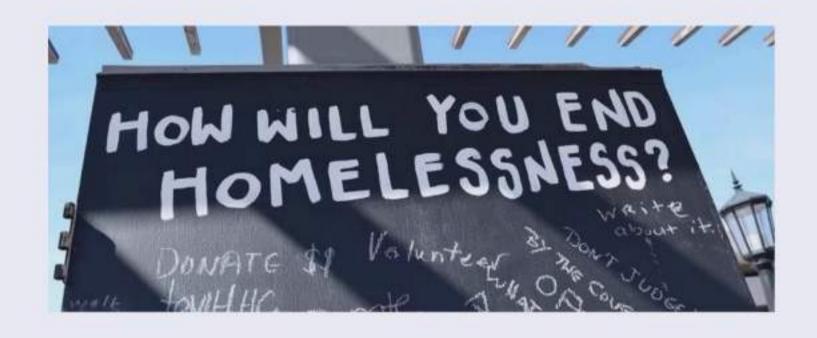
Algorithmic Social Intervention

Bryan Wilder

Center for Artificial Intelligence in Society
University of Southern California

Social and behavioral intervention



- Social problems: disease, poverty, homelessness...
- Intervention: services, outreach, education
- Limited resources

Motivating question

How can AI be used to improve socially impactful decisions?

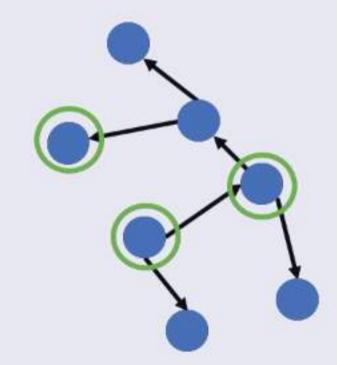
Technical focus

Improving interventions is often a combinatorial optimization problem

$$\max_{S \in X} f(S) \quad X \subseteq \{0,1\}^n$$

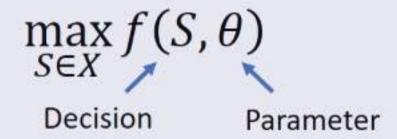
Resources are limited: intervention is subject to constraints

- Select from discrete sets of objects
 - Peer leaders from a social network
 - Assign housing to applicants
 - Patients for extra follow-up
 - ...
 - ••

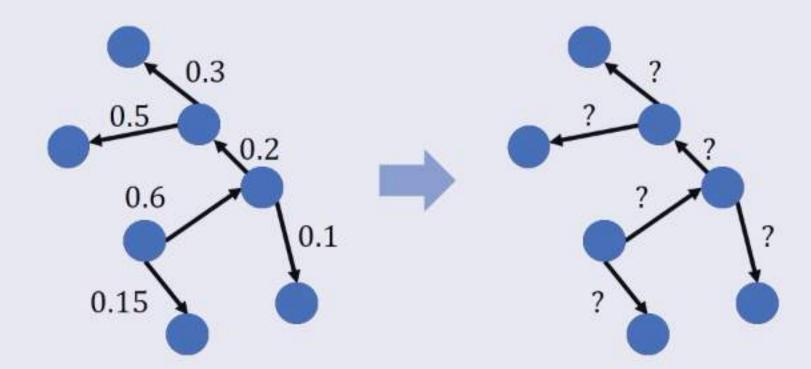


Challenge

We understand fully specified combinatorial optimization problems



• But in most social good domains, we don't know θ !



Research question

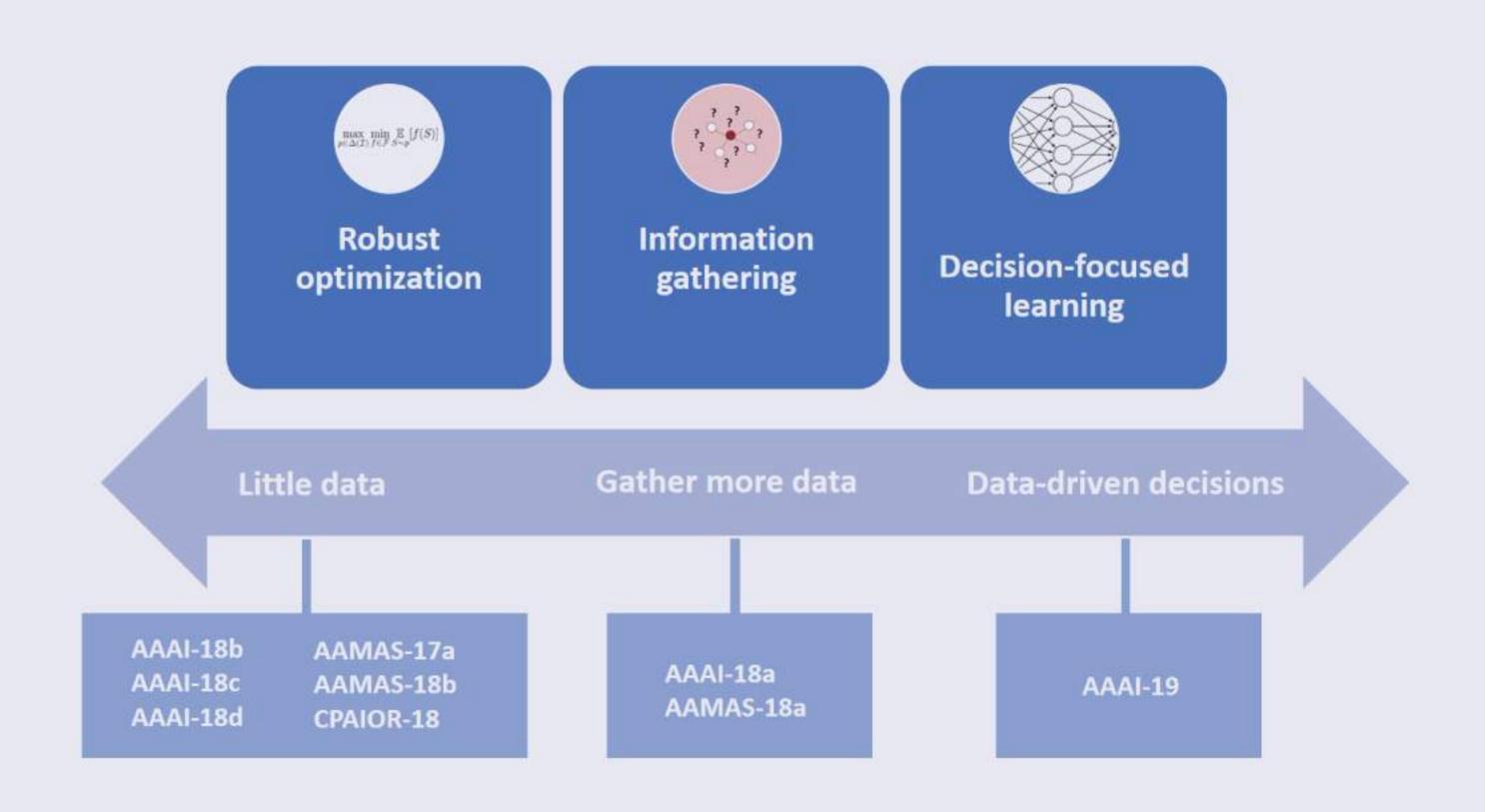
How do we solve combinatorial optimization problems which depend on unknown parameters?

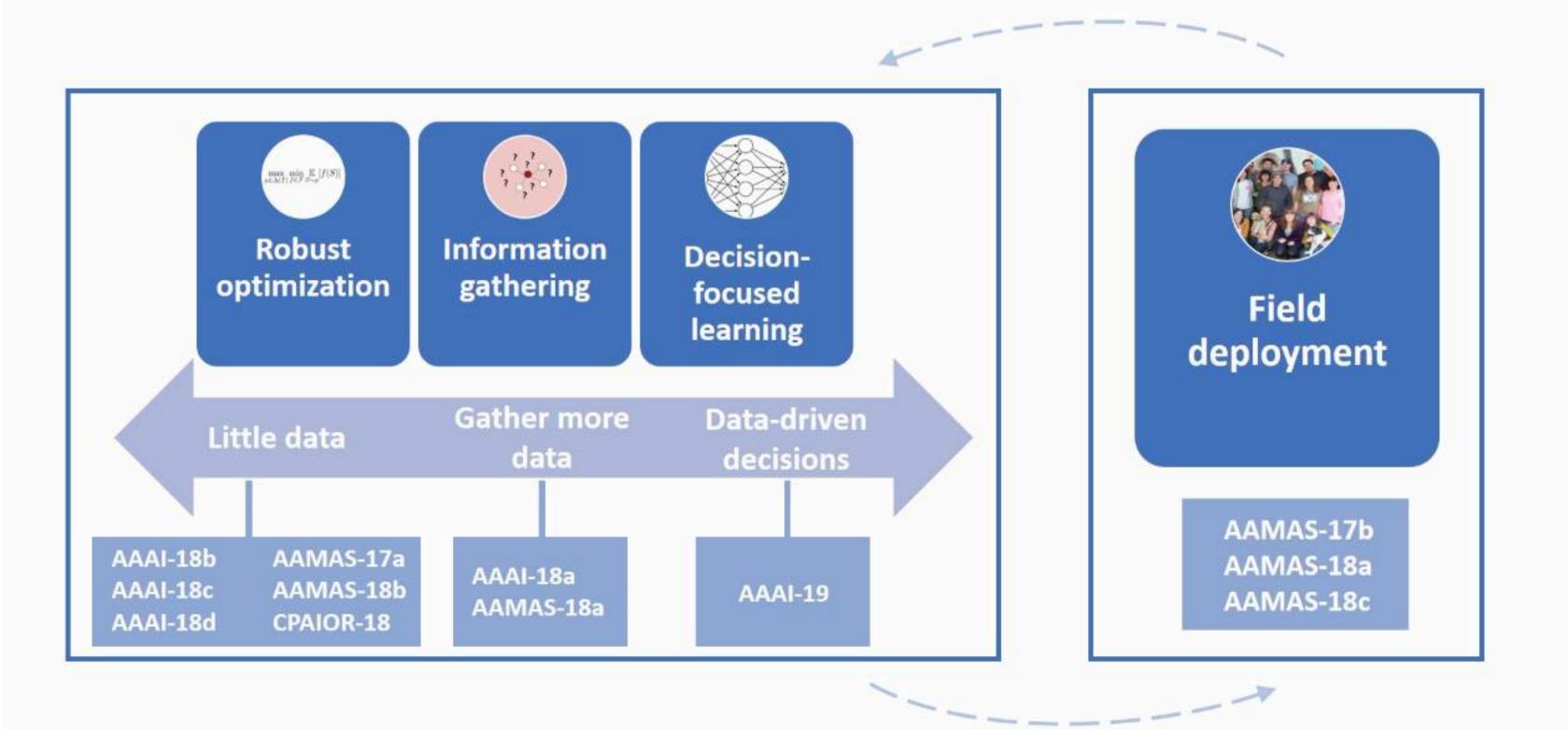
Research question

How do we solve combinatorial optimization problems which depend on unknown parameters?

