Z) + 1, . . . , τ(T/Z),

i. If t = tj for some j ∈ [k], then pt ← pbπ(j)
. If ibπ(j)

is attacked, then p̂τ (bπ(j))← 1, otherwise
p̂τ (bπ(j))← 0.

ii. Else,
draw pt at random from distribution qτ .

(c) For all p ∈ E , for σ such that p ∈ Pσ ,

ĉτ (p)←
n∑
i=1

k∑
j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p).

(d) Call FULL-INFORMATION(ĉτ ). And receive qτ+1 as a distribution over all mixed strategies in E .

Our algorithm divides the timeline to Z = n
(
T 2 log nk

)1/3
equal intervals, B1, . . . , BZ . The

initial distribution over the set of mixed strategies E is the uniform distribution.
In each block, we pick a random permutation π over B together with k time steps in that block

and mark them for exploration. At the jth time step that is dedicated to exploration, we play mixed
strategy pbπ(j)

and observe target ibπ(j)
. If ibπ(j)

is attacked, then we assign p̂τ (bπ(j)) = 1 otherwise
p̂τ (bπ(j)) = 0. At any time step that is not set for exploration, we choose a mixed strategy at random
from the current distribution over E .

At the end of each block, we compute ĉτ (p) for all p ∈ E , using Equation 2. We then pass this
loss information to any regret-minimization algorithm that works in the full information feedback
model, and update the default distribution based on its outcome.

Using Lemma 6.4, ĉτ (p) is an unbiased estimator of the average loss of action p during Bτ . This
unbiased estimator is passed to the full-information regret minimization algorithm. By Lemma 6.2,



we have
T∑
t=1

Ud(bat(p
∗),p∗)− E

[
T∑
t=1

Ud(bat(pt),pt)

]
≤ O

(
T 2/3|B|1/3(nk)1/3 log1/3(|E|)

)
∈ O

(
T 2/3k1/3(nk)1/3(n2k log(nk))1/3

)
∈ O

(
T 2/3 nk log1/3(nk)

)
.

7. LOWER BOUND
Can we be truly blind to the types of attackers that the defender might encounter? As mentioned
before, the set of all attacker types, K, is known to the defender. But what if we allow K to include
all possible types of attackers? In this section, we show that with no prior knowledge regarding the
possible types of attackers that the defender might encounter, it is impossible to design a no-regret
algorithm. This is formalized in our final theorem that shows that for any T there is a game with at
most 2T+1 attacker types such that any online algorithm experiences regret that is linear in T .

THEOREM 7.1. For any T there is a repeated security game in the full-information feedback
setting with a set K of attacker types such that |K| < 2T+1 and any online algorithm that at time t
(possibly at random) returns strategy pt has expected utility

E

[
T∑
t=1

Ud(bat(pt),pt)

]
≤

T∑
t=1

Ud(bat(p
∗),p∗)− T

2
,

where the expectation is over the algorithm’s internal randomization.

PROOF. Consider a security game in which N = {1, 2, 3}, and the defender has one resource
that can defend any one target at a time. Let the defender’s utility be Ud(i,p) = −1 for i ∈ {1, 3}
and Ud(2,p) = 0. Let all attackers break ties in lexicographic order.

Because the defender prefers target 2 to be attacked, for any coverage probability p, reducing p2
to 0 leads to a valid coverage probability that will not decrease the defender’s payoff. So, without
loss of generality we restrict the defender’s actions to the coverage probabilities p = [p, 0, 1− p].

Next, we define a set K of attackers. To do so, we first show that certain best-response functions
are valid, i.e. there is an attacker — defined by its utility function — that responds according to
that best-response function. The next lemma allows us to define the attackers by their best-response
functions, thereby significantly simplifying our analysis.3

LEMMA 7.2. For any 0 ≤ r1 ≤ r2 ≤ 1 and any p = [p, 0, 1− p], there exists an attacker type
αj (defined by its utility function) such that

bαj (p) =


1 if p ∈ [0, r1]

2 if p ∈ (r1, r2]

3 if p ∈ (r2, 1]

Next, we recursively define 2T+1 − 2 attacker types. We use r1 ≤ r2 as defined in Lemma 7.2 to
represent the best response of an attacker. We represent attacker types by binary strings. Let

Attacker α0 : r01 =
1

2
, r02 = 1

Attacker α1 : r11 = 0, r12 =
1

2
.

3The proof of this lemma appears in the full version of the paper available at http://www.cs.cmu.edu/∼arielpro/papers.html.

http://www.cs.cmu.edu/~arielpro/papers.html


For any x ∈ {0, 1}<T define

Attacker α0x : r0x1 =
rx1 + rx2

2
, r0x2 = rx2

Attacker α1x : r1x1 = rx1 , r
1x
2 =

rx1 + rx2
2

This representation allows us to think of the choices of the adversary as a chain of post-fixes of
a T -bit binary number. That is, the attacker chooses a T -bit binary string and plays its post-fixes in
order.

