DeepSigns: An End-to-End Watermarking Framework for
Protecting the Ownership of Deep Neural Networks

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar
University of California San Diego
bita@ucsd.edu, huc044 @eng.ucsd.edu, farinaz@ucsd.edu

Abstract

Deep Learning (DL) models have created a paradigm shift
in our ability to comprehend raw data in various important
fields, ranging from intelligence warfare and healthcare to
autonomous transportation and automated manufacturing. A
practical concern, in the rush to adopt DL models as a ser-
vice, is protecting the models against Intellectual Property (IP)
infringement. DL models are commonly built by allocating
substantial computational resources that process vast amounts
of proprietary training data. The resulting models are there-
fore considered to be an IP of the model builder and need to
be protected to preserve the owner’s competitive advantage.

We propose DeepSigns, the first end-to-end IP protection
framework that enables developers to systematically insert
digital watermarks in the pertinent DL model before distribut-
ing the model. DeepSigns is encapsulated as a high-level
wrapper that can be leveraged within common deep learn-
ing frameworks including TensorFlow, PyTorch, and Theano.
The libraries in DeepSigns work by dynamically learning the
probability density function (pdf) of activation maps obtained
in different layers of a DL model. DeepSigns uses the low
probabilistic regions within a deep neural network to grad-
ually embed the owner’s signature (watermark) while mini-
mally affecting the overall accuracy and/or training overhead.
DeepSigns can demonstrably withstand various removal and
transformation attacks, including model pruning, model fine-
tuning, and watermark overwriting. We evaluate DeepSigns
performance on a wide variety of DL architectures includ-
ing Wide Residual Networks, Convolution Neural Networks,
and Multi-Layer Perceptrons with MNIST, CIFARIO, and Ima-
geNet data. Our extensive evaluations corroborate DeepSigns’
effectiveness and applicability. Our highly-optimized accom-
panying API further facilitates training watermarked neural
networks with an extra overhead as low as 2.2%.

1. Introduction

Deep Neural Networks (DNNs) and other deep learning
variants have revolutionized vision, speech, and natural lan-
guage processing and are being applied in many other critical
fields [15, 5, 7, 24]. Training a highly accurate DNN requires:
(i) Having access to a massive collection of mostly propri-
etary labeled data that furnishes comprehensive coverage of

Adversary t Eﬁ]

Foe
S g

o [
Z N : @ ;e s -mf
. = AN = ol e
. e ™ DeepSigns ! e
Nel 1% e gon o5 el
) ‘ol
] oo
DNN Protected DNN

Figure 1: DeepSigns is a systematic solution to protect the
intellectual property of deep neural networks.

potential scenarios in the target application. (ii) Allocating
substantial computing resources to fine-tune the underlying
model topology (i.e., type and number of hidden layers), hyper-
parameters (i.e., learning rate, batch size, etc.), and DNN
weights to obtain the most accurate model. Given the costly
process of designing/training, DNNs are typically considered
to be the intellectual property of the model builder.

Model protection against IP infringement is particularly im-
portant for DNNs to preserve the competitive advantage of
the owner and ensure the receipt of continuous query requests
by clients if the model is deployed in the cloud as a service.
Embedding digital watermarks into DNNss is a key enabler for
reliable technology transfer. Digital watermarks have been
immensely leveraged over the past decade to protect the own-
ership of multimedia and video content, as well as functional
artifacts such as digital integrated circuits [6, 11, 23, 3, 19].
Extension of watermarking techniques to DNNs, however, is
still in its infancy to enable reliable model distribution. More-
over, adding digital watermarks further presses the already
constrained memory for DNN training/execution. As such,
efficient resource management to minimize the overhead of
watermarking is a standing challenge.

Authors in [31, 21] propose an N-bit (N > 1) watermarking
approach for embedding the IP information in the static con-
tent (i.e., weight matrices) of convolutional neural networks.
Although this work provides a significant leap as the first at-
tempt to watermark DNNs, it poses (at least) two limitations
as we discuss in Section 5: (i) It incurs a bounded watermark-
ing capacity due to the use of the static content of DNNs
(weights) as opposed to using dynamic content (activations).
The weights of a neural network are invariable (static) during
the execution phase, regardless of the data passing through the
model. The activations, however, are dynamic and both data-
and model-dependent. We argue that using activations (instead

of weights) provides more flexibility for watermarking. (ii) It

is not robust against attacks such as overwriting the original

embedded watermark by a third party. As such, the original
watermark can be removed by an adversary that is aware of
the watermarking method used by the model owner.

More recent studies in [20, 1] propose 1-bit watermarking
methodologies for deep learning models. These approaches
are built upon model boundary modification and the use of
random adversarial samples that lie near decision boundaries.
Adversarial samples are known to be statistically unstable,
meaning that adversarial samples crafted for a model are not
necessarily misclassified by another network [8, 27]. There-
fore, even though the proposed approaches in [20, 1] yield a
high watermark detection rate (true positive rate), they are also
too sensitive to hyper-parameter tuning and usually lead to a
high false alarm rate. Note that false ownership proofs jeopar-
dize the integrity of the proposed watermarking methodology
and render the use of watermarks for IP protection ineffective.

This paper proposes DeepSigns, the first efficient resource
management framework that empowers coherent integration
of robust digital watermarks into DNNs. DeepSigns is devised
based on an Algorithm/Hardware/Software co-design. As
illustrated in Figure 1, DeepSigns inserts the watermark infor-
mation in the host DNN and outputs a protected, functionality-
preserved model to prevent the adversary from pirating the
ownership of the model. Unlike prior works that directly em-
bed the watermark information in the static content (weights)
of the pertinent model, DeepSigns works by embedding an
arbitrary N-bit (N > 1) string into the probability density func-
tion (pdf) of the activation maps in various layers of a deep
neural network. Our proposed watermarking methodology is
simultaneously data- and model-dependent, meaning that the
watermark information is embedded in the dynamic content of
the DNN and can only be triggered by passing specific input
data to the model. We further provide a comprehensive set
of quantitative and qualitative metrics that shall be evaluated
to corroborate the effectiveness of current and pending DNN
watermarking methodologies that will be proposed in future.

We provide a highly-optimized implementation of Deep-
Signs’s watermarking methodology which can be readily used
as a high-level wrapper within contemporary DL frameworks.
Our solution, in turn, reduces the non-recurring engineering
cost and enables model designers to incorporate specific Wa-
termark (WM) information during the training of a neural net-
work with minimal changes in their source code and overall
training overhead. Extensive evaluation across various DNN
topologies confirms DeepSigns’ applicability in different set-
tings without requiring excessive hyper-parameter tuning to
avoid false alarms or accuracy drop. By introducing Deep-
Signs, this paper makes the following contributions:

* Enabling effective IP protection for DNNs. A novel wa-
termarking methodology is introduced to encode the pdf
of activation maps and effectively trace the IP ownership.
DeepSigns is provably more robust against removal and

transformation attacks compared to prior works.

* Characterizing the requirements for an effective water-
mark embedding in the context of deep learning. We
provide a comprehensive set of metrics that enables quan-
titative and qualitative comparison of current and pending
DNN-specific IP protection methods.

* Devising a careful resource management and accompa-

nying API. A user-friendly API is devised to minimize the

non-recurring engineering cost and facilitate the adoption of

DeepSigns within contemporary DL frameworks including

TensorFlow, Pytorch, and Theano.

Analysis of various DNN topologies. Through extensive

proof-of-concept evaluations, we investigate the effective-

ness of the proposed framework and corroborate the neces-
sity of such solution to protect the IP of an arbitrary DNN
and establish the ownership of the model designer.