Unique Challenges:

- Unified approach to data/learning and decision making
- Closing the loop from the lab to field evaluation





Field immersion

- Start from real problem
- Work closely with domain experts
- Translate algorithms into practice

Administering survey at homeless youth drop-in center, Hollywood CA

Childhood obesity prevention training for home visitors, Antelope Valley CA

Outline

- Deployed application: HIV prevention
 - Have applied similar ideas to obesity prevention, public housing allocation, tuberculosis prevention, etc.
- Robust optimization: handling model uncertainty
- Information gathering: sampling to learn the network
- Field results: deployment with two LA-area drop in centers
- Recent work: decision-focused learning

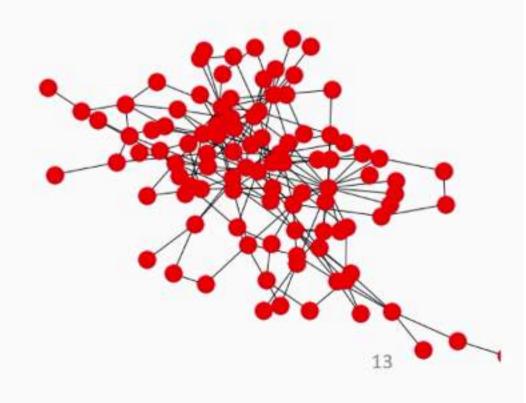
Example: HIV and homelessness

- 6,000 homeless youth
- 10x HIV prevalence vs general population

Mayor Eric Garcetti: "the moral and humanitarian crisis of our time"

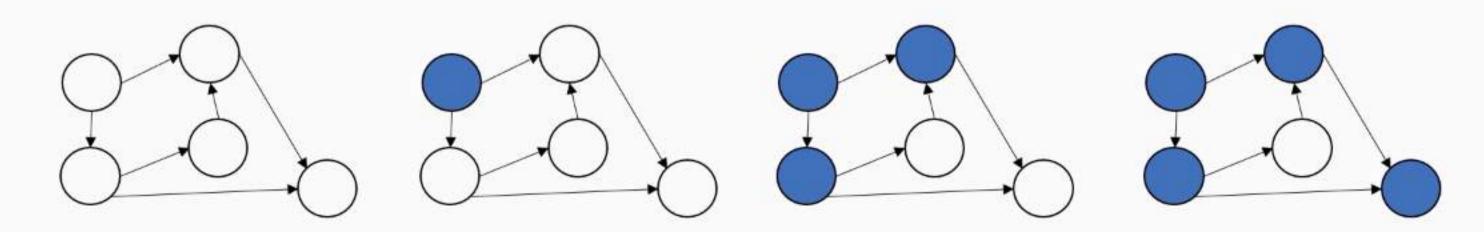
Example: HIV and homelessness

- Shelters conduct educational interventions
- Resource constraints: work with 4-6 youth at a time
- Peer leaders: spread message through social network



Example: HIV and homelessness

- Limited budget for total peer leaders trained
- Which nodes lead to greatest influence spread?
- Influence maximization problem



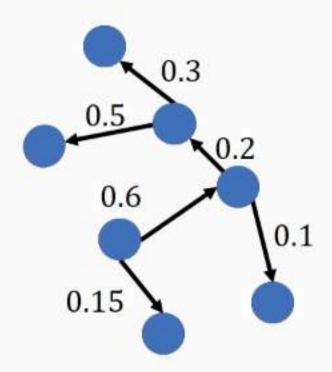
Computational problem

- Limited budget of seed nodes to recruit from a graph G = (V, E)
- For $S \subseteq V$, let $f(S, \theta)$ be the expected number of nodes reached when S is recruited as seeds ($\theta = \text{model parameters}$)
- Problem:

$$\max_{|S| \le k} f(S, \theta)$$

Independent cascade model

- Most common model in the literature
- Each edge (u, v) has a propagation probability $p_{u,v}$
- When u is influenced, v is influenced w.p. $p_{u,v}$
- $\theta = (p_{1,1}, p_{1,2}, ...)$



Background: submodularity

Diminishing returns:

$$f(A \cup \{v\}) - f(A) \le f(B \cup \{v\}) - f(B) \quad \forall v, \quad B \subseteq A$$

Theorem [Nemhauser, Wolsey, Fisher 1978]: The greedy algorithm obtains a $\left(1 - \frac{1}{e}\right)$ -approximation for maximizing a monotone submodular function subject to cardinality constraint.

Background: submodularity

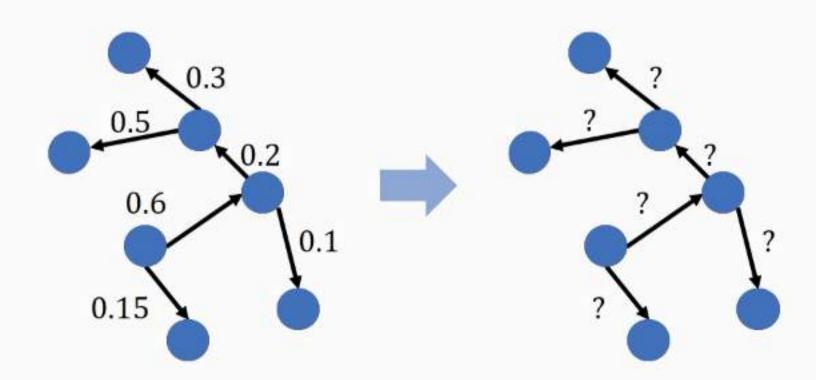
- Alternate approach: continuous relaxation F
- Fractional decision variable x
- x_i = probability include node i
- $F(x) = E_{S \sim x}[f(S)]$
- Maximizing F in continuous space + rounding also gives $\left(1-\frac{1}{e}\right)$ -approximation

Influence maximization in the field

Previous work applies these techniques to influence maximization...

[Kempe et al 2003, Chen et al 2011, Tang et al 2014...]

But assumes model is known exactly!



Influence maximization in the field

- What happens when we don't know how influence propagates?
 - Little-to-no data available about homeless youth populations
- Or what the structure of the social network is?
 - Gathering network data requires in-person surveys, week+ of effort

Influence maximization in the field

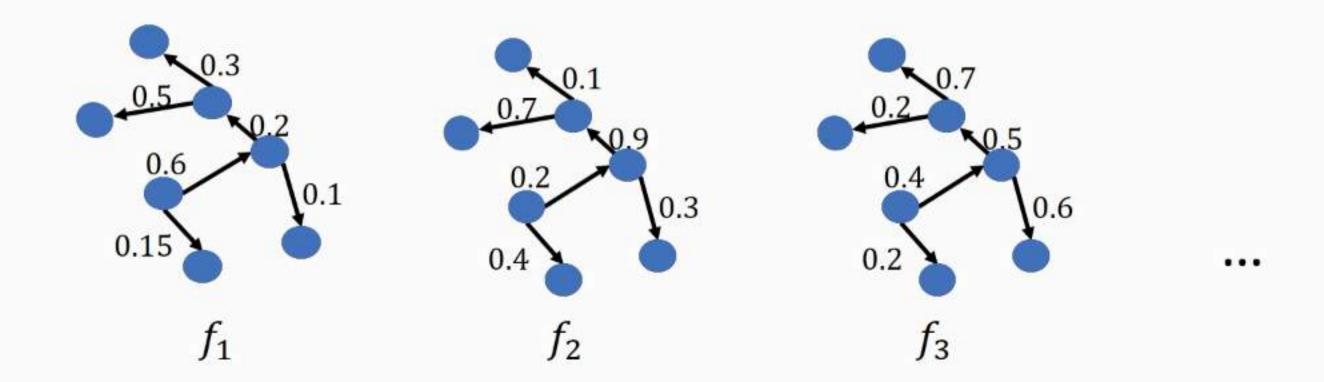
- Together with social work partners, developed and deployed algorithms addressing these issues
- More than doubled the intervention's impact compared to status quo

Outline

- Deployed application: HIV prevention
 - Have applied similar ideas to obesity prevention, public housing allocation, tuberculosis prevention, etc.
- - Robust optimization: handling model uncertainty
 - Information gathering: sampling to learn the network
 - Field results: deployment with two LA-area drop in centers
 - Recent work: decision-focused learning

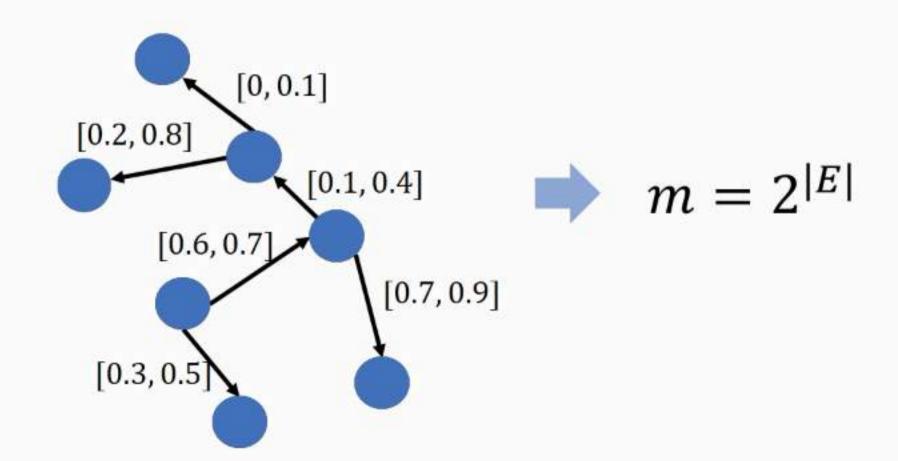
• Given candidate objective functions $f_1 \dots f_m$ induced by different models, solve

$$\max_{|S| \le k} \min_{i=1...m} f_i(S)$$



- Max-min is much more difficult than a single submodular function...
 - NP-hard to even approximate, must relax

- Max-min is much more difficult than a single submodular function...
 - NP-hard to even approximate, must relax
- And for influence maximization, m can be exponentially large!