Next, we formulate our problem in terms of decision trees. Consider a complete binary tree.
The adversary’s sequence of attackers indicates a root-to-leaf path in this tree that corresponds
to his choice of the T -bit string. The defender’s online decision at every step of the game is to
choose a distribution over p ∈ (r0x1 , r0x2 ] or p ∈ (r1x1 , r1x2 ], having already observed string x. Since
for all x, (r0x1 , r0x2 ] ∩ (r1x1 , r1x2 ] = ∅, these two choices represent two disjoint events. Therefore,
we can represent the defender’s online decision at node x as a distribution on nodes 0x or 1x.
Using Lemma 7.2, if both the defender and attacker land on the same node, the defender receives a
penalty of 0 and otherwise receives a penalty of 1 (utility −1). To summarize, the online algorithm
corresponds to a distribution over all possible decision trees; the adversary chooses a root-to-leaf
path; and expected utility is calculated as above.

By Yao’s Minmax Principle, an upper bound on the expected utility of the optimal randomized
decision tree against the worst deterministic sequence (root-to-leaf path) can be obtained by con-
structing a specific distribution over sequences, and reasoning about the expected utility of the best
deterministic decision tree against this distribution. Let this distribution be the uniform distribution
over all T -bit strings. That is, at step x the adversary chooses attackers 0x and 1x each with prob-
ability 1

2 . Then for any fixed decision tree, at every node the algorithm only has 1
2 probability of

matching the adversary’s choice. So, the defender receives an expected penalty of 1
2 . We conclude

that for any randomized online algorithm there exists a sequence of attackers — corresponding to a
T -bit string — such that the algorithm’s expected utility is at most −T2 .

To complete the proof, we claim that for any sequence of attackers corresponding to a T -bit string,
there is a mixed strategy that would cause each attacker in the sequence to attack target 2. This is
true because for every x and y, (ryx1 , ryx2 ] ⊂ (rx1 , r

x
2 ], and therefore if αx is the attacker at step T ,

choosing p∗ ∈ (rx1 , r
x
2 ] would also place p in the interval corresponding to any previous attacker. By

Lemma 7.2, the best response of each attacker in the sequence to the strategy p∗ = [p∗, 0, 1 − p∗]
is to attack target 2. It follows that p∗ has overall utility 0 to the defender, and hence the regret is at
least T2 .

8. DISCUSSION
Extension to general Stackelberg games. The approach presented in our work easily extends to

general repeated Stackelberg games, which can be represented as follows. There are k matrices of
size n×m, with the same payoffs for the row player, but possibly different payoffs for the column
player. This set of matrices is known to the players. At each time step, a game matrix is chosen but
remains unknown to the row player. The row player then chooses a probability distribution over the
rows of the matrix and the column player, having observed this distribution, chooses the column
with the best expected payoff. An online algorithm should guarantee to the row player good payoff
against any adversarially selected sequence of such matrices.

Note that a repeated SSG is captured by the foregoing framework: in each matrix, each row
represent a pure strategy of the defender (there may be exponentially many rows) and each column
represents a target. Then, for row i and column j, if target j is covered in the ith strategy then the
row and column payoff are ucd(i) and uca(i), and otherwise uud(i) and uua(i), respectively.

To see how our methodology extends, note that each of the k matrices can be used to decompose
the space of all probability distributions (over the rows) intom convex regions, where in each region
the best response is a fixed column. For the full information feedback model, the set of all extreme



points in the intersections of these regions leads to an algorithm whose regret is polynomial in
m,n and k, and sublinear in T . Similarly, for the partial information feedback model, our approach
for inferring the frequency of each matrix by only observing the best response carries over to the
general Stackelberg games. However, we focused on SSGs in order to obtain regret bounds that
are polynomial in the number of targets and attacker types — the foregoing bounds for general
Stackelberg games would translate to bounds that are exponential in the number of targets.

Computational complexity. The goal of our paper is to develop online algorithms that can effec-
tively defend against an unknown sequence of attackers. We believe that the main challenge in this
setting is overcoming the lack of information regarding the attackers. Therefore, it is encouraging
that our algorithms achieve regret bounds that are polynomial in the number of targets and types, in
addition to being sublinear in T .

Can we hope for computational tractability? A major obstacle is that many tasks involving se-
curity games are NP-Hard. For example, even computing the optimal strategy when faced with a
single, known attacker type is NP-hard [Korzhyk et al. 2010]. So, in some sense, the answer to the
question is negative — computational hardness is inevitable.