This paper opens a new axis for the growing research in

secure deep learning. This work sheds light on previously

unexplored impacts of IP protection on DNNs’ performance.

DeepSigns provides a development tool for the research com-

munity to better protect their innovative DNN designs. Our

tool is open source and will be publicly available at [link
omitted due to double blind review policy].

2. DeepSigns Overview

Figure 2 demonstrates the global flow of DeepSigns frame-
work. DeepSigns consists of two main phases: watermark
embedding and watermark extraction. The watermarked DNN
can be employed as a service by third-party users either in a
white-box or a black-box setting depending on whether the
model internals are transparent to the public or not. DeepSigns
is the first DNN watermarking framework that is applicable to
both white-box and black-box security models.

= Watermark Embedding. DeepSigns takes the DNN ar-
chitecture and the owner-specific watermark signature as its
input. The WM signature is a set of arbitrary binary strings
that should be generated such that each bit is independently
and identically distributed (i.i.d.). DeepSigns, then, outputs a
trained DNN that carries the pertinent watermark signature in
selected layers along with a set of corresponding WM keys.
The WM keys are later used to trigger the embedded WM
information during the extraction phase. The WM embedding
process is performed in two steps. First, a set of WM keys are
generated as secure parameters for WM embedding. Then, the
underlying DNN is trained (fine-tuned) such that the owner-
specific WM signature is encoded in the pdf distribution of
activation maps obtained at different DNN layers. Note that
WM embedding is a one-time task performed by the owner
before model distribution. Details of each step are discussed
in Section 3. The trained watermarked DNN can be securely
distributed by the model owner. Model distribution is a com-
mon approach in the machine learning field (e.g., the Model
Zoo by Caffe Developers, and Alexa Skills by Amazon). Note
that even though models are voluntarily shared, it is important

‘Watermark Embedding Phase

K - .
&y —{ WM Keys Model Fine-tuning ——»
Generation

}

&

‘Watermarked DNN

Watermark Extraction Phase

‘7 Query Remote DNN Layerwise WM
J DNN Model [\ Activations Extraction
R DNN

Extracted BER
- X
Signature Computation @

Boolean Decision on
‘WM Detection

Figure 2: DeepSigns embeds the owner-specific WM signature in the pdf distribution of activation maps acquired at various DNN
layers. A specific set of WM keys are generated to extract the embedded watermarks. The WM keys triggering the ingrained WM
are then used for watermark extraction and detection of IP infringement.

to protect the IP and preserve copyright of the original owner.

s Watermark Extraction. To verify the IP of a remote DNN
and detect potential IP infringement, the model owner first
needs to query the remote DNN service with WM keys gener-
ated in the WM embedding phase and obtain the corresponding
activation maps. DeepSigns then extracts the WM signature
from the pdf distribution of the acquired activation maps. It
next computes the Bit Error Rate (BER) between the extracted
signature in each layer and the corresponding true signature.
If the BER at any layer is zero, it implies that the owner’s IP
is deployed in the remote DNN service. Details of each WM
extraction step are discussed in Section 3.

2.1. DNN Watermarking Prerequisites

There are a set of minimal requirements that should be ad-
dressed to design a robust digital watermark. Table 1 de-
tails the prerequisites for an effective DNN watermarking
methodology. In addition to previously suggested require-
ments in [31, 20], we believe reliability and integrity are two
other major factors that need to be considered when designing
a practical DNN watermarking methodology. Reliability is
important because the embedded watermark should be accu-
rately extracted using the pertinent keys; the model owner is
thereby able to detect any misuse of her model with a high
probability. Integrity ensures that the IP infringement detec-
tion policy yields a minimal number of false alarms, meaning
that there is a very low chance of falsely proving the ownership
of the model used by a third party. DeepSigns satisfies all the
requirements listed in Table 1 as shown in Section 4.

Potential Attack Scenarios. To validate the robustness of a
potential DL watermarking approach, one should evaluate the
performance of the proposed methodology against (at least)
three types of contemporary attacks: (i) Model fine-tuning.
This type of attack involves re-training of the original model
to alter the model parameters and find a new local minimum
while preserving the accuracy. (ii) Model pruning. Model
pruning is a commonly used approach for efficient execution
of neural networks, particularly on embedded devices. We

consider model pruning as another attack approach that might
affect the watermark extraction/detection. (iii) Watermark
overwriting. A third-party user who is aware of the method-
ology used for DNN watermarking (but is not aware of the
owner’s private WM keys) may try to embed a new watermark
in the model and overwrite the original one. An overwriting
attack aims to insert an additional watermark in the model and
render the original watermark unreadable. A watermarking
methodology should be robust against fine-tuning, pruning,
and overwriting for effective IP protection.

3. DeepSigns Methodology

Deep learning models possess non-convex loss surfaces with
many local minima that are likely to yield an accuracy very
close to another [2, 26]. DeepSigns takes advantage of this
phenomenon that there is not a unique solution for modern
non-convex optimization problems to embed the WM infor-
mation in the pdf distribution of activation maps in a DNN.
DeepSigns proposes different approaches for watermarking
the intermediate layers (Section 3.1) and the output layer (Sec-
tion 3.2) of a DNN model. This is due to the fact that the
activation of an intermediate layer is continuous-valued while
the one of the output layer is discrete-valued in classification
tasks that comprise a large percentage of DL applications.
Furthermore, we analyze the computation and communica-
tion overhead of DeepSigns framework in Section 3.3. We
devise an efficient memory management library to minimize
the pertinent WM embedding overhead. DeepSigns accom-
panying library is compatible with the current popular DL
solutions and provides a user-friendly API in Python that sup-
ports GPU acceleration. To illustrate the integrability of Deep-
Signs, we demonstrate how to use DeepSigns as a wrapper to
embed/extract WM in Sections 3.1.3 and 3.2.3.

3.1. Watermarking Intermediate Layers

DeepSigns embeds the WM information within a transforma-
tion of specific activations. We consider a Gaussian Mixture
Model (GMM) as the prior pdf to characterize the data distri-

Table 1: Requirements for an effective watermarking of deep neural networks.

| Requirements || Description

Fidelity Accuracy of the target neural network shall not be degraded as a result of watermark embedding.

Reliability Watermark extraction shall yield minimal false negatives; WM shall be effectively detected using the pertinent keys.

Robustness Embedded watermark shall be resilient against model modifications such as pruning, fine-tuning, or WM overwriting.

Integrity Watermark extraction shall yield minimal false alarms (a.k.a., false positives); the watermarked model should be
uniquely identified using the pertinent keys.

Capacity Watermarking methodology shall be capable of embedding a large amount of information in the target DNN.

Efficiency Communication and computational overhead of watermark embedding and extraction shall be negligible.

Security The watermark shall be secure against brute-force attacks and leave no tangible footprints in the target neural network;
thus, an unauthorized party cannot detect/remove the presence of a watermark.

bution at a given layer where the WM shall be inserted. The
rationale behind this choice is the observation that GMM pro-
vides a reasonable approximation of the activation distribution
obtained in hidden layers [12, 22, 18].! In the following, we
discuss the details of WM embedding and extraction proce-
dures for intermediate (hidden) layers.

3.1.1. Watermark Embedding (Hidden Layers)
Algorithm 1 outlines the process of WM embedding in a

hidden layer. It consists of two main steps:

(1) Key Generation. For a given hidden layer /, DeepSigns
first selects one (or more) random indices between 1 and S
with no replacement: Each index corresponds to one of the
Gaussian distributions in the target mixture model that con-
tains a total of S Gaussians. In our experiments, we set the
value S equal to the number of classes in the target application.
The mean values of the selected distributions are next used to
carry the WM signature. DeepSigns then decides on a subset
of the input training data belonging to the selected Gaussian
classes (X*). This subset is later used by the model owner
to trigger the embedded WM signature within a hidden layer
as discussed in Section 3.1.2. In our experiments, we use a
subset of 1% of the training data for this purpose.