- Max-min is much more difficult than a single submodular function...
 - NP-hard to even approximate, must relax
- And for influence maximization, m can be exponentially large!
- Existing approaches, building on greedy, are either heuristic or take exponential time [Krause et al 2008, He and Kempe 2017]

- Main contribution: first polynomial-time approximation algorithm for robust submodular optimization with runtime **independent** of m
- Just requires "adversary oracle" (find worst case function)
- Empirically: 10-100x speedup over previous best heuristics

Approach

Relax to zero-sum game:

$$\max_{p: \text{ distribution over sets } i=1...m} \operatorname{E}_{S\sim p}[f_i(S)]$$

Now, optimizing over continuous distribution

Approach

Relax to zero-sum game:

$$\max_{p: \text{ distribution over sets } i=1...m} \operatorname{E}_{S\sim p}[f_i(S)]$$

- Now, optimizing over continuous distribution
- Let $F_1 \dots F_m$ be the continuous relaxation of each objective
- Strategy: maximize $G(x) = \min_{i=1...m} F_i(x)$

Approach

Relax to zero-sum game:

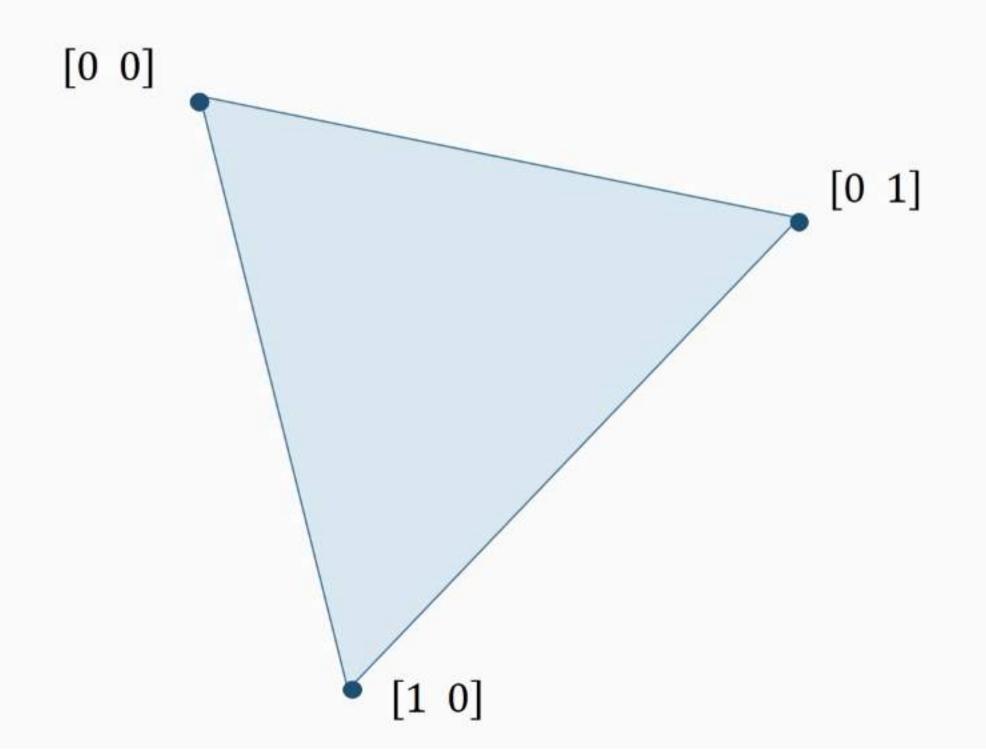
$$\max_{p: \text{ distribution over sets } i=1...m} \operatorname{E}_{S\sim p}[f_i(S)]$$

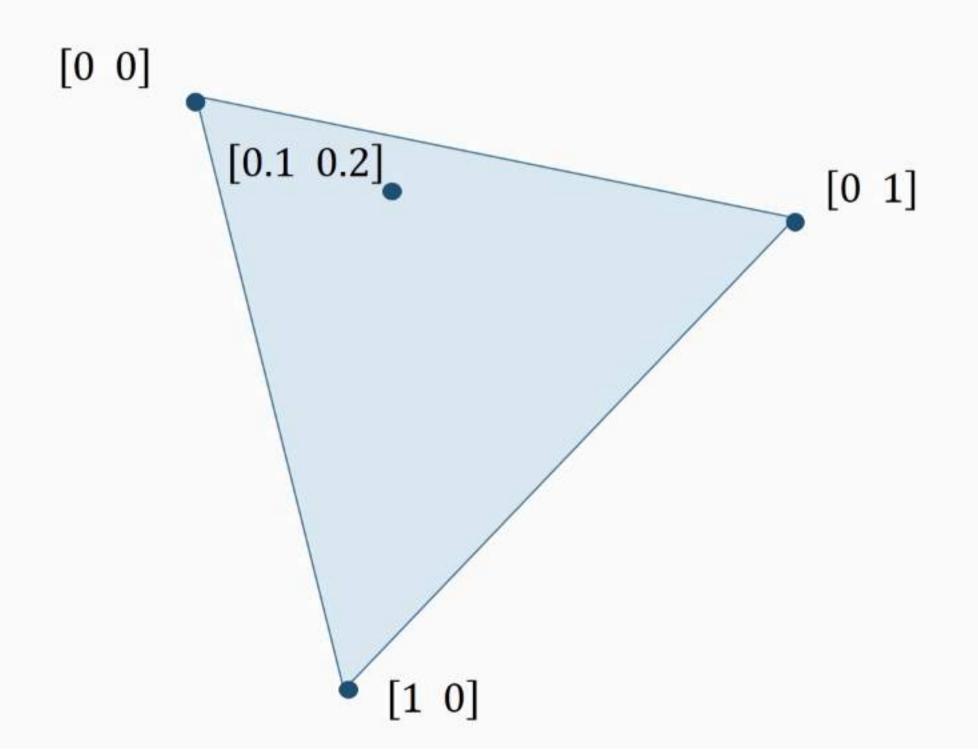
- Now, optimizing over continuous distribution
- Let $F_1 \dots F_m$ be the continuous relaxation of each objective
- Strategy: maximize $G(x) = \min_{i=1...m} F_i(x)$
- Key technical contribution: extending continuous approaches to maxmin allows exponential speedup for large m

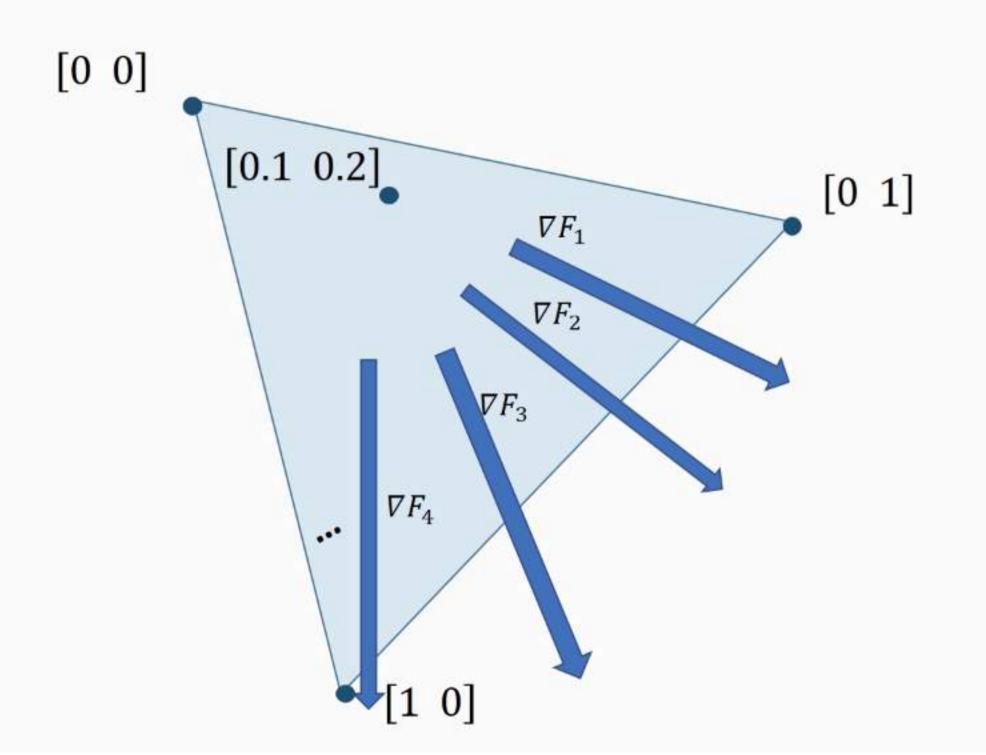
- Apply gradient-based method to the function $G(x) = \min F_i(x)$
 - Frank-Wolfe algorithm
- Get a (super)gradient of G just by finding the minimizing F_i
 - Never need to evaluate all gradients explicitly!
- Technical issues (see paper for details):
 - Controlled random perturbations ensure smoothness of gradients
 - Use correlation gap to design rounding procedure

