Microsoft Research

Each year Microsoft Research hosts hundreds of influential speakers from around the world including leading scientists, renowned experts in technology, book authors, and leading academics, and makes videos of these lectures freely available.

2016 © Microsoft Corporation. All rights reserved.
A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem

Ola Svensson, Jakub Tarnawski and László A. Végh
What's the cheapest way to visit all 24727 pubs in the UK?

45,495,239 meters

Cook, Espinoza, Goycoolea, Helsgaun (2015)
Find the shortest tour that visits n given cities
Traveling Salesman Problem

- Variants studied in mathematics by Hamilton and Kirkman already in the 1800’s
- Benchmark problem:
 - one of the most studied NP-hard optimization problems
 - yet our understanding is quite incomplete

What can be accomplished with efficient computation (approximation algorithms)?
Two basic versions

Symmetric: distance\(u, v\) = distance\(v, u\)

2-approximation is trivial
1.5-approximation [Christofides'76] taught in undergrad courses, still unbeaten

Asymmetric: more general, no such assumption is made
Two basic versions

Asymmetric: more general, no such assumption is made
Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G = (V, E, w)$

Output: a minimum-weight tour that visits each vertex at least once

Equivalently could have:
- Complete graph with Δ-inequality
- Visit each vertex exactly once
Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G = (V, E, w)$

Output: a minimum-weight connected Eulerian multigraph (V, E')

in-degree = out-degree
Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G = (V, E, w)$

Output: a minimum-weight connected Eulerian multigraph (V, E')

Variables: $x_{uv} = \#$ times we traverse edge (u, v)

Minimize: $\sum_{uv \in E} w(u, v) x_{uv}$

Subject to:
- $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
- $x(\delta(S)) \geq 2$ for all $S \subset V$
- $x \geq 0$

$\delta(S) = \text{set of cut edges}$
Integrality gap of the ?

i.e. how far off is that particular algorithm?
Pick any two...
Two natural approaches: begin with...

Output: a minimum-weight connected **Eulerian** multigraph
Add Eulerian graphs until connected

\[\log_2 n \text{-approximation via repeated cycle covers} \]
[Frieze, Galbiati, Maffioli’82]

\[0.99 \log_2 n \text{-approximation} \]
[Bläser’03]

\[0.84 \log_2 n \text{-approximation} \]
[Kaplan, Lewenstein, Shafrir, Sviridenko’05]

\[0.67 \log_2 n \text{-approximation} \]
[Feige, Singh’07]

Local-Connectivity ATSP

- Defined new, easier problem
- Reduced \(O(1) \)-approximation of ATSP to it
- Solved it for unweighted graphs (easy part)
[Svensson’15]

... Solved it for graphs with two edge weights
[Svensson, T., Vegh’16]

Start with spanning tree, then make Eulerian

\[O(\log n / \log \log n) \text{-approximation via thin trees} \]
[Asadpour, Godmiand, Madry, Oveis Gharan, Saberi’10]

\[O(1) \text{-approximation for planar & bounded-genus graphs} \]
[Oveis Gharan, Saberi’11]

Integrality gap \(\leq \text{poly}(\log \log n) \)
via generalization of Kadison-Singer
[Anari, Oveis Gharan’14]

Hardness

NP-hard to approximate within \(1 + \frac{1}{74} \)
[Papadimitriou, Vempala’00, Karpinski, Lampis, Schmied’13]

Integrality gap \(\leq 2 \)
[Charikar, Goemans, Karloff’02]
Theorem:
A $O(1)$-approximation algorithm with respect to Held-Karp relaxation

2-edge-weights
ATSP

[Svensson'15]

2-edge-weights
Local-Connectivity ATSP

[Svensson, T., Vegh'16]

general
ATSP

[Svensson'15]

general
Local-Connectivity ATSP

Solve
Theorem:

A $O(1)$-approximation algorithm with respect to Held-Karp relaxation

2-edge-weights
ATSP

[Svensson'15]

2-edge-weights
Local-Connectivity ATSP

Solve
[Svensson, T., Vegh'16]

general
ATSP
Theorem:
A $O(1)$-approximation algorithm with respect to relaxation

2-edge-weights
ATSP
[Svensson’15]