DeepSigns also generates a projection matrix A to encrypt
the selected centers into the binary space. This projection
is critical to accurately measure the difference between the
embedded WM and the owner-defined binary signature during
training. The projection is performed as the following:

GYN = Sigmoid ("M . AM*NY,

¢ ey
b>N = Hard_Thresholding (Gi;XNv 0.5).

Here, M is the size of the feature space in the selected hidden
layer, s is the number of Gaussian distributions chosen to
carry the WM information, and N indicates the desired length
of the watermark embedded at the mean value of s selected
Gaussian distribution (ul”M). In our experiments, we use
a standard normal distribution .4"(0, 1) to generate the WM
projection matrix (A). Using i.i.d. samples drawn from a
normal distribution ensures that each bit of the binary string
is embedded into all the features associated with the selected

! DeepSigns is rather generic and is not restricted to the GMM distribution;
GMM can be replaced with other prior distributions based on the application.

centers. The ¢ notation in Eq. (1) is used as a subscript to
indicate the deployment of the Sigmoid function. The output
of Sigmoid has a value between 0 and 1. Given the random
nature of the binary string, we decide to set the threshold in
Eq. (1) to 0.5, which is the expected value of Sigmoid function.
The Hard_Thresholding function in Eq. (1) maps the values in
G that are greater than 0.5 to ones and the values less than
0.5 to zeros. The WM keys comprise the selected Gaussian
classes s, trigger keys X*¢ and projection matrix A.

(2] Model Fine-tuning. To effectively encode the WM in-
formation, two additional constraints need to be considered
during DNN training: (i) Selected activations shall be iso-
lated from other activations. (ii) The distance between the
owner-specific WM signature and the transformation of iso-
lated activations shall be minimal. We design and incorporate
two specific loss functions to address each of these two con-
straints (loss; and loss; in Step 2 of Algorithm 1).

To address the activation isolation constraint, we design
an additive loss term that penalizes the activation distribution
when activations are entangled and hard to separate. Adhering
to our GMM assumption, we add the following term to the

Algorithm 1 Watermark embedding for one hidden layer.

INPUT: Topology of the unmarked DNN (.7); Train-
ing data ({X""in y'™in}); Owner-specific watermark
signature b; Total number of Gaussian classes (S);
Length of watermark vector for each selected distri-
bution (N); Dimensionality of the activation map in
the embedded layer (M); and Embedding strength
hyper-parameters (1, 1,).

OUTPUT: Watermarked DNN (.7*); WM keys.

@ Key Generation:
T < Select_Gaussian_Classes ([1, S])
XX« Subset_Training_Data (T, {X'™n y'in})
AMXN «_ Generate_Secret_Matrix (M, N)

@ Model Fine-tuning: Two additive regularization loss func-
tions are incorporated to train the DNN:

L = cross_entropy + Ailossy + Alossy.
—_——

lossg

Return: Marked DNN 7%, WM keys (s, X%, AM*N),

cross-entropy loss function used for DNN training:

fix0)3 - L3y @

loss;

M (Zier|luf — et jer) —

Here, A, is a trade-off hyper-parameter that specifies the con-
tribution of the additive loss term, 0 is the DNN parameters
(weights), f1(x,) is the activation map corresponding to the
input sample x belonging to class i at the I’ layer, T is the
set of s target Gaussian classes selected to carry the WM in-
formation, and /.Lli denotes the mean value of the i Gaussian
distribution at layer /. The additive loss function (loss{) aims
to minimize the spreading (variance) of each GMM class used
for watermarking (the first term in /oss;) while maximizing
the distance between the activation centers belonging to dif-
ferent Gaussian classes (the second term in [oss). This loss
function, in turn, helps to augment data features so that they
better fit a GMM distribution. The mean values uli and inter-
mediate activations f/(x, @) in Eq. (2) are trainable variables
that are iteratively fine-tuned using back-propagation.

To ensure the transformed selected Gaussian centers are as
close to the desired WM information as possible, we design
the second additive loss term that characterizes the distance
between the owner-defined signature and the embedded wa-
termark (see Eq.(3)). As such, DeepSigns adds the following
term to the overall loss function used during DNN training:

N s
A Y Y (G

j=1k=1

)+ (-6 In(1-G¢)). (3

=~

lossy
Here, the variable A; is a hyper-parameter that determines the
contribution of /ossy during DNN training. The loss, func-
tion resembles a binary cross-entropy loss where the true bit
b is determined by the owner—deﬁned WM signature and
the prediction probability GCr is the Sigmoid of the projected
Gaussian centers as outlined in Eq. (1). The process of com-
puting the vector G is differentiable. Thereby, for a selected
set of projection matrix (A) and binary WM signature (), the
selected centers (Gaussian mean values) can be adjusted via
back-propagation such that the Hamming distance between
the binarized projected center b and the actual WM signature
b is minimized. In our experiments, we set A; and 4, to 0.01.

3.1.2. Watermark Extraction (Hidden Layers)

As the inverse process of watermark embedding, watermark
extraction is implemented using the two particular constraints
we design in Section 3.1.1. To extract watermark informa-
tion from intermediate (hidden) layers, the model owner must
follow three main steps. (i) Acquiring activation maps corre-
sponding to the selected trigger keys X**' by submitting a set
of queries to the remote DL service provider. (ii) Computing
the statistical mean value of the activation maps obtained in
Step 1. The acquired mean values are adopted as an approxi-
mation of the Gaussian centers that are supposed to carry the
watermark information. The computed mean values together

with the owner’s private projection matrix A are used to ex-
tract the pertinent WM following the procedure in Eq. (1). (iii)
Measuring the bit error rate between the owner’s signature
and the extracted WM from Step II. Note that if the water-
marked DNN in question is not deployed in the remote service,
arandom WM is extracted which yields a very high BER.

3.1.3. DeepSigns Memory Management and Wrapper
DeepSigns minimizes the required data movement to ensure
maximal data reuse and a minimal overhead caused by wa-
termark embedding. To do so, we integrate the computation
of additive loss terms to the DNN tensor graph so that the
gradients with respect to the GMM centers are computed dur-
ing regular back-propagation and all computation for WM
embedding is performed homogeneously on GPU. Modeling
the watermarking graph separately significantly slows than
the DNN training process since the activation maps need to
be completely dumped from the original DNN graph during
the forward pass to compute the WM loss and update the pa-
rameters of the WM graph. This approach, in turn, further
presses the already constrained memory. Our homogeneous
solution reuses the activation values within the original graph
with minimal memory overhead.

DeepSigns library provides a customized activity regularizer
WM _activity_regularizer that computes loss| and loss, and
returns the total regularized loss value described in Algorithm
1. To extract the WM from the embedded layers, our accompa-
nying library is equipped with functions called get_activation
and extract_W M _from_activations to implement the process
outlined in Section 3.1.2. Figure 3 shows the prototype of
functions used for watermark embedding/extraction in the
intermediate layers. The notations are consistent with the
definitions in Section 3.1 and 3.1.2. DeepSigns’ customized
library supports acceleration on GPU platforms. Our pro-
vided wrapper can be readily integrated within well-known
DL frameworks including TensorFlow, Pytorch, and Theano.

import DeepSigns

from DeepSigns import subsample_training_data
from DeepSigns import WM_activity_regularizer

from DeepSigns import get_activations

from DeepSigns import extract_WM_from_activations
from DeepSigns import compute_BER

from utils import create_marked_model

create WM trigger keys

X¥eY = subsample_training_data(T, {Xt7an ytrainy)

instantiate customized WM activity regularizer

WM_reg = WM_activity_regularizer(Ay, Az, b, A)

model = create_marked_model(WM_reg , model topology)
embed WM by standard training of the marked model
model.ﬁt{X“’“i“ , ytrm'n)

extract WM from the activation maps and compute BER
pi*M= get_activations(model, X€¥, |, T)

b= extract_WM_from_activations(uf*™, A)

BER = compute_BER(B, b)

Figure 3: DeepSigns library usage and resource management
for WM embedding and extracting in hidden layers.