The good news is that the explicit representation of general Stackelberg games lends itself to
polynomial-time algorithms for many tasks that are otherwise NP-hard, e.g. finding the optimal
strategy in a 2-player game [Conitzer and Sandholm 2006]. Unfortunately, some of the steps in
our algorithms remain computationally inefficient even for general repeated Stackelberg games. In
particular, keeping track of the loss of all extreme points and computing a barycentric spanning set
over exponentially many regions both require exponential time. It would be interesting to find out
whether there exist computationally efficient no-regret algorithms for general repeated Stackelberg
games.

On the power of adversary. In our work, we assume that the sequence of attackers is chosen
adversarially before the game starts. That is, the adversary’s choice of attacker is oblivious to the
history. It is worth noting that our upper bound on regret in the full-information feedback setting
holds for a much more powerful adversary; an adaptive adversary who chooses an attacker at time t
by first observing the defender’s mixed strategies p1, . . . ,pt−1, and the defender’s distribution (de-
termined by the internal randomness of the online algorithm) over mixed strategies at steps 1, . . . , t.
It would be interesting to know whether there are no-regret algorithms, with polynomial dependence
on the number of targets and types, for adaptive adversaries and partial-information feedback.

On the benefits of laziness. Our regret analysis holds when used in conjunction with any regret-
minimization algorithm that satisfies Proposition 1. Nevertheless, some algorithms provide addi-
tional properties that may prove useful in practice. Specifically, when used with Follow the Lazy
Leader, our algorithm for the full information setting uses one mixed strategy for a long period of
time before switching to another (expected length Õ(

√
T )). Informally speaking, this allows attack-

ers enough time to conduct surveillance, observe the mixed strategy, and then best-respond to it.
Therefore, even if the attacker’s response to a new mixed strategy is unreliable or irrational at first
(not representative of his best response), the defender can still guarantee a no-regret outcome.

The extremely partial information model. Previous work has mostly assumed that the defender is
able to monitor all targets simultaneously and detect an attack on any one of them at all times [Kiek-
intveld et al. 2011; Marecki et al. 2012]. In contrast, our algorithm for the partial information setting
only requires the ability to detect whether or not an attack occurs on at most one chosen target at
a time. This feature may prove useful in domains where simultaneous observation of targets is im-
practical. For example, in wildlife protection applications, patrols and unmanned aerial vehicles
(UAVs) can detect signs of poaching only in very specific areas.

Other sources of uncertainty. In our work, as is common in other theoretical papers on SSGs, we
considered attackers with perfect observation and rationality. That is, we assume the attacker can
(eventually, as in the case of Follow the Lazy Leader) observe the mixed strategy of the defender



perfectly and then choose the target with absolute highest expected utility. Existing work in one-
shot security games studies attackers with limited surveillance [An et al. 2012; Blum et al. 2014a]
and bounded rationality [Jiang et al. 2013; Yang et al. 2014], and in some cases provides theoretical
guarantees on the quality of solutions. It would be interesting to know whether there are no-regret
algorithms that handle all of these different uncertainties, simultaneously.
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A. PROOF OF LEMMA 7.2
Let ‖u‖ = max{ 1−r1r1

, r2
1−r2 }. Let αj be an attacker defined as follows.

ucαj (i) =


−(1−r1)
r1 ‖u‖ if i = 1

0 if i = 2
−r2

(1−r2) ‖u‖ if i = 3

and uuαj (i) =

{
0 if i = 2
1
‖u‖ otherwise

We show that attacker αj’s best-response has the desired properties. For p ∈ [0, r1],

Uαj (1,p) =
1

‖u‖

(
p
−(1− r1)

r1
+ (1− p)

)
≥ 1

‖u‖
(−(1− r1) + (1− p)) ≥ 0,

Uαj (2,p) = 0,

Uαj (3,p) =
1

‖u‖

(
(1− p) −r2

1− r2
+ p

)
≤ 1

‖u‖
(−r2 + p) ≤ 0,

so, bαj (p) = 1 for p ∈ [0, r1]. For p ∈ (r1, r2],

Uαj (2,p) = 0 >
1

‖u‖
(−(1− r1) + (1− p)) > 1

‖u‖

(
p
−(1− r1)

r1
+ (1− p)

)
= Uαj (1,p),

Uαj (2,p) = 0 ≥ 1

‖u‖
(−r2 + p) ≥ 1

‖u‖

(
(1− p) −r2

1− r2
+ p

)
= Uαj (3,p),

so, bαj (p) = 2 for p ∈ (r1, r2]. For p ∈ (r2, 1],

Uαj (1,p) =
1

‖u‖

(
p
−(1− r1)

r1
+ (1− p)

)
<

1

‖u‖
(−(1− r1) + (1− p)) < 0,

Uαj (2,p) = 0,

Uαj (3,p) =
1

‖u‖

(
(1− p) −r2

1− r2
+ p

)
>

1

‖u‖
(−r2 + p) > 0,

so, bαj (p) = 3. Therefore, the attacker defined by the above utility function has the desired best-
response.
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