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Social and behavioral intervention
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Social problems: disease, poverty,
homelessness...

Intervention: services, outreach, education
Limited resources



Motivating question

How can Al be used to improve socially impactful decisions?



Technical focus

* Improving interventions is often a combinatorial optimization problem

rglea)?(f(S) Xei{01*

* Select from discrete sets of objects
* Peer leaders from a social network
* Assign housing to applicants
* Patients for extra follow-up

* Resources are limited: intervention is subject to constraints



Challenge

* We understand fully specified combinatorial optimization problems

max (S, 6)
SeX P %
Decision Parameter

* But in most social good domains, we don’t know &




Research question

How do we solve combinatorial optimization problems which
depend on unknown parameters?



Research question

How do we solve combinatorial optimization problems which
depend on unknown parameters?

Unique Challenges:
* Unified approach to data/learning and decision making
* Closing the loop from the lab to field evaluation
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Field immersion

* Start from real problem

* Work Closely with domain experts Administering survey at
homeless youth drop-in
center, Hollywood CA

* Translate algorithms into practice

Childhood obesity prevention
training for home visitors,
Antelope Valley CA

Tuberculosis treatment and prevention, Sonapur India 10



Outline

* Deployed application: HIV prevention

* Have applied similar ideas to obesity prevention, public housing allocation,
tuberculosis prevention, etc.

* Robust optimization: handling model uncertainty

* Information gathering: sampling to learn the network

* Field results: deployment with two LA-area drop in centers
* Recent work: decision-focused learning



Example: HIV and homelessness

* 6,000 homeless youth
* 10x HIV prevalence vs general population

Mayor Eric Garcetti: “the moral and
humanitarian crisis of our time”




Example: HIV and
homelessness

* Shelters conduct educational
Interventions

* Resource constraints: work with 4-6
youth at a time

* Peer leaders: spread message through
social network




Example: HIV and homelessness

* Limited budget for total peer leaders trained
* Which nodes lead to greatest influence spread? f
* Influence maximization problem




Computational problem

* Limited budget of seed nodes to recruit from a graph ¢ = (V/, E)

*ForS C V,let f(S, 0) be the expected number of nodes reached
when S is recruited as seeds (0 = model parameters)

* Problem:

gllgggf (S,6)



Independent cascade model

* Most common model in the literature
* Each edge (u, v) has a propagation probability p,, ,,
* When u is influenced, v is influenced w.p. py, ,

* 0 =@P11,P12 )




Background: submodularity

Diminishing returns:

fAvwy) - fA) < f(Buwp)—-f(B) Vv, BCSA

Theorem [Nemhauser, Wolsey, Fisher 1978]: The greedy algorithm

1

obtains a (1 — -;)-approximation for maximizing a monotone

submodular function subject to cardinality constraint.



Background: submodularity

* Alternate approach: continuous relaxation F
* Fractional decision variable x
* x; = probability include node i

s F{x) = Eg 4| f(5)]

* Maximizing F in continuous space + rounding also gives (1 — ;)-
approximation



Influence maximization in the field

Previous work applies these techniques to influence maximization...
[Kempe et al 2003, Chen et al 2011, Tang et al 2014...]

But assumes model is known exactly!




Influence maximization in the field

* What happens when we don’t know how influence propagates?
* Little-to-no data available about homeless youth populations

* Or what the structure of the social network is?
* Gathering network data requires in-person surveys, week+ of effort



Influence maximization in the field

* Together with social work partners, developed and deployed
algorithms addressing these issues

* More than doubled the intervention’s impact compared to status quo
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Outline

=) - Robust optimization: handling model uncertainty
* Information gathering: sampling to learn the network
* Field results: deployment with two LA-area drop in centers
* Recent work: decision-focused learning



Robust optimization

* Given candidate objective functions f; ... f,,, induced by different
models, solve

glliuélmm fi (S)




Robust optimization

* Max-min is much more difficult than a single submodular function...
* NP-hard to even approximate, must relax



Robust optimization

* Max-min is much more difficult than a single submodular function...
* NP-hard to even approximate, must relax

* And for influence maximization, m can be exponentially large!
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Robust optimization

* Max-min is much more difficult than a single submodular function...
* NP-hard to even approximate, must relax

* And for influence maximization, m can be exponentially large!