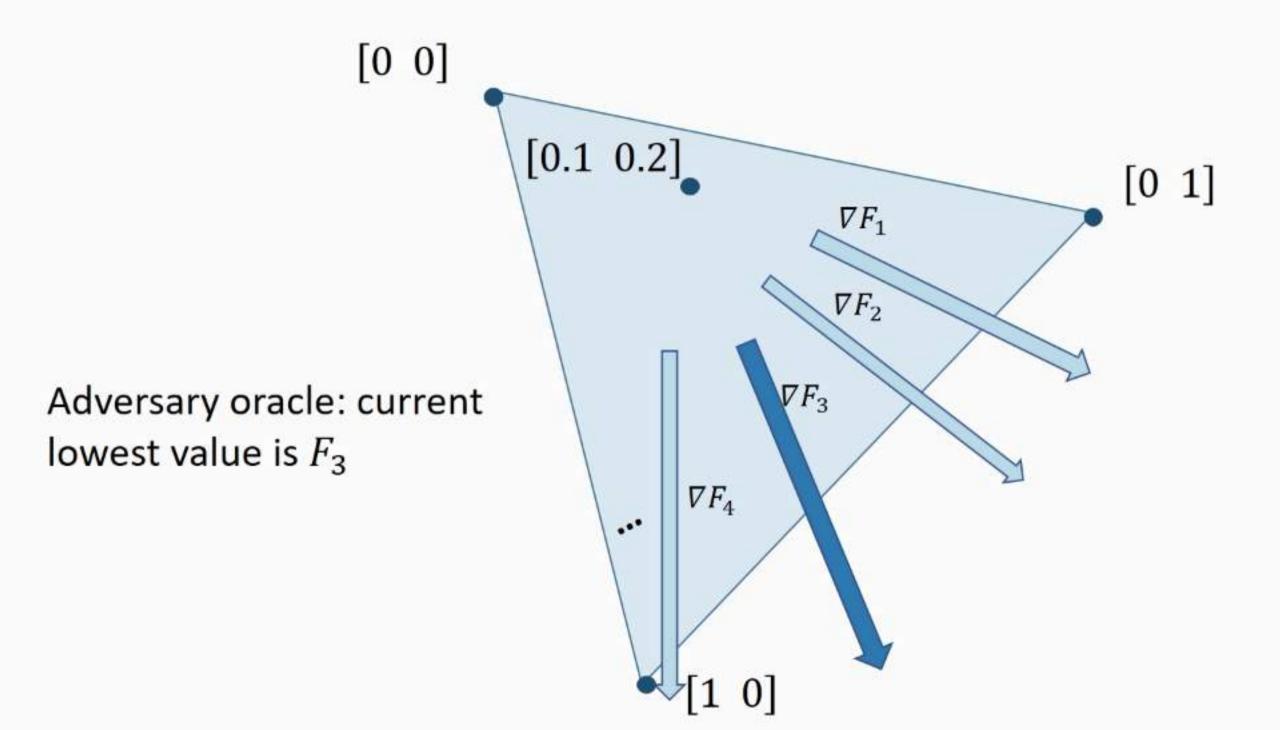
[0 0]

[0 1]

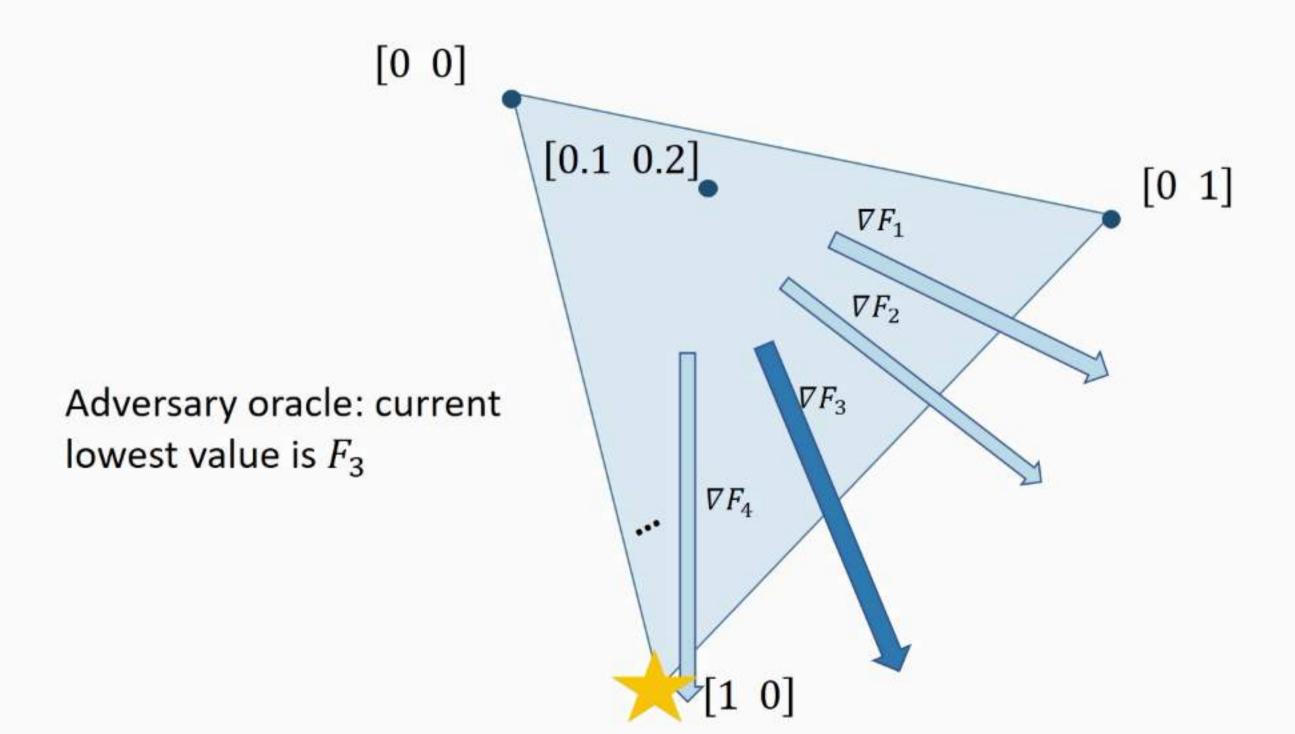








EQUATOR Algorithm



Approximation guarantee

Theorem: EQUATOR gives a $\left(1 - \frac{1}{e}\right)$ -approximation to the optimal solution of the robust problem.

Robust optimization conclusion

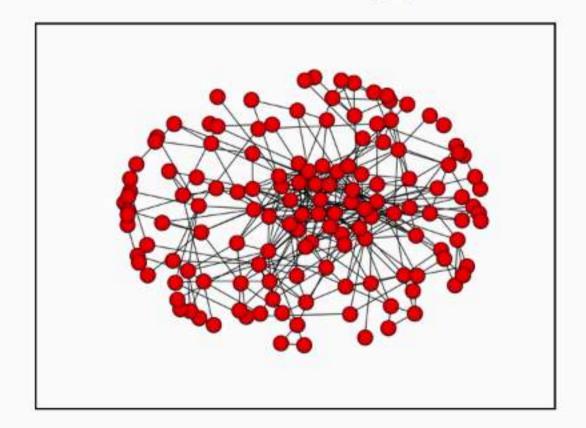
- Nuanced models of influence spread are computationally involved
- Scalable algorithms via continuous relaxation
- For a given graph, enables planning under modeling uncertainty
- Next: how do we get that graph?

Outline

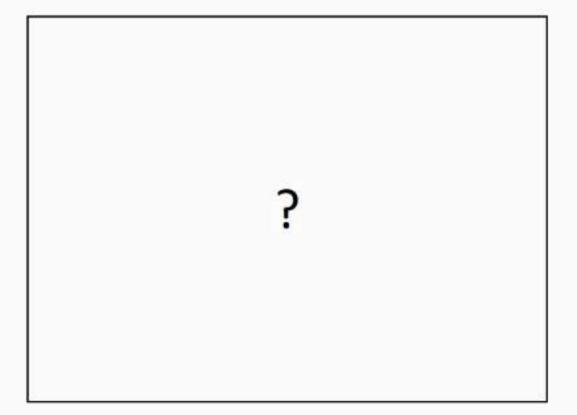
- Deployed application: HIV prevention
 - Have applied similar ideas to obesity prevention, public housing allocation, tuberculosis prevention, etc.
- Robust optimization: handling model uncertainty
- Information gathering: sampling to learn the network
 - Field results: deployment with two LA-area drop in centers
 - Recent work: decision-focused learning

Where does the network come from?

Assumed starting point



Real starting point



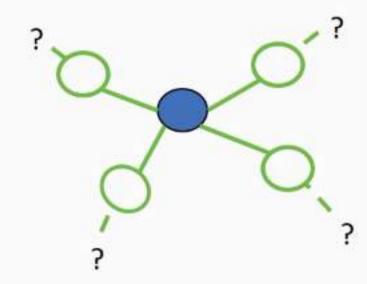
Where does the network come from?