3.2. Watermarking OQutput Layer
The final prediction of a DNN shall closely match the ground-
truth labels to have the maximum possible accuracy. As such,
instead of directly regularizing activations of the output layer,
we decide to adjust the tails of decision boundaries to add a
statistical bias as a 1-bit watermark. The WM key is designed
as a set of random (key image, key label) pairs that are used to
retrain the DNN. To verify the ownership of a remote DNN, we
devise a statistical hypothesis testing method that compares the
prediction of the queried DNN with WM key labels. A high
consistency implies the existence of the owner’s watermark.
Watermarking the output layer is a post-processing step that
is performed once the DNN model is converged or the inter-
mediate layers are watermarked as discussed in Section 3.1.
In the following, we detail the workflow of WM embedding
and extraction operating on the output layer. We then provide
a corresponding example using DeepSigns’ library.

3.2.1. Watermark Embedding (Output Layer)

The WM keys corresponding to the output layer should be
carefully crafted such that they reside in low-density regions
of the target DNN in order to ensure minimal accuracy drop.
To do so, DeepSigns profiles the pdf distribution of different
layers in the underlying DNN. The acquired pdf, in turn, gives
us an insight into both the regions that are thoroughly occupied
by the training data and the regions that are only covered by a
few inputs, which we refer to as rarely explored regions. Fig-
ure 4 illustrates a simple example of two clustered activation
distributions spreading in a two-dimensional subspace. The
procedure of WM embedding in the output layer is summa-
rized in Algorithm 2. In the following, we explicitly discuss
each of the steps outlined in Algorithm 2.

B Rére_ly Ex;i)lofedi-Régions

o:Highly Exploréd Regions

Figure 4: Due to the high dimensionality of DNNs and lim-
ited access to labeled data (the blue and green dots in the
figure), there are regions within the DNN model that are rarely
explored. DeepSigns exploits this mainly unused regions for
WM embedding while minimally affecting the accuracy.

Key Generation 1. DeepSigns generates a set of K unique
random input samples to be used as the watermarking keys
in step 2. Each random sample is passed through the pre-
trained neural network to make sure its intermediate activation
lies within the rarely explored regions characterized by the
learned pdf. If the number of data activations within an &-
ball of the activation corresponding to the random sample is

fewer than a threshold, we accept that sample belongs to the
rarely explored regions. Otherwise, a new random sample is
generated to replace the previous sample. A corresponding
random ground-truth vector is generated and assigned to each
input key (e.g., in a classification task, each random input is
associated with a randomly selected label).

We set the initial key size to be larger than the owner’s
desired value K' > K and generate the input keys accordingly.
The target model is then fine-tuned (Step 2) using a mixture of
the generated keys and a subset of original training data. After
fine-tuning, only the keys that are simultaneously correctly
classified by the marked model and incorrectly predicted by
the unmarked model are appropriate candidates that satisfy
both a high detection rate and a low false positive. In our
experiments, we set K =20 x K where K is the desired key
length selected by the model owner.

Model Fine-tuning. The pre-trained DNN is fine-tuned
with the selected random keys in Step 1. The model shall be
retrained such that the neural network has exact predictions
(e.g., an accuracy greater than 99%) for chosen key samples.
In our experiments, we use the same optimizer setting used for
training the original neural network, except that the learning
rate is reduced by a factor of 10 to prevent accuracy drop in
the prediction of legitimate input data. Note that the model is
already converged to a local minimum.

Key Generation 2. Once the model is fine-tuned in step
2, we first find out the indices of initial WM keys that are
correctly classified by the watermarked model. Next, we
identify the indices of WM keys that are not classified correctly
by the original DNN before fine-tuning in Step 2. The common
keys between these two sets are proper candidates to trigger

Algorithm 1 Watermark embedding for DL output layer.

INPUT: Topology of the partially-marked or unmarked
DNN (.7) and its pdf distribution (pdf); Training
data ({Xx"in y'rainl); Key size (K).

OUTPUT: Watermarked DNN (.7*); Crafted WM keys
({X“"’.Y]‘“.}).

Key Generation 1: , ,

Set the initial key size K > K (e.g., K =20 x K).

{X key yhey' } — Genemte_K({\'_Puir,y(K/ ,pdf)

E Model Fine-tuning:
T* « Train(7, {Xk(’\"A yke\"} . {Xll'uiu. yrruin})

E Key Generation 2:
Y_(,}r.“l/ « Predict(T* X%
Y2l Predict(7,x*)
17+ < Find_Match_Index (Y, Y",}'V.“[I)
17 « Find_Mismatch_Index (Y**', Y’}"l"l,)
1%« Find_Intersection (L7, I7+)
(Xt vk} o Seteer ({X4 vk} 1 k)

Return: Marked DNN .7*; WM key {X*< vk},

the embedded WM. A random subset of candidate WM keys
is then selected according to the key size (K) defined by the
model owner. In the global flow (Figure 2), we merge the two
key generation steps into one module for simplicity.

3.2.2. Watermark Extraction (Output Layer)
To verify the presence of a watermark in the output layer,
DeepSigns performs statistical hypothesis testing on the re-
sponses obtained from the remote DNN service. To do so,
DeepSigns undergoes three main steps: (i) Submitting queries
to the remote DNN service provider and acquiring the output
labels corresponding to the randomly selected WM keys (X*€)
as discussed in Section 3.2.1. (ii) Computing the number of
mismatches between model predictions and WM ground-truth
labels. (iii) Thresholding the number of mismatches to derive
the final decision. If the number of mismatches is less than
the threshold, it means the model used by the remote service
provider possesses a high similarity to the watermarked DNN.
When the two models are exact duplicates, the number of
mismatches will be zero. In practice, the target DNN might
be slightly modified by third-party users in both malicious
or non-malicious ways. Examples of such modifications are
model fine-tuning, pruning, or WM overwriting. As such, the
threshold used for WM detection should be greater than zero to
withstand DNN modifications. When queried by a random key
image, the prediction of the model has probabilities P(y""¢¢ =
J) = p; for which 25:1 p;j = 1and C is the number of classes
in the pertinent application. Since the corresponding key labels
are uniformly randomly generated, the probability that the key
sample is correctly classified per generated key label is:

C
P =) = Y PO = oy = j)
j=1

C C
=Y PO =j)x Y PG' =j) (@)
j=1
1
c

due to the independence between P(y”"*?) and P(y**). Note
that Eq. (4) also holds when the class sizes are unbalanced.
Therefore, the probability of an arbitrary DNN to make at least
ny correct decision per owner’s private keys is:

PNy >mlO)=1-Y () (5 *1-Hk)

ny
k=0

Here & is the DNN oracle used in the remote service, N is a
random variable indicating the number of matched predictions
of the two models compared against one another, K is the
input key length according to Section 3.2.1. The decision
for WM detection in the output layer is made by comparing
P(Ny > ni|0') with an owner-specified probability threshold
(p). In our experiments, we use a decision threshold of 0.999.