* Existing approaches, building on greedy, are either heuristic or take
exponential time [krause et al 2008, He and Kempe 2017]



Robust optimization

* Main contribution: first polynomial-time approximation algorithm for
robust submodular optimization with runtime independent of m

* Just requires “adversary oracle” (find worst case function)
* Empirically: 10-100x speedup over previous best heuristics



Approach

* Relax to zero-sum game:

max mm Es»|fi(S)]

p: distribution over sets i=

* Now, optimizing over continuous distribution



Approach

* Relax to zero-sum game:

max mln ESNP 1fi(S)]

p: distribution over sets i=

* Now, optimizing over continuous distribution
* Let F; ...k, be the continuous relaxation of each objective

* Strategy: maximize G(x) = i g}inm F: (x)



Approach

* Relax to zero-sum game:

max mm E5~p 1fi(S)]

p: distribution over sets i=

* Now, optimizing over continuous distribution
* Let F; ...k, be the continuous relaxation of each objective

* Strategy: maximize G(x) = ,n}inm F: (x)
l=1...

* Key technical contribution: extending continuous approaches to max-
min allows exponential speedup for large m



EQUATOR Algorithm

* Apply gradient-based method to the function G(x) = min F;(x)
* Frank-Wolfe algorithm

* Get a (super)gradient of G just by finding the minimizing F;
* Never need to evaluate all gradients explicitly!
* Technical issues (see paper for details):

* Controlled random perturbations ensure smoothness of gradients
* Use correlation gap to design rounding procedure



EQUATOR Algorithm
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EQUATOR Algorithm
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EQUATOR Algorithm
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EQUATOR Algorithm
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EQUATOR Algorithm
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Adversary oracle: current
lowest value is F5
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Approximation guarantee

Theorem: EQUATOR gives a (1 = é)-approximation to the optimal

solution of the robust problem.

Bryan Wilder. Equilibrium computation and robust optimization in zero sum games with
submodular structure. AAAl 2018.



Robust optimization conclusion

* Nuanced models of influence spread are computationally involved
* Scalable algorithms via continuous relaxation

* For a given graph, enables planning under modeling uncertainty

* Next: how do we get that graph?

40



Outline

=) - Information gathering: sampling to learn the network
* Field results: deployment with two LA-area drop in centers
* Recent work: decision-focused learning



Where does the network come from?

Assumed starting point Real starting point

42



Where does the network come from?

* Data collection is costly and time consuming
* Digital sources are often inaccurate or missing
* Week+ for social workers to interview 100 or more people
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Where does the network come from?

* Data collection is costly and time consuming
* Digital sources are often inaccurate or missing
* Week+ for social workers to interview 100 or more people

* Do we really need to gather the entire network?



Network sampling
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Objective

* Query cost: how many nodes were surveyed?
* Should grow very slowly with n (# nodes)

* Influence spread: what is the expected number of nodes reached?

* Comparison to OPT, best influence spread by algorithm which sees entire

network
E[algorithm’s influence spread]

OPT

approx.ratio =



Hardness

Theorem: There is a family of graphs on which any algorithm with strictly sublinear
query cost has approximation ratio tending to 0 as n — oo



Hardness

Theorem: There is a family of graphs on which any algorithm with strictly sublinear
query cost has approximation ratio tending to 0 asn — o
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What now?

* Real networks have useful structure

* Here: two examples
* Community structure

* Friendship paradox I § 5




Community structure

* Intuition: influence mostly spreads locally, within
communities

* We'd like to put one seed in each of the largest k N~
communities |




Community structure

* ARISEN algorithm repeatedly:

* Randomly samples a node
* Explores that node’s neighborhood via a random walk .
* Estimates the size of that node’s community ..
* And then seeds nodes that correspond to largest k | ‘
communities




Community structure

Theorem: For community-structured graphs, ARISEN obtains a
constant-factor approximation to the optimal influence spread using
polylog(n) queries.