- Data collection is costly and time consuming
 - Digital sources are often inaccurate or missing
 - Week+ for social workers to interview 100 or more people

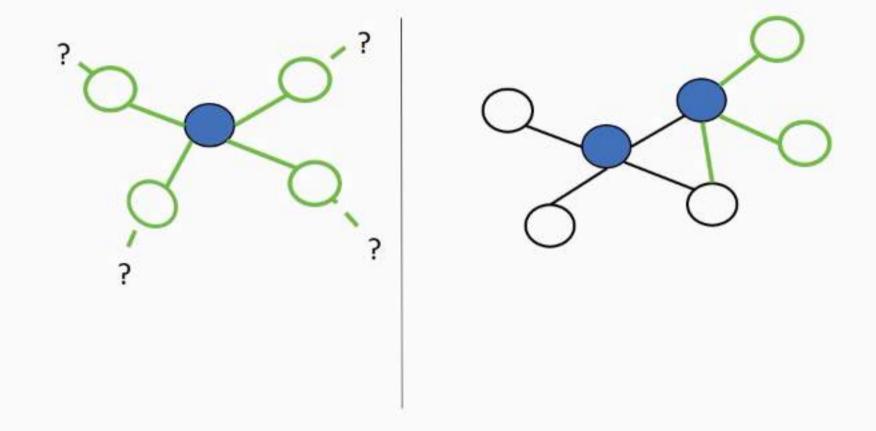
Where does the network come from?

- Data collection is costly and time consuming
 - Digital sources are often inaccurate or missing
 - Week+ for social workers to interview 100 or more people
- Do we really need to gather the entire network?

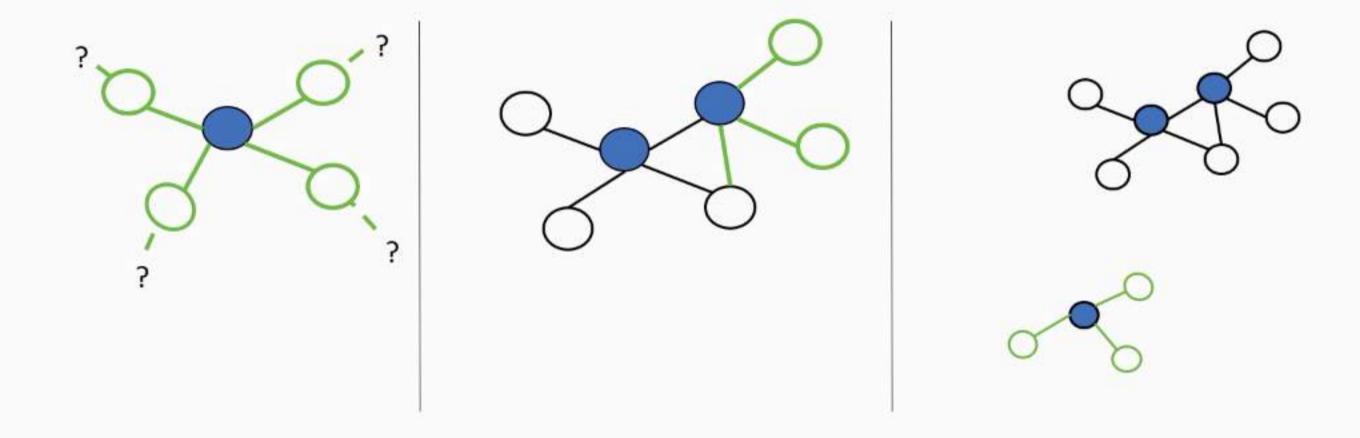
Network sampling



Network sampling



Network sampling



Objective

- Query cost: how many nodes were surveyed?
 - Should grow very slowly with n (# nodes)
- Influence spread: what is the expected number of nodes reached?
- Comparison to OPT, best influence spread by algorithm which sees entire network

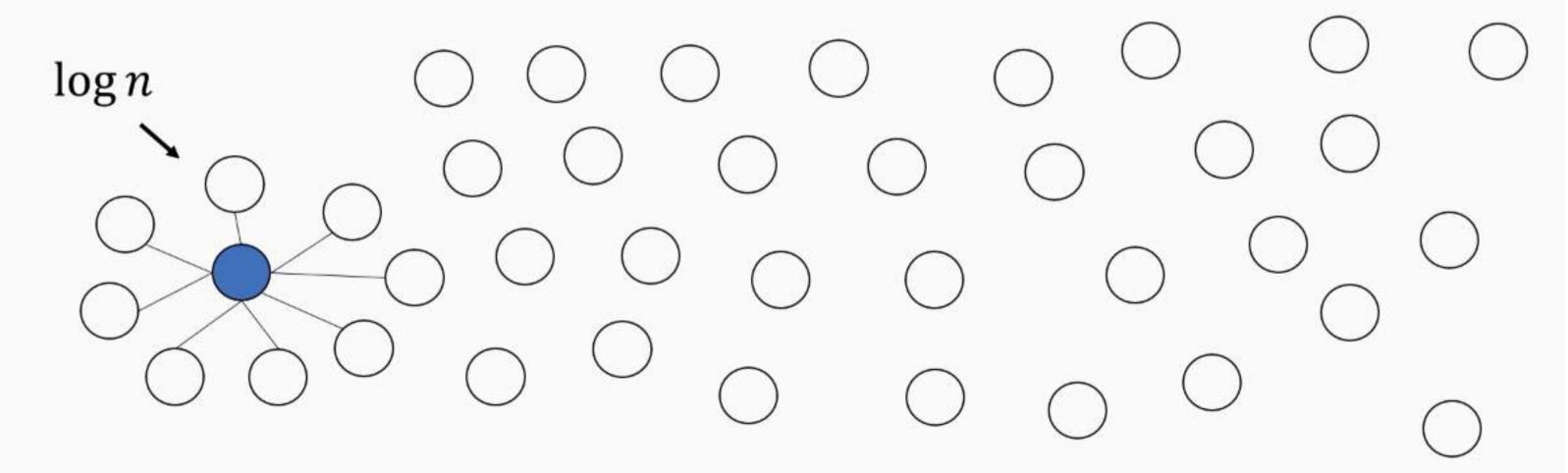
approx. ratio =
$$\frac{E[\text{algorithm's influence spread}]}{OPT}$$

Hardness

Theorem: There is a family of graphs on which any algorithm with strictly sublinear query cost has approximation ratio tending to as $n \to \infty$

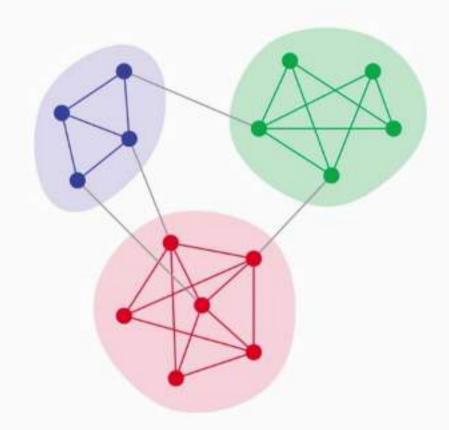
Hardness

Theorem: There is a family of graphs on which any algorithm with strictly sublinear query cost has approximation ratio tending to as $n \to \infty$

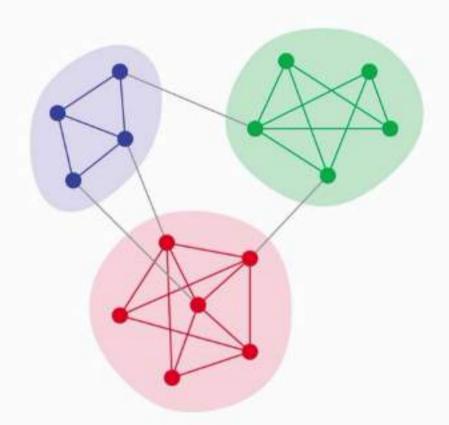


What now?

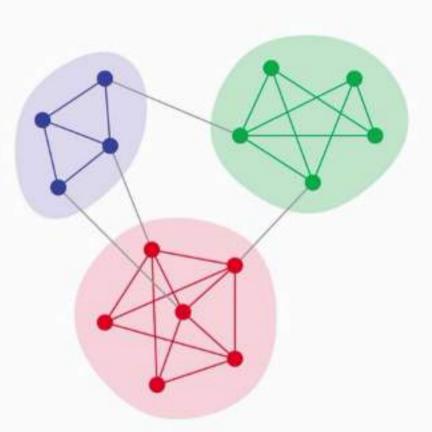
- Real networks have useful structure
- Here: two examples
 - Community structure
 - Friendship paradox



- Intuition: influence mostly spreads locally, within communities
- We'd like to put one seed in each of the largest k communities



- ARISEN algorithm repeatedly:
 - Randomly samples a node
 - Explores that node's neighborhood via a random walk
 - Estimates the size of that node's community
- And then seeds nodes that correspond to largest k communities



Theorem: For community-structured graphs, ARISEN obtains a constant-factor approximation to the optimal influence spread using polylog(n) queries.

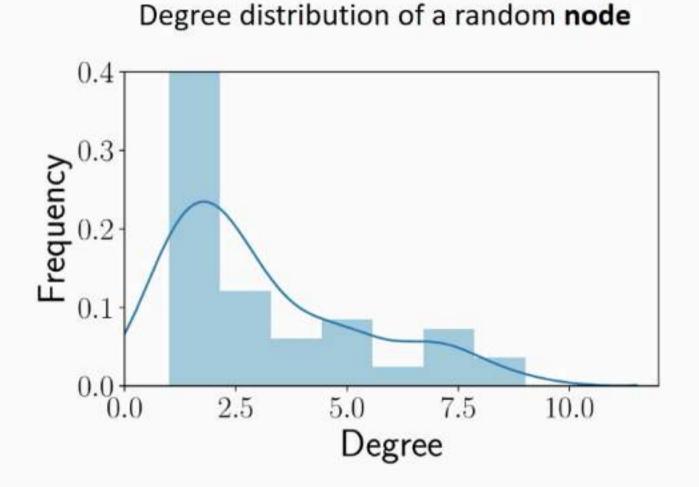
Theorem: For community-structured graphs, ARISEN obtains a constant-factor approximation to the optimal influence spread using polylog(n) queries.