3.2.3. DeepSigns Wrapper and Memory Management
Figure 5 illustrates how to use DeepSigns library for WM em-

bedding and detection in the output layer. DeepSigns automat-
ically designs a set of robust WM key pairs (X*¢, Y*¢) for the
model owner using the function key_generation. The gener-
ated WM keys are embedded in the target DNN by fine-tuning.
The existence of the WM is determined from the response of
the queried model to the key set. Note that DeepSigns can pro-
vide various levels of security by setting the hyper-parameters
K(key length) and decision policy threshold. A larger key-
length, in turn, induces a higher overhead (see Section 3.3).
The model owner can explore the trade-off between security
and overhead by adopting different hyper-parameters.

DeepSigns wrapper provides a custom layer working for
efficient resource management during the identification of the
rarely explored regions (Step 1 in Algorithm 2). To do so,
we first apply Principal Component Analysis (PCA) on the
activation maps acquired by passing the training data through
the converged DNN. The computed Eigenvectors are then used
to transform the high dimensional activation maps into a lower
dimensional subspace. We encode the PCA transformation
as a dense layer inserted after the second-to-last layer of the
original DNN graph so that the data projection is performed
with minimal data movement. The weights of the new dense
layer are obtained from the Eigenvectors of the PCA of the
pertinent activations. For each randomly generated sample,
the density of the activations within an € Euclidean distance
of that sample is then computed. If this density is greater than
a threshold that sample will be rejected.

import DeepSigns

from DeepSigns import key_generation

from DeepSigns import count_response_mismatch
from DeepSigns import compute_mismatch_threshold
from utils import create_model

generate WM key pairs

model = create_model(model topology)
model.load_weights(‘baseline_weights’)

(Xkey, ykeY) = key generation(model, K, X4, pdf)
Xretrain = np.vstack(X"Ey, Xtrain)

yretrain _ np.VStaCk(ykEJ’ ytrain)

embed WM by finetuning the model with the WM key
mode|.ﬂt(chtrar'n antraln)

query model with key set to detect WM
yPred = model.predict(Xke¥)

m= coun[_response_mismatch(Y”rEd h Y"Ey)
0 = compute_mismatch_threshold(p, K, C)
WM_detected = 1if m < B else 0

Figure 5: Using DeepSigns library for WM embedding and ex-
traction in the output layer.

3.3. DeepSigns Watermark Extraction Overhead

Here, we analyze the computation and communication over-
head of WM extraction. The WM embedding is a one-time
offline process that incurs a negligible overhead. We empiri-
cally discuss the WM embedding overhead in Section 4.
Watermarking Intermediate Layers. From the viewpoint of
remote DNN service provider, the computation cost is equiva-
lent to the cost of one forward pass in the DNN model with

MNIST Benchmark CIFAR10-CNN Benchmark CIFAR10-WRN Benchmark k
ﬁ 25 98.65 Eas ; 82 ﬁzs 92.6 ﬁ A 5 .,
P e U 5 8.6 > 30 | 2 (N Bl PP - T > i 8
£ 15 |) %85 2 P R e B B 2 80 3 G 15 9223 &2 g
E w0l 98.45 § Els | 798 E1o o 8 E15 ! 22
510 | 8B4 T B s s s 510 ! a
T 5! 9835 3 %10 | .8 = 3 S0 | | g
e 5! 2 ° 5! 78 o 5 9182 ° 5! 70 =
2 1 983 = 25!] = 2 = |- S 3
30 98.25 So! 76 50 916 Sol 69 8
H 01 02 03 04 045 05 055 0.6 Z 01 02 03 04 05 06 07 08 Z 0102 03 04 0505506 07 08 Z 010203 040506080909 =
Pruning rate Pruning rate Pruning rate Pruning rate
MNIST Benchmark
CIFAR10-WRN Benchmark CIFAR10-CNN Benchmark
—+—BER accuracy
> ——BER accuracy ——BER accuracy
0.3 984 © oy 2
0.25 982 £ 0.01 92 § 1 82 §
02 / @ @ 0.008 9 3 08 80 5
o $ 8 78 8
W 0.15 978 & o 0.006 o x© 0.6 5]
@ 3 @ 0.004 0© 2 @ 0.4 2
0.1 976 G oM 0. o I o 0. T
0.05 97.4 2 0.002 B 0.2 723
0 97.2 0 88 = 0 70 =

0 0.1 0.2 03 04 05 0.6 0.8 0.90.950.99

Pruning rate

v v v v b
0 01 02 03 04 05 0.6 0.8 0.9 0.99

Pruning rate

e T v v v v
0 01 02 03 04 05 0.6 0.8 0.950.99

Pruning rate

Figure 6: Robustness against parameter pruning. The experiments in the first row are related to watermarking the output layer.
The horizontal green dotted line is the mismatch threshold obtained from Eq. (5). The orange dashed lines show the final accuracy
for each pruning rate. Experiments in the second row correspond to watermarking the second-to-last layer.

Table 2: Benchmark neural network architectures. Here, 64C3(1) indicates a convolutional layer with 64 output channels and
3 X 3 filters applied with a stride of 1, M P2(1) denotes a max-pooling layer over regions of size 2 x 2 and stride of 1, and 512FC
is a fully-connected layer with 512 output neurons. ReLU is used as the activation function in all benchmarks.

[Dataset [Baseline Accuracy [Accuracy of Marked Model || DL Model Type | DL Model Architecture |
MNIST 98.54% R o MLP 784-512FC-512FC-10FC
CIFARIO | T847% | iGe | o70% NN | _G4Ca(1) A0 MPA1 Y S12FC 10FC
CIFAR10 91.42% ;<17t8202: 1;12:012%7? ‘WideResNet Please refer to [32].
ImageNet 74.72% 5;]2; : ResNet50 Please refer to [4].

no extra overhead. From the model owner’s viewpoint, the
computation cost is divided into two terms. The first term is
proportional to &(M) to compute the statistical mean in Step
2 outlined in Section 3.1.2. Here, M denotes the feature space
size in the target hidden layer. The second term corresponds
to the computation of matrix multiplication in Eq. (1), which
incurs a cost of ¢(MN). The communication cost is equiv-
alent to the input key length multiplied by input feature size
plus the size of intermediate layers (M) to submit the pertinent
queries and obtain the intermediate activations, respectively.
Watermarking Output Layer. For the remote DNN service
provider, the computation cost is equal to the cost of one
forward pass through the underlying DNN. For the model
owner, the computation cost is the cost of performing a simple
counting to measure the number of mismatches between the
responses of the remote service provider and the WM key
labels. In this case, the communication cost is equal to the key
length multiplied by the sum of the input feature size and one
to submit the queries and read back the predicted labels.

4. Evaluations

We evaluate the performance of DeepSigns framework on
various datasets including MNIST [16], CIFAR10 [14] and
ImageNet [4], with four different neural network architectures.
Table 2 summarizes DNN topologies used in each benchmark.
In Table 2, K denotes the key size for watermarking the output
layer and N is the length of the owner-specific WM signature
used for watermarking the hidden layers. In our experiments,

we use the second-to-last layer or the output layer for wa-
termarking. DeepSigns library is generic and also supports
WM embedding in multiple layers if larger capacity is desired.
In the rest of this section, we explicitly evaluate DeepSigns’
performance with respect to each requirement listed in Ta-
ble 1. As empirically demonstrated, DeepSigns is effective
and applicable across various datasets and DNN architectures.