Bryan Wilder, Nicole Immorlica, Eric Rice, Milind Tambe. Maximizing influence in an
unknown social network. AAAl 2018.



Community structure

Theorem: For community-structured graphs, ARISEN obtains a
constant-factor approximation to the optimal influence spread using

polylog(n) queries.

Asymptotically: exponential improvement over exhaustive surveys!

Bryan Wilder, Nicole Immorlica, Eric Rice, Milind Tambe. Maximizing influence in an
unknown social network. AAAIl 2018.



Community structure

* Downside: difficult to implement in some settings

* Homeless youth: can’t find a series of 5-10 youth to simulate a
random walk



Friendship paradox

* On average, your friends are more popular than you

Degree distribution of a random node Degree distribution of a random neighbor
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Friendship paradox

* Repeatedly
* Survey a random node
* Survey one of its neighbors

* First step encourages diversity, second biases towards high-
degree/central nodes



Putting it all together

* Combine these ideas into a single system which works in the field
* Needs to minimize need for data, expertise, resources

* Needs to handle domain-specific challenges
* Homeless youth: peer leaders often don’t attend intervention



Observations CHANGE agent Actions

Edges from | ' Sample node and

sampled nodes : : random neighbor
- Network sampling =

— Peer leader selection

¥
Robust parameter choice
\ 4

| Select peer
| Jeaders

Peer leaders
present/absent

Bryan Wilder, Laura Onasch-Vera, Juliana Hudson, Jose Luna, Nicole Wilson, Robin Petering, Darlene
Woo, Milind Tambe, Eric Rice. End-to-End Influence Maximization in the Field. AAMAS 2018.



Outline

* Deployed application: HIV prevention

 Have applied similar ideas to obesity prevention, public housing allocation,
tuberculosis prevention, etc.

* Robust optimization: handling model uncertainty
* Information gathering: sampling to learn the network

=) - Field results: deployment with two LA-area drop in centers
* Recent work: decision-focused learning
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Field study

Deployment in collaboration with social work and community partners
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Comparison

* Conducted (so far) 4 studies, each with different algorithm
» Status quo: degree centrality (DC)

* Al-based algorithms: CHANGE, HEALER, DOSIM
* CHANGE only surveys ~20% of nodes
* HEALER and DOSIM survey 100%



Results: information spread

Percent of non peer leaders

. =Al-based algorithms
informed

dramatically outperform status
quo (27% =2 70+%)

*"CHANGE performs comparable
to HEALER/DOSIM, but
» surveyed only 18% of youth!

B CHANGE M HEALER ®mDOSIM =D
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Results: behavior change

Percent of informed nodes who

, "Information spread translates
started HIV testing

into real behavior change!

*"CHANGE: comparable/slightly
higher conversion rate

100

50

: ..-

B CHANGE MHEALER ®mDOSIM = DC
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Outline

* Deployed application: HIV prevention

* Have applied similar ideas to obesity prevention, public housing allocation,
tuberculosis prevention, etc.

* Robust optimization: handling model uncertainty
* Information gathering: sampling to learn the network

* Field results: deployment with two LA-area drop in centers

=) - Recent work: decision-focused learning
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Outline

* Deployed application: HIV prevention

* Have applied similar ideas to obesity prevention, public housing allocation,
tuberculosis prevention, etc.

* Robust optimization: handling model uncertainty
* Information gathering: sampling to learn the network

* Field results: deployment with two LA-area drop in centers

=) - Recent work: decision-focused learning
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Decision-focused learning

* Previously: coping with limited data
* Now, switch to settings where data is available
* How can machine learning support decision making?

* Example: could we use administrative data to infer the social network?
* Program co-attendance, check-in times, etc.