2-edge-weights
Local-Connectivity ATSP

Solve
[Svensson, T., Vegh’16]

general
ATSP

structured
ATSP

more structured
ATSP

really structured
Local-Connectivity ATSP
[Svensson’15]

really structured
ATSP
Theorem:
A $O(1)$-approximation algorithm with respect to Held-Karp relaxation
Outline of reductions

- Laminarily-weighted instances
- Irreducible instances
- Vertebrate pairs
- Solving Local-Connectivity
By amazing power of LP-duality

Laminarly-weighted instances
Asymmetric Traveling Salesman Problem

Input: an edge-weighted digraph $G = (V, E, w)$

Output: a minimum-weight connected Eulerian multigraph (V, E')

Variables: $x_{uv} = $ times we traverse edge (u, v)

Minimize: $\sum_{u,v \in E} w(u,v) x_{uv}$

Subject to:
- $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
- $x(\delta(S)) \geq 2$ for all $S \subset V$
- $x \geq 0$

$\delta(S) =$ set of cut edges
Minimize: $\sum_{uv \in E} w(u, v) x_{uv}$

Subject to: $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
$x(\delta(S)) \geq 2$ for all $S \subset V$
$x \geq 0$

LP-value = 22

1. Solve LP to obtain solution depicted in black

2. Forget edges with LP-value = 0
 - Doesn’t change LP-value
 - Any tour is smaller instance is a tour in original instance
Minimize: $\sum_{u,v \in E} w(u,v) x_{uv}$

Subject to:
- $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
- $x(\delta(S)) \geq 2$ for all $S \subseteq V$
- $x \geq 0$

LP-value = 22

1. Solve LP to obtain solution depicted in black
2. Forget edges with LP-value = 0
 - Doesn’t change LP-value
 - Any tour is smaller instance is a tour in original instance
3. Now all edges have positive LP-value
Minimize: $\sum_{u,v \in E} w(u,v) x_{uv}$

Subject to: $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$

$x(\delta(S)) \geq 2$ for all $S \subseteq V$

$x \geq 0$

LP-value = 22

1. Solve LP to obtain solution depicted in black

2. Forget edges with LP-value = 0
 - Doesn’t change LP-value
 - Any tour is smaller instance is a tour in original instance

3. Now all edges have positive LP-value

Do these edges have structure?

By complementarity slackness, each remaining edge corresponds to tight constraint in dual
Minimize: $\sum_{(u,v) \in E} w(u,v) x_{uv}$

Subject to:
- $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
- $x(\delta(S)) \geq 2$ for all $S \subseteq V$
- $x \geq 0$

LP-value = 22

Maximize: $\sum_{S \subseteq V} 2 \cdot y_S$

Subject to:
- $\sum_{S \ni (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v)$ for all $(u,v) \in E$
- $y \geq 0$

Sum of y-values cutting (u,v)
+ tail potential
- head potential
is at most the edge-weight

Dual has variables:
- α_v - vertex potential for each v
- y_S - value for each cut S
Minimize: $\sum_{uv \in E} w(u,v) x_{uv}$

Subject to:
- $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
- $x(\delta(S)) \geq 2$ for all $S \subseteq V$
- $x \geq 0$

Maximize: $\sum_{S \subseteq V} 2 \cdot y_S$

Subject to:
- $\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v)$ for all $(u,v) \in E$
- $y \geq 0$

Dual value = LP-value = 22

Sum of y-values cutting (u,v)
- tail potential
- head potential
is at most the edge-weight

Dual has variables:
- α_v - vertex potential for each v
- y_S - value for each cut S

$$\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v)$$
Minimize: \(\sum_{(u,v) \in E} w(u,v) x_{uv} \)

Subject to:
- \(x(\delta^+(v)) = x(\delta^-(v)) \) for all \(v \in V \)
- \(x(\delta(S)) \geq 2 \) for all \(S \subseteq V \)
- \(x \geq 0 \)

Dual value = LP-value = 22

Maximize: \(\sum_{S \subseteq V} 2 \cdot y_S \)

Subject to:
- \(\sum_{S \ni (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \) for all \((u,v) \in E \)
- \(y \geq 0 \)