Asymptotically: exponential improvement over exhaustive surveys!

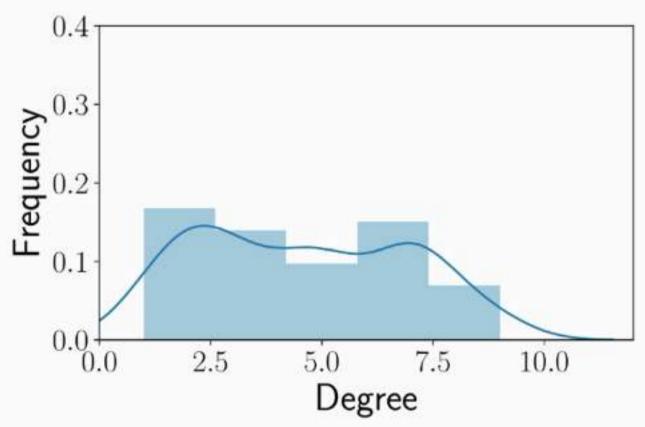
- Downside: difficult to implement in some settings
- Homeless youth: can't find a series of 5-10 youth to simulate a random walk

Friendship paradox

On average, your friends are more popular than you



Degree distribution of a random neighbor

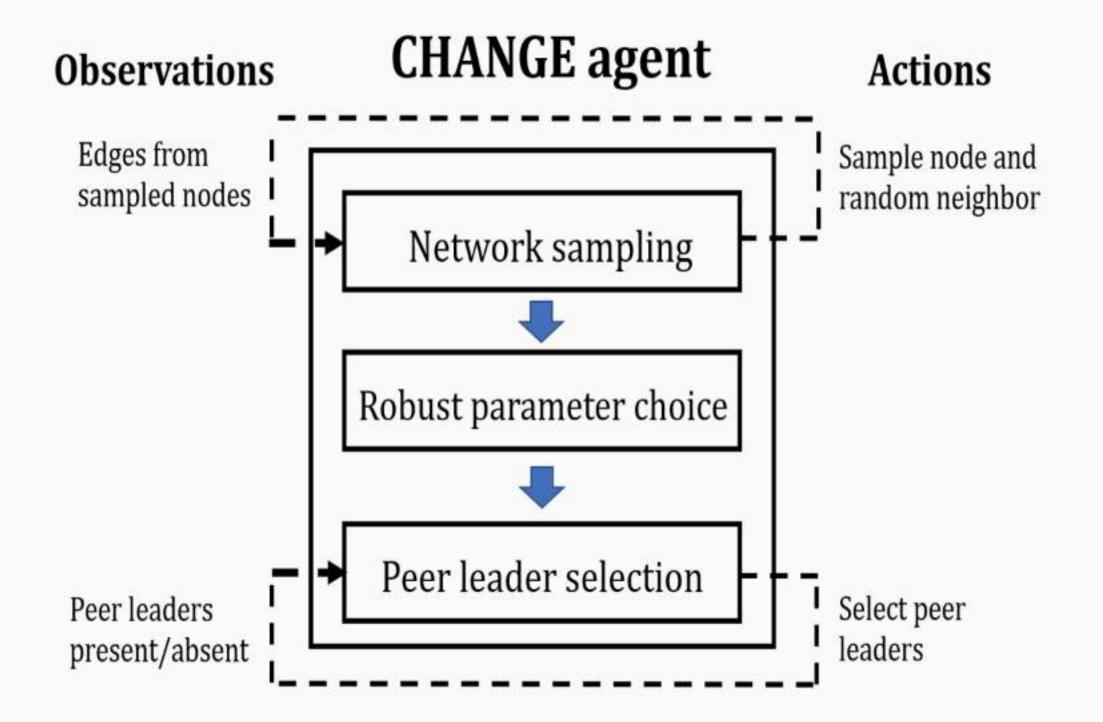


Friendship paradox

- Repeatedly
 - Survey a random node
 - Survey one of its neighbors
- First step encourages diversity, second biases towards highdegree/central nodes

Putting it all together

- Combine these ideas into a single system which works in the field
- Needs to minimize need for data, expertise, resources
- Needs to handle domain-specific challenges
 - Homeless youth: peer leaders often don't attend intervention



Outline

- Deployed application: HIV prevention
 - Have applied similar ideas to obesity prevention, public housing allocation, tuberculosis prevention, etc.
- Robust optimization: handling model uncertainty
- Information gathering: sampling to learn the network
- Field results: deployment with two LA-area drop in centers
 - Recent work: decision-focused learning

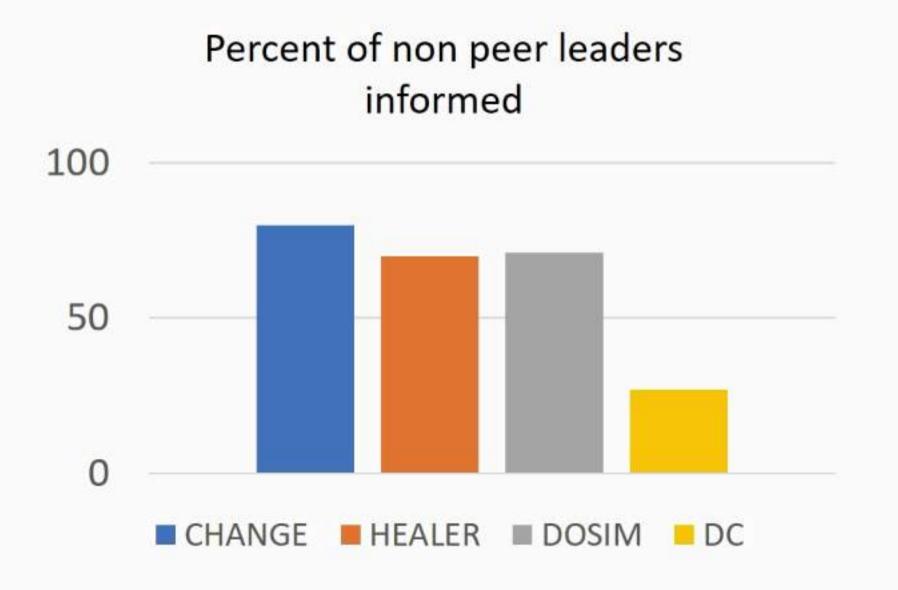
Field study

Deployment in collaboration with social work and community partners

Comparison

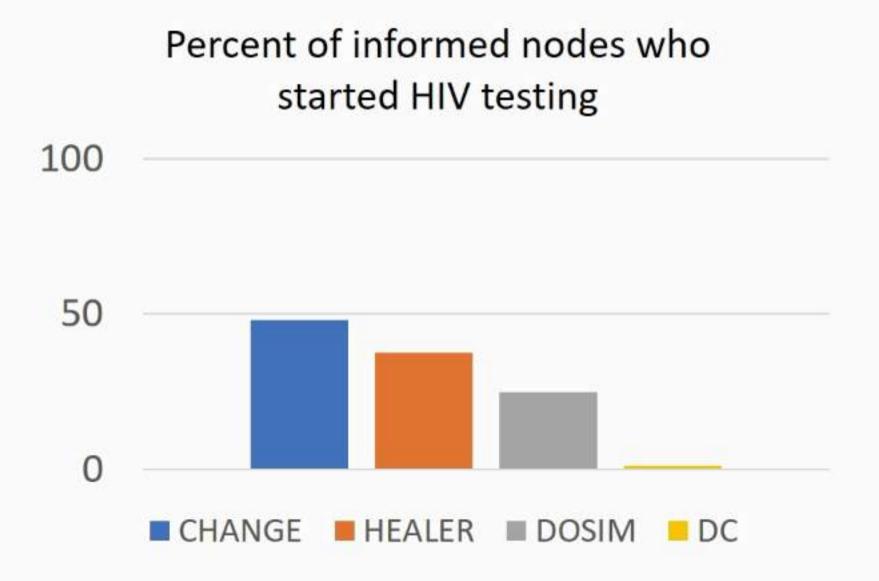
- Conducted (so far) 4 studies, each with different algorithm
- Status quo: degree centrality (DC)
- Al-based algorithms: CHANGE, HEALER, DOSIM
 - CHANGE only surveys ~20% of nodes
 - HEALER and DOSIM survey 100%

Results: information spread



- AI-based algorithms dramatically outperform status quo (27% → 70+%)
- •CHANGE performs comparable to HEALER/DOSIM, but surveyed only 18% of youth!

Results: behavior change



- •Information spread translates into real behavior change!
- CHANGE: comparable/slightly higher conversion rate

Outline

- Deployed application: HIV prevention
 - Have applied similar ideas to obesity prevention, public housing allocation, tuberculosis prevention, etc.
- Robust optimization: handling model uncertainty
- Information gathering: sampling to learn the network
- Field results: deployment with two LA-area drop in centers
- Recent work: decision-focused learning

Results: behavior change



- •Information spread translates into real behavior change!
- CHANGE: comparable/slightly higher conversion rate

Outline

- Deployed application: HIV prevention
 - Have applied similar ideas to obesity prevention, public housing allocation, tuberculosis prevention, etc.
- Robust optimization: handling model uncertainty
- Information gathering: sampling to learn the network
- Field results: deployment with two LA-area drop in centers
- Recent work: decision-focused learning

Decision-focused learning

- Previously: coping with limited data
- Now, switch to settings where data is available
- How can machine learning support decision making?
- Example: could we use administrative data to infer the social network?
 - Program co-attendance, check-in times, etc.