Learning + optimization problem

| Observe data

Predictive
L model

‘ Infer parameter 0 |

Optimization
1 algorithm

- f(S,0)




Typical two-stage approach

Machine learning models Optimization algorithms

Goal: maximize accuracy Goal: maximize decision quality



Challenge

* Maximizing accuracy # maximizing decision quality
* “All models are wrong, some are useful”
* Two-stage training doesn’t align with end goal
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Node features

Two-stage training

Predictive

model

Real graph

Predicted graph

.

Update model to make
predicted graph closer to real

72
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Node features

Decision-focused learning

Predictive

model

Optimization
algorithm

Predicted graph

~—

Update model to improve chosen
peer leaders (wrt actual graph)
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Approach

* |dea: differentiate optimal solution with respect to 6, train model via
gradient descent
« Similar approach recently used for convex optimization [Donti et al ’17]

* Challenge: the optimization problem is discrete!



Approach

* |dea: differentiate optimal solution with respect to 6, train model via
gradient descent
* Similar approach recently used for convex optimization [Donti et al '17]

* Challenge: the optimization problem is discrete!
* Solution: relax to continuous problem, differentiate, round

Discrete Continuous

S.0 F(z,0

S = chosen set X;= probability item i
is chosen



Technical challenge

dx >
aé
* Differentiate the output of the optimization algorithm wrt predictions

* How to compute

76



Technical challenge

dx >
dae
* Differentiate the output of the optimization algorithm wrt predictions

* How to compute

* |dea: (locally) optimal solution must satisfy KKT conditions
* Differentiate those equations at optimum



Technical challenge

dx 2
dae
* Differentiate the output of the optimization algorithm wrt predictions

* How to compute

* |dea: (locally) optimal solution must satisfy KKT conditions
* Differentiate those equations at optimum

* Provide appropriate relaxations/prove this works for:
* Linear programming (bipartite matching, max flow, shortest path...)
* Submodular maximization (influence maximization, facility location...)



Experiments

* On several domains, using real and synthetic data

* Compare decision-focused learning vs two-stage method
* Solution quality and accuracy



Experiments

* On several domains, using real and synthetic data

* Compare decision-focused learning vs two-stage method
* Solution quality and accuracy

* Decision-focused learning improves optimization by 15-70%, but

makes much less “accurate” predictions

Budget allocation Matching Diverse recommendation

k= ) 10 20 — 5 10 20
NNI-Decision | 49.18 + 0.24 72.62 + 0.33 98.95 + 0.46 0.20 £ 0.25 1581 £ 0.50 29.81 +085 5243+ 1.23
NN2-Decision | 4435 £ 0.56 67.64 £0.62 93.59 + 0.77 6.15 + 0.38 1334 £ 0.77 2632+ 138 47.79 £ 1.96
NN1-2Stage | 32.13 247 45.63 +3.76 61.88 £4.10 0.15 £+ 0.20 408 +£0.16 8424029 19.16 £ 0.57
NN2-2Stage | 9.69 £0.05 18934+ 0.10 36.16 £ 0.18 3.49 + 0.32 11.63 £043 2279 +£0.66 42.37 + 1.02
RF-2Stage | 48.81 +0.32 72.40 +0.43 98.82 -+ 0.63 3.66 + 0.26 771 £0.18 1573 £ 034 31.25 + 0.64
Random | 9.69 £ 0.04 1892 +0.09 36.13 £ 0.14 0.13 £ 0.19 8.19 +0.19 16.154+ 035 31.68 £ 0.71
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Example

* Simulated network intervention task

* Variable to predict: probability each of a set of outreach channels will
reach each network node



Example

Ground truth ) N B TSTE

0.150

— 0.125
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Decision-focused prediction ) L 0.025

0.000



Ground truth

Explanation

Decision-focused
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Explanation

Decision-focused Two-stage

157 ) )
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== Our method learns to focus on qualities needed for making good decisions!
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Conclusion

* Critical social issues present optimization
and learning problems

* Interventions for disease prevention,
homelessness, and more can be
transformed via computational techniques




Conclusion

* Deployable algorithms present new research
challenges

* Must handle data and decisions in unified way

* With all the pieces put together, Al offers
powerful means to improve our fellow
humans’ lives