Sum of \(y \)-values cutting \((u,v)\):
- tail potential
- head potential
is at most the edge-weight

Dual has variables:
- \(\alpha_v \) - vertex potential for each \(v \)
- \(y_S \) - value for each cut \(S \)
Minimize: $\sum_{(u,v) \in E} w(u,v) x_{uv}$

Subject to: $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$

$\sum_{S \subseteq V} 2 \cdot y_S$

Subject to:

$\sum_{S : (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v)$ for all $(u,v) \in E$

$x \geq 0$

$y \geq 0$

Dual value = LP-value = 22

Sum of y-values cutting (u,v)

- tail potential
- head potential

is at most the edge-weight

Dual has variables:

- α_v - vertex potential for each v
- y_S - value for each cut S

$$\sum_{S : (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v)$$
Minimize: \[\sum_{(u,v) \in E} w(u,v) x_{uv} \]

Subject to: \[
\begin{align*}
 x(\delta^+(v)) &= x(\delta^-(v)) & \text{for all } v \in V \\
 x(\delta(S)) &\geq 2 & \text{for all } S \subseteq V \\
 x &\geq 0
\end{align*}
\]

Dual value = LP-value = 22

Maximize: \[\sum_{S \subseteq V} 2 \cdot y_S \]

Subject to: \[
\begin{align*}
 \sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v &\leq w(u,v) & \text{for all } (u,v) \in E \\
 y &\geq 0
\end{align*}
\]

By complementarity slackness:
\[\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v = w(u,v) \]

for every edge \((u,v)\) (since we only kept positive edges)
Minimize: \(\sum_{(u,v) \in E} w(u,v) x_{uv} \)

Subject to:
- \(x(\delta^+(v)) = x(\delta^-(v)) \) for all \(v \in V \)
- \(x(\delta(S)) \geq 2 \) for all \(S \subset V \)
- \(x \geq 0 \)

Maximize: \(\sum_{S \subset V} 2 \cdot y_S \)

Subject to:
- \(\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \) for all \((u,v) \in E \)
- \(y \geq 0 \)

Dual value = LP-value = 22

By complementarity slackness:
\[
\sum_{S: (u,v) \in \delta(S)} y_S = w(u,v) - \alpha_u + \alpha_v =: w'(u,v)
\]
for every edge \((u,v)\) (since we only kept positive edges)

Observation:
For any Eulerian edge set \(F \)
\[
w(F) = w'(F)
\]

\[
w'(F) = w(A,B) + (\alpha_A - \alpha_B) + w(B,C) + (\alpha_B - \alpha_C) + w(C,A) + (\alpha_C - \alpha_A) = w(F)
\]
Minimize: $\sum_{u,v \in E} w(u,v) x_{uv}$
Subject to: $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$
$x(\delta(S)) \geq 2$ for all $S \subseteq V$
$x \geq 0$

Maximize: $\sum_{S \subseteq V} 2 \cdot y_S$
Subject to: $\sum_{S : (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v)$ for all $(u,v) \in E$
$y \geq 0$

Dual value = LP-value = 22

By complementarity slackness:
$$y_S = w(u,v) - \alpha_u + \alpha_v =: w'(u,v)$$
for every edge (u,v) (since we only kept positive edges)

Observation:
For any Eulerian edge set F
$$w(F) = w'(F)$$

Thus equivalent to consider weight function w':
$$w'(u,v) = \sum_{S : (u,v) \in \delta(S)} y_S$$

So normalize and forget about vertex potentials
Minimize: $\sum_{u,v \in E} w(u, v) x_{uv}$

Subject to: $x(\delta^+(v)) = x(\delta^-(v))$ for all $v \in V$

$\sum_{S \subseteq V} 2 \cdot y_S$ for all $S \subseteq V$

$\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u, v)$ for all $(u, v) \in E$

$x \geq 0$

Subject to:

$y \geq 0$

What happened?