Learning + optimization problem

Observe data

Predictive

model

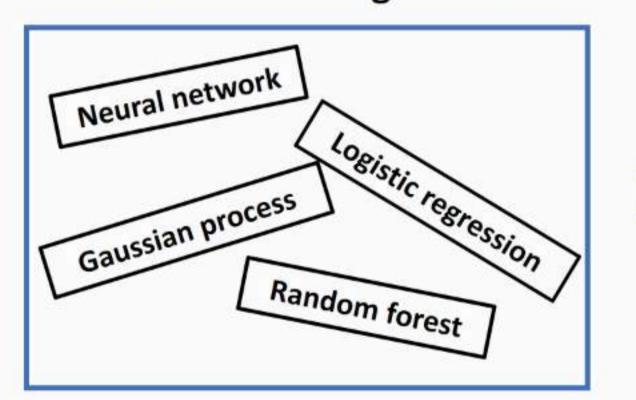
Infer parameter θ

Optimization algorithm

 $\max_{|S| \le k} f(S, \theta)$

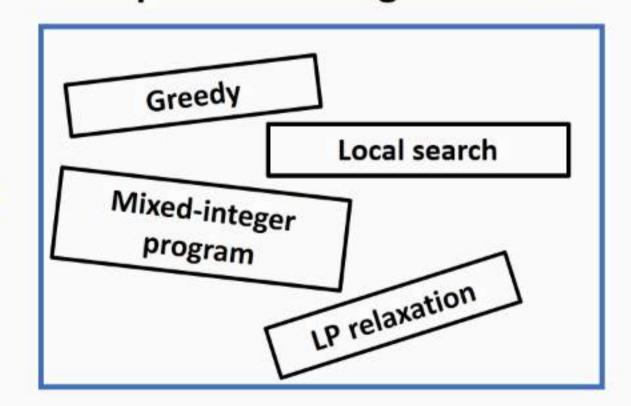
Typical two-stage approach

Machine learning models



Goal: maximize accuracy

Optimization algorithms

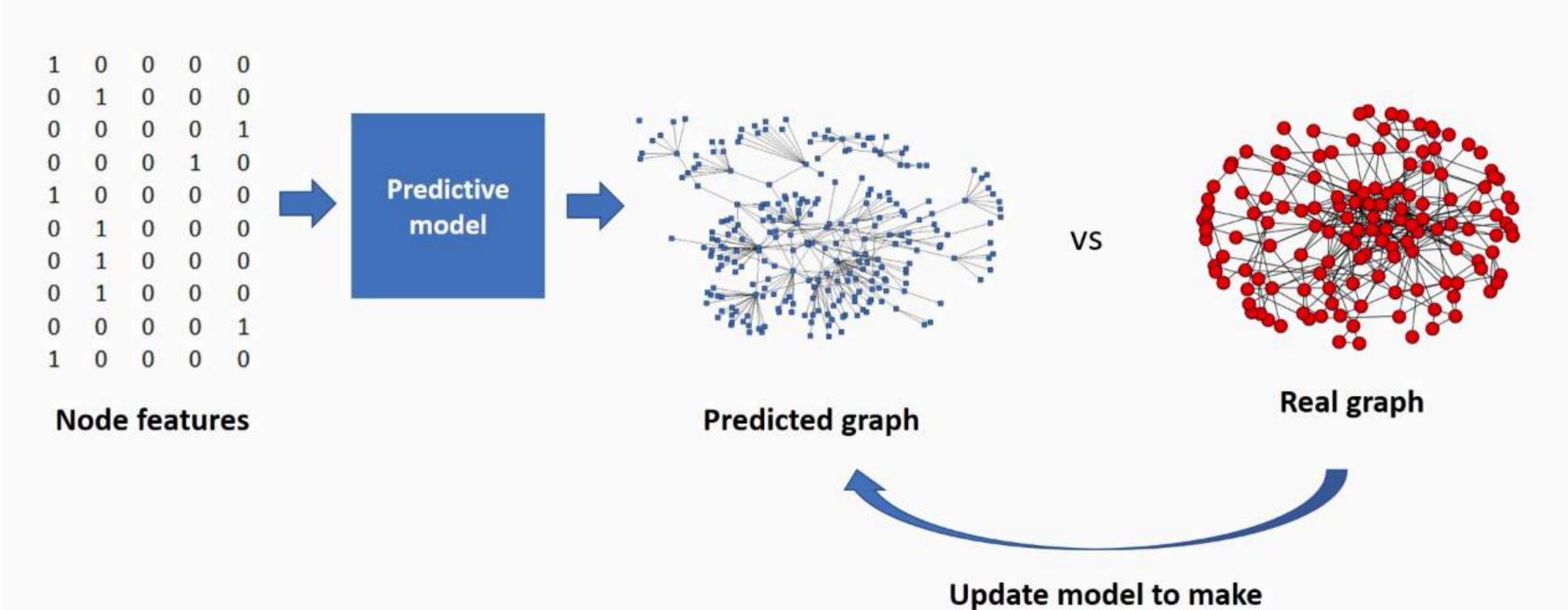


Goal: maximize decision quality

Challenge

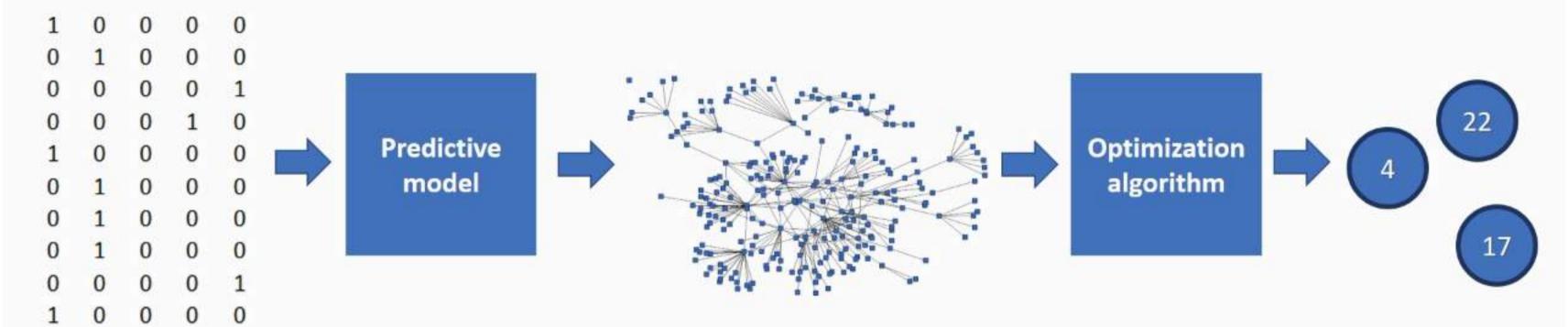
- Maximizing accuracy ≠ maximizing decision quality
- "All models are wrong, some are useful"
- Two-stage training doesn't align with end goal

Two-stage training



predicted graph closer to real

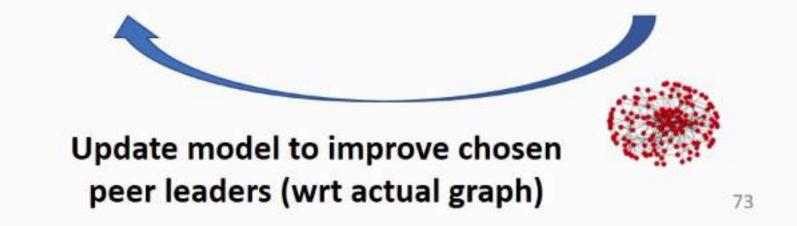
Decision-focused learning



Node features

Predicted graph

Peer leaders

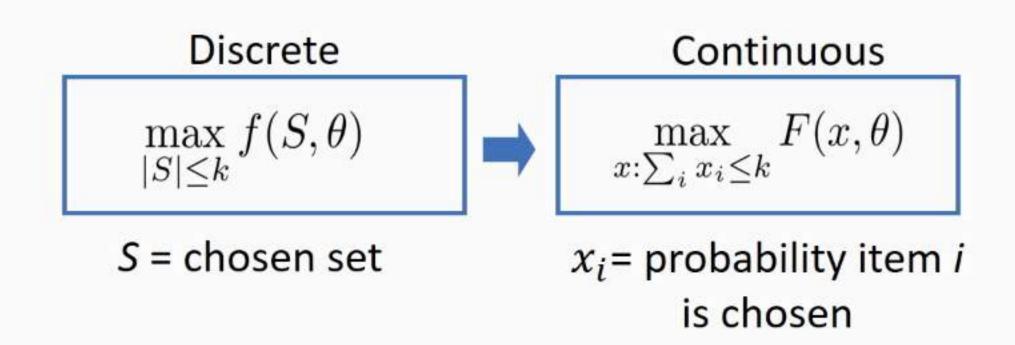


Approach

- Idea: differentiate optimal solution with respect to θ, train model via gradient descent
 - Similar approach recently used for convex optimization [Donti et al '17]
- Challenge: the optimization problem is discrete!

Approach

- Idea: differentiate optimal solution with respect to θ, train model via gradient descent
 - Similar approach recently used for convex optimization [Donti et al '17]
- Challenge: the optimization problem is discrete!
- Solution: relax to continuous problem, differentiate, round



Technical challenge

- How to compute $\frac{dx^*}{d\theta}$?
 - Differentiate the output of the optimization algorithm wrt predictions

Technical challenge

- How to compute $\frac{dx^*}{d\theta}$?
 - Differentiate the output of the optimization algorithm wrt predictions
- Idea: (locally) optimal solution must satisfy KKT conditions
- Differentiate those equations at optimum

Technical challenge

- How to compute $\frac{dx^*}{d\theta}$?
 - Differentiate the output of the optimization algorithm wrt predictions
- Idea: (locally) optimal solution must satisfy KKT conditions
- Differentiate those equations at optimum
- Provide appropriate relaxations/prove this works for:
 - Linear programming (bipartite matching, max flow, shortest path...)
 - Submodular maximization (influence maximization, facility location...)