4.1. Fidelity

DeepSigns preserves the DNN overall accuracy after water-
mark embedding. The accuracy of the target neural network
shall not be degraded after embedding the WM information.
Table 2 summarizes the baseline DNN accuracy (Column 2)
and the accuracy of marked models (Column 3 and 4) af-
ter WM embedding. As demonstrated, DeepSigns respects
the fidelity requirement by simultaneously optimizing for the
accuracy of the underlying model (e.g., cross-entropy loss
function), as well as the additive WM-specific loss functions
as discussed in Section 3. In some cases (e.g. WideResNet
benchmark), we even observe a slight accuracy improvement
compared to the baseline. This improvement is mainly due
to the fact that the additive loss functions outlined in Eq. (2)
and (3) act as a form of a regularizer during DNN training.
Regularization, in turn, helps the model to mitigate over-fitting
by inducing a small amount of noise to DNNs [7].

Table 3: DeepSigns is robust against model fine-tuning attack. The reported BER and the detection rate value are averaged over
10 different runs. A value of 1 in the last row of the table indicates that the embedded WM is successfully detected, whereas a
value of 0 indicates a false negative. For fine-tuning attacks, the WM-specific loss terms proposed in Section 3 are removed from
the loss function and the model is retrained using the final learning rate of the original DL model. After fine-tuning, the DL model
will converge to another local minimum that is not necessarily a better one (in terms of accuracy) for some benchmarks.

Metrics

Intermediate Layer Watermarking

Output Layer Watermarking

MNIST-MLP

CIFAR10-CNN

CIFAR10-WRN

MNIST-MLP | CIFAR10-CNN CIFAR10-WRN [T t "esNetST{

Number of epochs
Accuracy

50
98.21

100 200
98.20 98.18

50 100
7747 78.41

200
78.89

50 100 200
91.79 91.74 91.8

BER 0 0 0 0 0 0 0 0 0
Detection success 1 1 1 1 1 1 1 1 1

98.57 98.57 98.59

50 100 200 50 100 200 50 100 200 10 20
81.69 81.82 81.92 | 92.02 92.08 92.05 | 74.06 74.14

1 1 1 1 1 1 1 1 1 1 1

MNIST Benchmark CIFAR10-CNN Benchmark

s
w
S
s
w
&

T 25 ‘

K=20 K =30
MD2 =MD3 ~MD4 =MD5 =MD6

Average # of mismatche:
Saamn
cwda8R
Average # of mismatche:
cwda

K=20 K =30

®MD1 =MD2 =MD3 ~MD4 =MD5 = MD6 =MD1

CIFAR10-WRN Benchmark Imagenet-ResNet50 Benchmark

O
5
0 -

K =20 K =30
MD2 =MD3 ~MD4 =MD5 =MD6

°

K=20 K =30
MD2 =MD3 ~MD4 =MD5 =MD6

Average # of misma
3

:= ..
T

g 5

g

2

<

=MD1 =MD1

Figure 7: Integrity analysis of different benchmarks. The green dotted horizontal lines indicate the detection threshold for various
WM lengths. The first three models (MD 1-3) are neural networks with the same topology but different parameters compared with
the watermarked model. The last three models (MD 4-6) are neural networks with different topologies ([29], [17], [32]).

4.2. Reliability and Robustness

DeepSigns enables robust DNN watermarking and reliably
extracts the embedded WM for ownership verification. We
evaluate the robustness of DeepSigns against three state-of-
the-art removal attacks as discussed in Section 2.1. These
attacks include parameter pruning [10, 9, 25], model fine-
tuning [28, 30], and watermark overwriting [31, 13].

= Parameter Pruning. We use the pruning approach proposed
in [10] to sparsify the weights in the target watermarked DNN.
To prune a specific layer, we first set % of the parameters
that possess the smallest weight values to zero. The model is
then sparsely fine-tuned using cross-entropy loss function to
compensate for the accuracy drop caused by pruning.

Figure 6 demonstrates the impact of pruning on WM extrac-
tion/detection in the output and hidden layers. The length of
the watermark signature and the key size used in each bench-
mark are listed in Table 2. As shown, DeepSigns can tolerate
up to 90% parameter pruning for MNIST benchmark, and up
to 99% parameter pruning for the CIFAR10, and ImageNet
benchmarks. As illustrated in Figure 6, in cases where DNN
pruning yields a substantial BER value, the sparse model suf-
fers from a large accuracy loss. As such, one cannot remove
DeepSigns’ embedded watermark by excessive pruning and
attain a comparable accuracy with the baseline.
= Model Fine-tuning. Fine-tuning is another form of transfor-
mation attack that a third-party user might use to remove the
WM information. To perform this type of attack, one needs to
retrain the target model using the original training data with
the conventional cross-entropy loss function (excluding loss
and loss;). Table 3 summarizes the impact of fine-tuning on
the watermark detection rate across all benchmarks.

There is a trade-off between model accuracy and the success
rate of watermark removal. If a third party tries to disrupt the
pdf of activation maps that carry the WM information by fine-
tuning the underlying DNN with a high learning rate, she

will face a large degradation in DNN accuracy. We use the
same learning rate as the one in the final stage of DL training
to perform model fine-tuning attack. As shown in Table 3,
DeepSigns can successfully detect the embedded WM even
after fine-tuning the DNN for various number of epochs. We
set the number of fine-tuning epochs to 10 and 20 epochs
for ImageNet benchmark and 50, 100, 200 epochs for other
benchmarks. The reason for this selection is that training the
ImageNet benchmark from scratch takes 90 epochs whereas
other benchmarks take around 300 epochs to be trained.

sWatermark Overwriting. Assuming the attacker is aware
of the watermarking methodology, she may attempt to corrupt
the original watermark by embedding a new WM. In practice,
the attacker does not have any knowledge about the location
of the watermarked layers. In our experiments, we consider
the worst-case scenario in which the attacker knows where the
WM is embedded but does not know the WM key. To perform
the overwriting attack, the attacker follows the procedure in
Section 3 to embed a new WM signature with her new keys.
Table 4 summarizes the results of WM overwriting for all
four benchmarks in which the output layer is watermarked.
As shown, DeepSigns is robust against the overwriting attack
and can successfully detect the original embedded WM in the
overwritten DNN. The decision thresholds shown in Table 4
for different key lengths are computed based on Eq. (5) as
discussed in Section 3.2.2. A BER of zero is also observed
in the overwritten DNNs where the WM is embedded in the
second-to-last layer. This further confirms the DeepSigns’
reliability and robustness against malicious attacks.

4.3. Integrity

DeepSigns avoids claiming the ownership of unmarked
DNNs and yields low false positive rates. Let us assume the
third-party user does not share her model internals and only
returns the output prediction for each submitted query. In

MNIST Benchmark

——BER ——BER

accuracy

4

0.25

0.2

© 0.15
w

o 041

0.05

0.4
03
o
w 0.2
o

CIFAR10-CNN Benchmark

CIFAR10-WRN Benchmark

4 16 32 64 128 256 512

Watermark length (N)

4 16 32

accuracy ——BER accuracy
0.08 92.1

87) 92 3
85 & 0.06 919 S
83 3 4 23
81 Q i 0.04 91.8 3

< o ©
79 = 0.02 91.73
77 § : 9165
758 0 M52

Watermark length (N)

64 128 256 4 16 32 64 128

Watermark length (N)

256

Figure 8: There is a trade-off between the length of the WM signature (capacity) and the bit error rate of watermark extraction.
As the number of the embedded bits () increases, the test accuracy of the watermarked model decreases and the BER of WM
extraction increases. This trend indicates that embedding excessive amount of WM information impairs fidelity and reliability.

Table 4: DeepSigns is robust against overwriting attack. The
reported nhumber of mismatches is the average value of 10
runs for the same model using different WM key sets.