Something complicated with no structure

A lot of structure:

$w(e) = \sum_{S: (u,v) \in \delta(S)} y_S$

1. Drop 0-edges
2. Complementarity slackness
3. Normalize with vertex potentials

Optimal primal and dual x and $(y, 0)$

Want more structure!
Minimize: \[\sum_{(u,v) \in E} w(u,v) x_{uv} \]

Subject to:
- \[x(\delta^+(v)) = x(\delta^-(v)) \] for all \(v \in V \)
- \[x(\delta(S)) \geq 2 \] for all \(S \subset V \)
- \[x \geq 0 \]

Maximize: \[\sum_{S \subset V} 2 \cdot y_S \]

Subject to:
- \[\sum_{S \ni (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \] for all \((u,v) \in E \)
- \[y \geq 0 \]

A lot of structure:
\[w(e) = \sum_{S : (u,v) \in \delta(S)} y_S \]

Let \(\mathcal{L} = \{ S : y_S > 0 \} \) be support of dual solution.

Again by complementarity slackness:
\[x(\delta(S)) = 2 \] for every \(S \in \mathcal{L} \).

So every \(S \in \mathcal{L} \) is a tight set!

By “standard” uncrossing techniques:
\(\mathcal{L} \) is a laminar family.

Any two sets are either disjoint or one is a subset of the other.

No two sets intersect non-trivially.
Laminarly-weighted instance $I = (G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (that will be optimal by definition)
- $\mathcal{L} = \{S: y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
Laminarly-weighted

Laminarly-weighted instance $I = (G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (that will be optimal by definition)
- $\mathcal{L} = \{S : y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y:

$$w(e) = \sum_{S \in \mathcal{L} : e \in \delta(S)} y_S \quad \text{for every edge } e$$

Held-Karp lower bound $= \text{OPT} = 2 \cdot \sum_{S \in \mathcal{L}} y_S \quad (=28 \text{ in example})$

Theorem:

A ρ-approximation algorithm for laminarly-weighted instances yields a ρ-approximation algorithm for general ATSP
Reduced our task to:

Laminarly-weighted instance $I = (G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (which will be optimal by definition)
- $\mathcal{L} = \{S : y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y:
 \[
 w(e) = \sum_{S \in \mathcal{L} : e \in \delta(S)} y_S
 \]
Basic idea: recursively solving smaller instances is not dangerous if optimum drops
Let's take a detour
Repeated cycle cover

[Frieze, Galbiati, and Maffioli'82]

Find min-cost cycle cover
"Contract"
Repeat until graph is connected

Worst case: all cycles have length 2 so need to repeat $\log_2 n$ times (each time cost OPT_{LP})

Cost of cycle cover $\leq OPT$

Cost of cycle cover $\leq OPT$

Total cost $\leq 3 \cdot OPT$

$log_2 n$-approximation
Recursive algorithm fine if value drops

Each time we take a cycle cover we make some progress.

What if the value of OPT drops by say a factor $9/10$ each time?

Then total cost would be

$$\sum_{i=0}^{\log_2 n} \left(\frac{9}{10}\right)^i OPT \leq \sum_{i=0}^{\infty} \left(\frac{9}{10}\right)^i OPT = 10 \cdot OPT$$

No one has been able to pursue this strategy with cycle cover approach.

We pursue it using the structure of laminarly-weighted instances.
Le retour
Laminarly-weighted

Laminarly-weighted instance $I = (G, \mathcal{L}, x, y)$:

- x, y primal and dual solutions (which will be optimal by definition)
- $\mathcal{L} = \{S : y_S > 0\}$ is a laminar family of tight sets (LP says that we should visit each such set once)
- weights induced by \mathcal{L} and y:
 \[w(e) = \sum_{S \in \mathcal{L} : e \in \delta(S)} y_S \text{ for every edge } e \]

Held-Karp lower bound $= \text{OPT} = 2 \cdot \sum_{S \in \mathcal{L}} y_S$

($=28$ in example)
Contraction and lift
Contraction gives smaller instance: G, x, \mathcal{L} easy to contract
Remains to specify y-value of new vertex/set
Lifting a tour in the contracted instance
Set y-value of new set to pay for maximum cost over all possible ways to enter and exit the original set.
Set y-value of new set to pay for maximum cost over all possible ways to enter and exit the original set.

In example:

\[? = 5 + 2 + 2 + 1 + 4 + 3 = 17 \] \(\text{(path crosses every tight set)} \)
Set y-value of new set to pay for maximum cost over all possible ways to enter and exit the original set.