Experiments

- On several domains, using real and synthetic data
- Compare decision-focused learning vs two-stage method
 - Solution quality and accuracy

Experiments

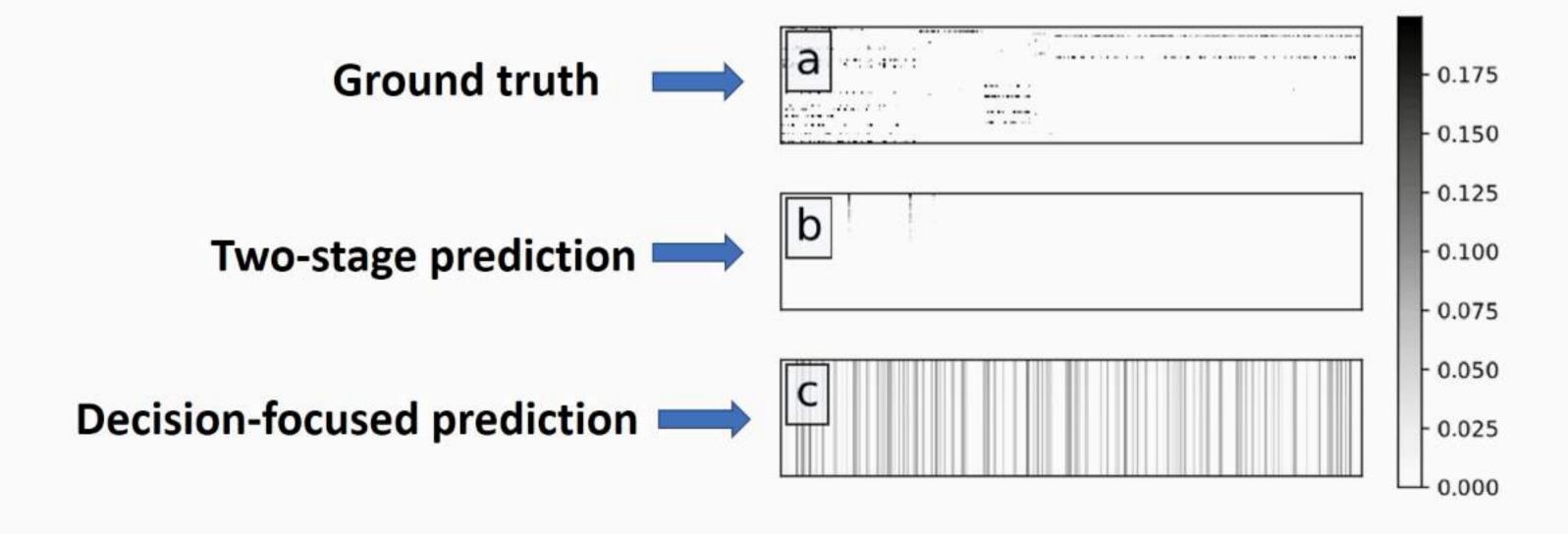
- On several domains, using real and synthetic data
- Compare decision-focused learning vs two-stage method
 - Solution quality and accuracy
- Decision-focused learning improves optimization by 15-70%, but makes much less "accurate" predictions

k =	Budget allocation			Matching	Diverse recommendation		
	5	10	20	_	5	10	20
NN1-Decision	49.18 ± 0.24	72.62 ± 0.33	98.95 ± 0.46	0.20 ± 0.25	15.81 ± 0.50	29.81 ± 0.85	52.43 ± 1.23
NN2-Decision	44.35 ± 0.56	67.64 ± 0.62	93.59 ± 0.77	$\textbf{6.15} \pm \textbf{0.38}$	13.34 ± 0.77	26.32 ± 1.38	47.79 ± 1.96
NN1-2Stage	32.13 ± 2.47	45.63 ± 3.76	61.88 ± 4.10	0.15 ± 0.20	4.08 ± 0.16	8.42 ± 0.29	19.16 ± 0.57
NN2-2Stage	9.69 ± 0.05	18.93 ± 0.10	36.16 ± 0.18	3.49 ± 0.32	11.63 ± 0.43	22.79 ± 0.66	42.37 ± 1.02
RF-2Stage	48.81 ± 0.32	72.40 ± 0.43	98.82 ± 0.63	3.66 ± 0.26	7.71 ± 0.18	15.73 ± 0.34	31.25 ± 0.64
Random	9.69 ± 0.04	18.92 ± 0.09	36.13 ± 0.14	0.13 ± 0.19	8.19 ± 0.19	16.15 ± 0.35	31.68 ± 0.71

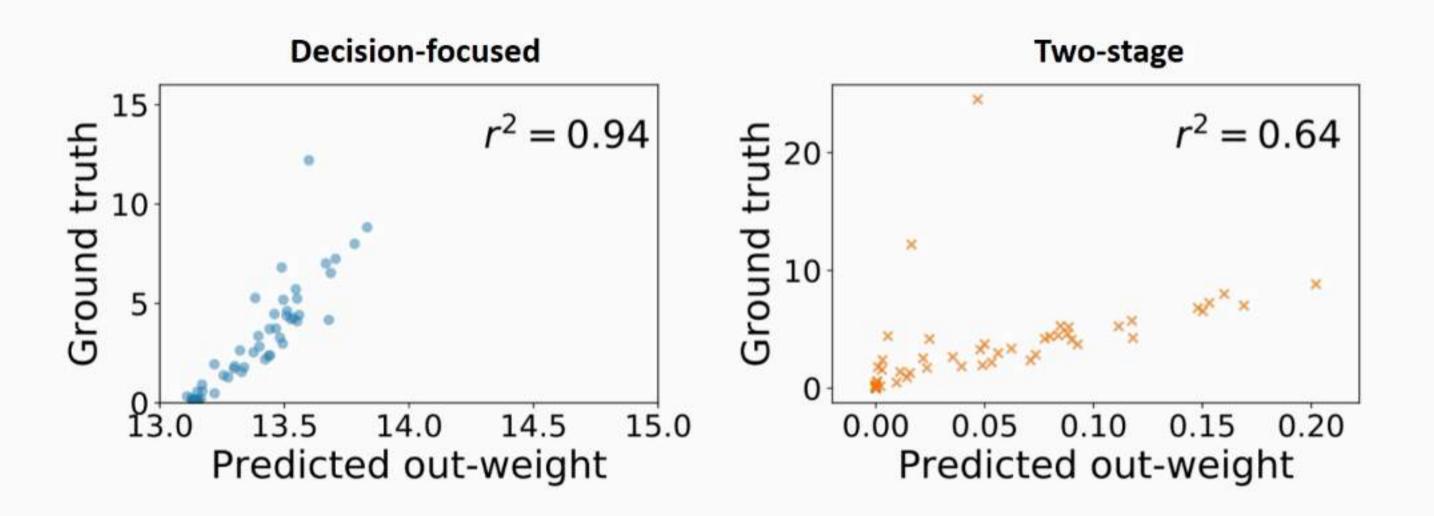
Example

- Simulated network intervention task
- Variable to predict: probability each of a set of outreach channels will reach each network node

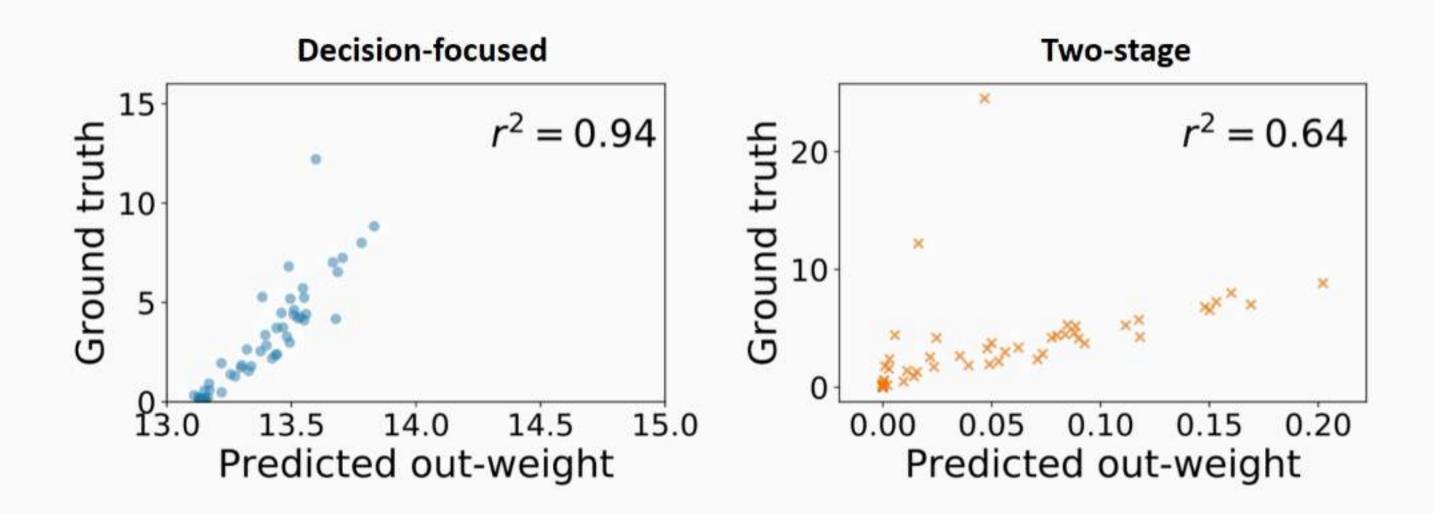
Example



Explanation



Explanation



Our method learns to focus on qualities needed for making good decisions!

Conclusion

- Critical social issues present optimization and learning problems
- Interventions for disease prevention, homelessness, and more can be transformed via computational techniques

Conclusion

- Deployable algorithms present new research challenges
- Must handle data and decisions in unified way
- With all the pieces put together, Al offers powerful means to improve our fellow humans' lives