[Average # of mi hes || Decision threshold || Detection
[K=20 | K=30 [[K=20] K=30 | success
MNIST 8.3 15.4 13 21 1
CIFAR10-CNN 9.2 16.7 13 21 1
CIFAR10-WRN 8.5 10.2 13 21 1
I t-ResNet50 10.5 18.5 19 29 1
this case, it 1s critical to incur the minimal number of false

alarms in WM extraction. Figure 7 illustrates DeepSigns
integrity-related performance. In this experiment, six different
unmarked models (with the same and different architectures)
are queried by DeepSigns. As corroborated, DeepSigns satis-
fies the integrity criterion and has no false positives across dif-
ferent benchmarks, which means the ownership of unmarked
DNNs will not be falsely proved. We use the same set of
hyper-parameters (e.g., detection policy threshold) across all
the benchmarks with no particular fine-tuning.
4.4. Capacity
DeepSigns has a high watermarking capacity. We embed
WM signatures with different lengths in a single DNN layer to
assess the capacity of DeepSigns watermarking methodology.
As shown in Figure 8, DeepSigns allows up to 64 bits WM
embedding for MNIST and up to 128 bits WM embedding
in the second-to-last layer of CIFAR10-CNN, and CIFAR10-
WRN benchmarks. Note that there is a trade-off between the
capacity and accuracy which can be used by the IP owner to
embed a larger watermark in her DNN model if desired. For
IP protection purposes, capacity is not an impediment criterion
as long as there is sufficient capacity to contain the necessary
WM information. Nevertheless, we include this property in
Table 1 to have a comprehensive list of requirements.
4.5. Efficiency
DeepSigns incurs a negligible overhead. The WM extraction
overhead is discussed in Section 3.3. Here, we analyze the
overhead incurred by the WM embedding phase. The com-
putation overhead to embed a watermark using DeepSigns is
a function of the DNN topology (i.e., the number of parame-
ters/weights in the pertinent DNN), the key length (K), and the
length of watermark signature N. DeepSigns has no commu-
nication overhead for WM embedding since the embedding
process is performed locally by the model owner.

To quantify the computation overhead for embedding a

10

watermark, we measure the normalized training time of the
baseline model without WM and the marked model with WM
to reach the same accuracy level. The results are shown in
Figure 9, where the x-axis denotes various benchmarks and
the y-axis denotes the runtime ratio of training a DNN model
with/without a WM. As shown, DeepSigns incurs a reasonable
overhead for WM embedding (normalized runtime overhead
around 1), suggesting a high efficiency. The overhead of
embedding a watermark in the hidden layer of MNIST-MLP
benchmark is higher than others since this benchmark is so
compact with a relatively small rarely-explored region. The
low-dimensionality of this model, in turn, makes it harder to
reach the same accuracy while adding noise to the system by
incorporating the WM-specific regularization.

1.2

6.737 1055 1059 1057

08

06

04
.02
0

MNIST ~ CIFAR10 CIFAR10 ImageNet
-MLP -CNN -WRN -ResNet50

1.665
0.821 1.082

MNIST ~ CIFAR10 CIFAR10
-CNN -CNN -WRN

MNIST
-MLP

(a) (b)

Figure 9: Normalized WM embedding runtime overhead in (a)
the second-to-last layer and (b) the output layer. The desired
runtime ratio is denoted by the red dashed line in the figure.

4.6. Security

DeepSigns leaves an imperceptible footprint in the water-
marked DNN and is secure against brute-force attacks. As
mentioned in Table 1, embedding a watermark should not
leave noticeable changes in the pdf distribution spanned by
the target DNN. DeepSigns satisfies the security requirement
by preserving the intrinsic distribution of weights/activations.
Figure 10 shows the distribution of activations in WM embed-
ded layer of a marked DNN and the ones in the same layer
of the unmarked DNN for CIFAR10-WRN benchmark. The
range of activations is not deterministic in different models
and cannot be used by malicious users to detect WM existence.

DeepSigns is secure against brute-force attacks. If the WM
is embedded in the output layer, the searching space of an
adversary to find the exact WM keys designed by the model
owner is 0(d"*K) where d is the size of input data, I is the
number of possible elements in the input domain (e.g., 256

e
o
8
e
o
8

Frequency
s o o
o ° °
8 % 8
Frequency
s o o
o ° o
8 % 8

°
°

6 -4 2 0 2 4 6 A

Activation value Activation value

(a) (b)
Figure 10: Distribution of the activation maps for (a) marked
and (b) unmarked models. DeepSigns preserves the intrinsic

distribution while securely embedding the WM information.
for image data as each pixel can get an integer value in the

range of [0 — 255]), and K is the WM key size. Note that each
WM key is generated based on i.i.d. random distribution. If
the WM is embedded in hidden layers, the search space for
the attacker to find WM keys is @([];c, (fl)RMlXNl). Here,
L is the set of hidden layers used for watermarking, s;, M;
and N; denote the number of WM-related Gaussian centers,
the dimension of activation maps, and the length of the WM
signature in the I'" layer, respectively. R is the number of
values in the domain used for creating projection matrix A
(A € R so R is infinity).

5. Comparison With Prior Works

Figure 11 compares the general capabilities of existing DNN
watermarking frameworks. We provide the first automated
resource management tool and the accompanying API for effi-
cient DNN watermarking. Unlike prior works, DeepSigns uses
dynamic statistics of DNN models for watermark embedding
by encoding the WM information in the pdf distribution of
activation maps. Our dynamic watermarking approach is sig-
nificantly more robust against potential attacks compared with
the prior art in which static weights are explored for water-
marking (Section 5.1). In the rest of this section, we explicitly
compare DeepSigns performance against three state-of-the-art
DNN watermarking frameworks existing in the literature.

5.1. Intermediate Layer Watermarking

The works in [31, 21] encode the WM information in the
weights of convolution layers, as opposed to the activation
maps proposed by DeepSigns. As shown in [31], watermark-
ing the weights is not robust against overwriting attacks. Ta-
ble 5 provides a side-by-side robustness comparison between
our approach and these prior works for different dimension-
ality ratio (defined as the ratio of the length of the attacker’s
WM signature to the size of weights or activations).

Table 5: Robustness comparison against overwriting attacks.
The WM information embedded by DeepSigns can withstand
overwriting attacks for a wide of range of % ratio. In this ex-
periment, we use the CIFAR10-WRN since this benchmark is
the only model evaluated by [31, 21].

Bit Error Rate (BER) ‘

N to M Ratio H — 7T n
H Uchida et.al BT-ZT] ‘ DeepSigns ‘

1 0.309 0
2 0.41 0
3 0.511 0
4 0.527 0

As demonstrated, DeepSigns’ dynamic data- and model-
aware approach is significantly more robust compared to prior

11

art [31, 21]. As for its robustness against pruning attacks,
our approach is tolerant of higher pruning rates. Consider
the CIFAR10-WRN benchmark as an example, DeepSigns is
robust up to 80% pruning rate, whereas the works in [31, 21]
are only robust up to 65% pruning rate.

5.2. Output Layer Watermarking

There are two prior works targeting watermarking the output
layer [1, 20]. Even though the works by [1, 20] provide a
high WM detection rate (reliability), they do not address the
integrity requirement, meaning that these approaches can lead
to a high false positive rate in practice. Table 6 provides a side-
by-side comparison between DeepSigns and the work in [20].
As shown, DeepSigns has a significantly lower probability of
falsely claiming the ownership of a remote DNN.

Table 6: Integrity comparison between DeepSigns and the
prior work (PW) [20]. For each benchmark, the WM key size
is set to K = 20 and 10 different sets of WM keys are gener-
ated to query six unmarked DNNs. The average false positive
rates of querying each DNN model are reported.