In example:

\[? = 5 + 2 + 2 + 1 + 4 + 3 = 17 \]
(path crosses every tight set)

Fact: No matter how we enter and exit, there exists a path that enters and exits each set at most once \(\Rightarrow \) contraction does not increase LP-value.

Generalization of the fact: if there is a path from \(u \) to \(v \) then there is one without cycles.
Change of cost in example:

\[2^*(5+2+2+4+3) - 2^*17 + 2^*(5+1+4) - 2^*17 \leq 0 \]

By design:

Fact: Lift no more expensive than tour in contracted instance
Facts about contraction

Fact: No matter how we enter and exit, there exists a path that enters and exits each set at most once => contraction does not increase LP-value

Fact: Lift no more expensive than tour in contracted instance

Lift is a subtour but may not be a tour: it visits all vertices outside contracted set but not inside

However, if contraction causes significant decrease in value, then we can use remaining budget to complete the lift into tour
Implementing recursive strategy
(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is reducible if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$-fraction of the sets strictly inside S.

Total value inside $S = 2 + 2 + 1 + 4 + 3 = 12$

So worst way to enter/exit should cross sets of value at most 9 to be reducible.

Worst way to enter/exit crosses sets of value = 12

IRREDUCIBLE
(Ir)reducible sets in \mathcal{L}

DEF: A set $S \in \mathcal{L}$ is *reducible* if worst way to enter/exit crosses at most a weighted $\frac{3}{4}$-fraction of the sets strictly inside S.

We say that an instance is irreducible if no set in \mathcal{L} is reducible.

Total value inside $S = 2+2+1+4+3 = 12$

So worst way to enter/exit should cross sets of value at most 9 to be reducible.

Worst way to enter/exit crosses sets of value = 9

REducible
Theorem:

A ρ-approximation algorithm for irreducible instances yields a 8ρ-approximation algorithm for laminarily-weighted instances, and thus for general ATSP.

Let A be a ρ-approximation algorithm for irreducible instances...
Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in L$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

If irreducible:
simply run \mathcal{A} to obtain ρ-approximate tour
($\rho < 8 \rho$, so okay)
Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Recursive call returns 8ρ-approximate solution T' on smaller instance:

$$w(T) \leq 8\rho \left(OPT - \frac{1}{4} \left(2 \cdot \sum_{R \in \mathcal{R} : R \subset S} y_R \right) \right) = 8\rho OPT - 2\rho \left(\frac{1}{4} \cdot \sum_{R \in \mathcal{R} : R \subset S} y_R \right)$$
Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Recursive call returns 8ρ-approximate solution T' on smaller instance:

$$w(\text{lift}) \leq w(T') \leq 8\rho \left(OPT - \frac{1}{4} \left(2 \cdot \sum_{R \in \mathcal{L} \subset S} y_R \right) \right) = 8\rho OPT - 2\rho \left(2 \cdot \sum_{R \in \mathcal{L} \subset S} y_R \right)$$

Remaining task: complete lift to a tour using \mathcal{A} while paying at most the above
Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in L$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Task: complete to tour while paying at most $2p \left(2 \cdot \sum_{R \in L} c_{RS} y_R \right)$

- We need to only connect unvisited vertices inside S

Simplifying assumption:
instance obtained by restricting to vertices inside S is feasible
Alg for reducible instances

If instance is irreducible, simply run A
Otherwise select minimal reducible set $S \in L$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using A

Task: complete to tour while paying at most $2\rho \left(2 \cdot \sum_{R \in \mathcal{R} : C \in S} y_R \right)$

- We need to only connect unvisited vertices inside S

Simplifying assumption:
instance obtained by restricting to vertices inside S is feasible

An irreducible instance since S was a minimal reducible set

Held-Karp value $= 2$ times dual values

$$= 2 \cdot \sum_{R \in \mathcal{R} : C \in S} y_R$$

Solve this instance with A to find tour on S of weight

$$\leq \rho \cdot \left(2 \cdot \sum_{R \in \mathcal{R} : C \in S} y_R \right)$$

Better by a factor 2 than needed
Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in L$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Contract and recursively find lift (subtour) of weight
$$\leq 8\rhoOPT - 2\rho \left(2 \cdot \sum_{R \in R : R \subset S} y_R \right)$$

Under simplifying assumption, find tour on S of weight
$$\leq \rho \left(2 \cdot \sum_{R \in R : R \subset S} y_R \right)$$

Final tour has value at most
$$\leq 8\rhoOPT - \rho \left(2 \cdot \sum_{R \in R : R \subset S} y_R \right)$$

Simplifying assumption not true in general:
We define the operation of inducing on S for ATSP in paper. Makes us lose another factor of 2
Alg for reducible instances

If instance is irreducible, simply run \mathcal{A}
Otherwise select minimal reducible set $S \in \mathcal{L}$
Recursively find tour T in instance with S contracted
Complete lift of T to a tour in original instance using \mathcal{A}

Contract and recursively find lift (subtour) of weight

$$\leq 8\rho OPT - 2\rho \left(2 \cdot \sum_{R \in \mathcal{R}, R \subseteq S} y_R\right)$$

Eulerian set of edges

Under simplifying assumption, find tour on S of weight

$$\leq \rho \left(2 \cdot \sum_{R \in \mathcal{R}, R \subseteq S} y_R\right) \cdot 2$$

Final tour has value at most

$$\leq 8\rho OPT$$

Simplifying assumption not true in general:

We define the operation of inducing on S for ATSP in paper. Makes us lose another factor of 2
Theorem:

A ρ-approximation algorithm for irreducible instances yields a 8ρ-approximation algorithm for laminarily-weighted instances, and thus for general ATSP.
Basic idea: irreducible instances are almost node-weighted instances
Simplifying assumptions

- \mathcal{L} contains all singletons (every vertex has a node-weight)

- The instance is perfectly irreducible:

 the contraction of any set causes no decrease in LP-value

When contracting a set, the LP-decrease is proportional to the number of sets not crossed by path in worst way to enter/exit.

Since all singletons in \mathcal{L} and no LP-decrease, worst way to enter/exit must visit all vertices!
Alg for perfect irreducible

Contract all maximal sets in \(\mathcal{L} \)

Resulting instance is node-weighted, use Svensson’15 to obtain a 28-approximate tour

Obtain lift of tour and rewire first visit so as to make sure to visit worst enter/exit path

Node-weighted instance
Use 28-approximation by Ola
Alg for perfect irreducible

Cost of tour:
\[w(lift) + w(paths) \]

\[w(lift) \leq 28 \cdot OPT \]

We add 3 paths per maximal set.

Cost of each path bounded by the LP-value inside that set.

\[w(paths) \leq 3 \cdot OPT \]

Total cost \(\leq 31 \cdot OPT \)
In general not perfect irreducibility:

Worst enter/exit path only crosses most sets in \mathcal{L}

We further reduce to the case when we are given subtour B such that:

- $w(B) \leq 31 \cdot OPT$
- B crosses all non-singleton sets of \mathcal{L}

B is called the backbone and together with the instance they form a *vertebrate pair*

B is completed to a tour using Local-Connectivity ATSP and circulations

See Laszlo’s talk from Simons on YouTube
Summary and open problems...
Theorem:

A $O(1)$-approximation algorithm with respect to Held-Karp relaxation
Sequence of reductions

1. Amazing power of LP-duality
2. Laminarily-weighted instances
3. Recursive approach as long as OPT drops
 - Irreducible instances
4. Irreducible instances behave like node-weighted
 - Vertebrate pairs
5. Complete backbone to tour using circulations and Local-Connectivity ATSP
 - Solving Local-Connectivity

I'm reading this book on How To Improve Your Memory, but I keep losing my place.
Open questions

- Is the right ratio 2?
 - Unoptimized constant = 5500
 - By optimizing our approach, we believe we can get an upper bound in the hundreds. New ideas are needed to get close to lower bound of 2

- Bottleneck ATSP: find tour with minimum max-weight edge

- Thin tree conjecture: Is there a tree T such that for every $S \subseteq V$

$$|\delta(S) \cap T| \leq O(1) \times (\delta(S))$$

(would also imply apx for Bottleneck ATSP [An, Kleinberg, Shmoys’10])

Thank you!