Model 1
PW | Ours
05| 0.0
0.0 | 0.0
0.5] 0.0

Model 2 Model 3
PW | Ours | PW | Ours
03 | 0.0 0 0.0
0.1] 00 [01] 00
08] 00 | 1.0 | 00

Model 4
PW | Ours
0.1 | 00
0.0 | 00
0.0 | 00

Model 5
PW | Ours
1.0 | 0.0
1.0 | 0.0
0.0 | 0.0

Model 6
PW | Ours
1.0 | 0.0
0.0 | 0.0
0.0 | 0.0

False Positive Rate
‘WM Method
MNIST
CIFAR10-CNN
CIFAR10-WRN

The work in [1] uses the accuracy on the test set as the
decision policy to detect WM information. It is well-known
that there is no unique solution to DL problems [2, 5, 7]. In
other words, there are various models with even different
topologies that yield approximately the same test accuracy for
a particular data application. Besides high false positive rates,
another drawback of using test accuracy for WM detection
is the high overhead of communication and computation [1];
therefore, their watermarking approach suffers from a low
efficiency. DeepSigns uses a small WM key size (K = 20) to
trigger the WM information, whereas a typical test set in DL
problems can be two to three orders of magnitude larger.

6. Discussion

We demonstrate DeepSigns’ performance on image classifi-
cation tasks in Section 4. It is worth noting that DeepSigns
framework is generic and can be deployed in sequence-based
data application. Here, we use sentiment classification on
IMDB dataset as an example to illustrate DeepSigns’ general-
izability. In this experiment, we consider the same potential
attack scenarios (model fine-tuning, parameter pruning, wa-
termark overwriting) as discussed in Section 2.1. The results
are summarized in Figure 12. The IMDB-LSTM benchmark
consists of three layers: an embedding layer with input di-
mension 5000 and output dimension 32, a LSTM layer with
100 neurons, and a Dense layer with 1 neuron. As can be
seen from Figure 12, DeepSigns respects fidelity, reliability,
integrity, and robustness criteria on the RNN benchmark.

DNN Watermarking

Output Layer | Hidden Layer | Resource Management API Data & Model Aware Reliability m
v v v v v v

DeepSigns N-bit with N>1
Uchida et al. (2017) X v X v v N-bit with N>1
Merrer&Perez (2017) v X X v % 1-bit
Adi, et al. (2018) v X X v X 1-bit

Figure 11: High-level comparison with prior art DNN watermarking frameworks.

Baseline Accuracy of False Positive BER (after
Metrics Accuracy Marked Model BER Rate attack)
IMDB-LSTM 85.85% 86.56% 0 0 0
Figure 12: Evaluation results of DeepSigns’s performance

on the IMDB sentiment classification task. A binary string of
length 4 is embedded in the second layer of the target model.

7. Conclusion

Deep learning is facilitating breakthroughs in various fields
such as medical, aerospace, business, and education. While
the commercialization of DNNs is so popular, efficient IP
protection for pre-trained, ready-to-deploy models has been a
standing challenge. It is timely to devise a systematic solution
for DNN IP protection. This paper takes the first step towards
this goal by providing an efficient end-to-end framework that
enables WM embedding in activations of a neural network
while minimally affecting the overall runtime and resource
utilization. Our accompanying API paves the way for model
designers to achieve a reliable technology transfer.

References
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph

Keshet. Turning your weakness into a strength: Watermarking deep

neural networks by backdooring. Usenix Security Symposium, 2018.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben

Arous, and Yann LeCun. The loss surfaces of multilayer networks. In

Artificial Intelligence and Statistics, 2015.

Ingemar J Cox, Joe Kilian, F Thomson Leighton, and Talal Shamoon.

Secure spread spectrum watermarking for multimedia. /EEE transac-

tions on image processing, 6(12), 1997.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

Li Deng and Dong Yu. Deep learning: methods and applications.

Foundations and Trends® in Signal Processing, 7(3-4), 2014.

Borko Furht and Darko Kirovski. Multimedia security handbook. CRC

press, 2004.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning,

volume 1. MIT press Cambridge, 2016.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael

Backes, and Patrick McDaniel. On the (statistical) detection of adver-

sarial examples. arXiv preprint arXiv:1702.06280, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both

weights and connections for efficient neural network. In Advances in

Neural Information Processing Systems (NIPS), 2015.

Frank Hartung and Martin Kutter. Multimedia watermarking tech-

niques. Proceedings of the IEEE, 87(7), 1999.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv

preprint arXiv:1502.03167, 2015.

Neil F Johnson, Zoran Duric, and Sushil Jajodia. Information Hid-

ing: Steganography and Watermarking-Attacks and Countermeasures:

Steganography and Watermarking: Attacks and Countermeasures, vol-

ume 1. Springer Science & Business Media, 2001.

[2]

[3]

[4]
[5]
[6]

[7

—

[8]

[9]

[10]

[11]

(12]

[13]

12

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553), 2015.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist
database of handwritten digits, 1998.

Ming Liang and Xiaolin Hu. Recurrent convolutional neural network
for object recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks. In International Confer-
ence on Machine Learning (ICML), 2016.

Chun-Shien Lu. Multimedia Security: Steganography and Digi-
tal Watermarking Techniques for Protection of Intellectual Property:
Steganography and Digital Watermarking Techniques for Protection of
Intellectual Property. 1gi Global, 2004.

Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier
stitching for remote neural network watermarking. arXiv preprint
arXiv:1711.01894, 20117.

Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh.
Digital watermarking for deep neural networks. International Journal
of Multimedia Information Retrieval, 7(1), 2018.

Ankit B Patel, Tan Nguyen, and Richard G Baraniuk. A probabilistic
theory of deep learning. arXiv preprint arXiv:1504.00641, 2015.
Gang Qu and Miodrag Potkonjak. Intellectual property protection
in VLSI designs: theory and practice. Springer Science & Business
Media, 2007.

Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas:
Machine learning as a service. In IEEE 14th International Conference
on Machine Learning and Applications (ICMLA), 2015.

Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar.
Delight: Adding energy dimension to deep neural networks. In Pro-
ceedings of the International Symposium on Low Power Electronics
and Design (ISLPED). ACM, 2016.

Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar.
Deep3: Leveraging three levels of parallelism for efficient deep learn-
ing. In Proceedings of ACM 54th Annual Design Automation Confer-
ence (DAC), 2017.

Bita Darvish Rouhani, Mohammad Samragh, Tara Javidi, and Farinaz
Koushanfar. Safe machine learning and defeat-ing adversarial attacks.
IEEE Security and Privacy (S&P) Magazine, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin Riedmiller. Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:1412.6806, 2014.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst,
Christopher B Kendall, Michael B Gotway, and Jianming Liang. Con-
volutional neural networks for medical image analysis: Full training or
fine tuning? IEEE transactions on medical imaging, 35(5), 2016.
Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh.
Embedding watermarks into deep neural networks. In Proceedings of
the ACM on International Conference on Multimedia Retrieval, 2017.
Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

	Introduction
	DeepSigns Overview
	DNN Watermarking Prerequisites

	DeepSigns Methodology
	Watermarking Intermediate Layers
	Watermark Embedding (Hidden Layers)
	Watermark Extraction (Hidden Layers)
	DeepSigns Memory Management and Wrapper

	Watermarking Output Layer
	Watermark Embedding (Output Layer)
	Watermark Extraction (Output Layer)
	DeepSigns Wrapper and Memory Management

	DeepSigns Watermark Extraction Overhead

	Evaluations
	Fidelity
	Reliability and Robustness
	Integrity
	Capacity
	Efficiency
	Security

	Comparison With Prior Works
	Intermediate Layer Watermarking
	Output Layer Watermarking

	Discussion
	Conclusion

