Improving Optimistic Concurrency Control Through Transaction Batching and Operation Reordering

Bailu Ding
Microsoft Research
badin@microsoft.com

Lucja Kot*
GrammaTech, Inc
lkot@grammatech.com

Johannes Gehrke
Microsoft Corporation
johannes@microsoft.com

ABSTRACT

OLTP systems can often improve throughput by batching transactions and processing them as a group. Batching has been used for optimizations such as message packing and group commits; however, there is little research on the benefits of a holistic approach to batching across a transaction’s entire life cycle.

In this paper, we present a framework to incorporate batching at multiple stages of transaction execution for OLTP systems based on optimistic concurrency control. Storage batching enables reordering of transaction reads and writes at the storage layer, reducing conflicts on the same object. Validator batching enables reordering of transactions before validation, reducing conflicts between transactions. Dependencies between transactions make transaction reordering a non-trivial problem, and we propose several efficient and practical algorithms that can be customized to various transaction precedence policies such as reducing tail latency. We also show how to reorder transactions with a thread-aware policy in multi-threaded OLTP architecture without a centralized validator.

In-depth experiments on a research prototype, an open-source OLTP system, and a production OLTP system show that our techniques increase transaction throughput by up to 2.2x and reduce their tail latency by up to 71% compared with the state-of-the-art systems on workloads with high data contention.

PVldb Reference Format:
DOI: https://doi.org/10.14778/3282495.3282502

1. INTRODUCTION

Transaction processing is a fundamental aspect of database functionality, and improving OLTP system performance is a key research goal. The throughput of OLTP systems can be increased through batching of operations; specifically, some component can buffer a number of operations as they arrive then process them as a group [22, 15, 25]. Batching can improve system performance for several reasons. First, at the networking layer, it increases the communication efficiency by packing messages [16, 22]. Second, it amortizes the cost of system calls by condensing multiple requests into a single one, as in group commit [15, 25]. Third, it reduces the number of requests by discarding duplicate or stale requests, such as writes to the same record [19]. All of those are optimizations based on low-level techniques, and they do not take the semantics of the system into account.

We propose to embrace semantic batching as a core design principle throughout transaction execution for OLTP systems with optimistic concurrency control (OCC) [34]. OCC is a popular concurrency control protocol due to its low overhead in low-contention settings [2, 6, 8, 9, 10, 13, 17, 42, 43, 36]. However, it has been shown that OCC wastes resources when conflicts are frequent [3]. We show how semantic batching and associated reordering of transactions can reduce conflicts, improve throughput and latency, and allow us to use OCC with higher-contention workloads.

Figure 1 shows a prototypical architecture of a modern, loosely coupled OCC-based transaction processing system with a separation of compute and storage such as Centicman [16]. The system consists of three components: processors, storage, and one or more validators. External clients issue transactions to the system. On arrival into the system, each transaction is assigned to a processor and enters its read phase. The processor sends read requests to the storage, executes the transaction, and performs writes to a local workspace. After it has processed the transaction, it sends information about the transaction’s reads and writes to the validator. The transaction now enters the validation phase, where the validator checks if there are conflicts with previously committed transactions. One example of a conflict that would fail validation is a stale read. Suppose a transaction \(t \) reads an object \(x \), and a second transaction \(t' \) writes to the same object after \(t \)’s read. If \(t' \) commits before \(t \), \(t \) has a conflict, since it should have read the update \(t' \) made to \(x \). Hence, \(t \) must fail validation. If a transaction passes validation, the processor sends its writes to the storage; this is the write phase. Otherwise, the processor aborts and restarts the transaction.

OCC presents unique opportunities for batching because the final serialization order of transactions is only decided at commit time in the validator. There are three opportunities to apply semantic batching. The first is the processor in
the transactions’ read phase, where transaction requests can be batched before execution. Recent work in the context of locking-based protocols batch transactions and serialize them before execution to reduce overhead [18, 40, 49]; these techniques can be adapted and applied in OCC as well.

The second possible place is the validator. The validator can batch validation requests and then select a validation order that reduces the number of conflicts and aborts. Assume again two transactions t and t' where t reads x, and t' writes x after t’s read. Without batching, if t' arrives at the validator before t and commits, t will fail. With batching, if t and t' are in the same validation batch, we can serialize t before t' (assuming no other dependencies between t and t'), and we can commit both transactions without any aborts.

Third, batching can be done at the storage level. This affects already-validated transactions in their write phase as well as transactions still in their read phase. The storage can buffer read and write requests into joint batches as they arrive. If a batch contains read and write requests for the same object, the system can apply all the writes first in their serialization order and then process all the reads. Prioritizing writes over reads is always optimal as this reduces the number of aborts later in the validator as much as possible.

This is because in OCC reads come from uncommitted transactions, while writes come from validated transactions that will commit soon. Thus, if the storage schedules a pending read before a pending write on the same object, the reading transaction will see a stale value and later fail validation.

Contributions of this work. We explore the benefits of transaction batching and reordering in OCC with backward validation, focusing on storage and validator batching.

1. **Our first contribution is to show how to integrate batching and reordering throughout the lifetime of a transaction to enhance OCC-based protocols.** We analyze the reasons for conflicts and aborts at each stage of a transaction’s life cycle, and develop techniques to reduce these aborts through semantic batching. We introduce intra-batch storage reordering and intra-batch validator reordering, and we show that selecting the optimal transaction ordering at the validator for a batch is NP-hard. (Section 3).

2. **Our second contribution is two practical classes of greedy algorithms for validator reordering that balance abort rates and reordering overheads.** We also extend these algorithms a weighted version to incorporate different reordering policies such as transaction priorities. We further show how to parallelize validator reordering to reduce its overheads (Section 4).

3. **In a detailed experimental study of a prototype system, as well as on top of a state-of-the-art OLTP system and a commercial database, we show that batching and reordering always increases transaction throughput and, surprisingly, also reduces transaction latency, especially tail latencies.** For workloads with high data contention, batching and reordering can improve the throughput by up to 2.2× and reduce tail latencies by up to 71% compared with the state-of-the-art OLTP systems (Section 5).

2. BACKGROUND

We use the term optimistic concurrency control (OCC) to refer to the (traditional backward) validation based OCC protocol introduced by Kung [34]. As explained in the introduction, every transaction goes through three phases. First comes a read phase, where the transaction reads data from the storage and executes while making writes to a private “scratch workspace”. Then the transaction enters a validation phase. If validation is successful, the transaction enters the write phase, when its writes are installed in the storage. The validator assigns each transaction a timestamp i, examines the transaction’s read set $RS(i)$ and its write set $WS(i)$, and compares them to the writes of previously committed transactions. When validating a transaction $T(j)$ with timestamp j, the validator needs to check for conflicts with all transactions $T(i)$ with timestamp $i < j$ that have already committed and that overlapped temporally with $T(j)$, i.e., $T(i)$ had not committed when $T(j)$ started. $T(j)$ can be serialized after such a transaction $T(i)$ if one of the following conditions holds:

- $T(i)$ completed its write phase before $T(j)$ started its write phase, and $WS(i) \cap RS(j) = \emptyset$, or
- $T(i)$ completed its read phase before $T(j)$ started its write phase, and $WS(i) \cap RS(j) = \emptyset$ and $WS(i) \cap WS(j) = \emptyset$

If $T(i)$ and $T(j)$ overlap temporally, and $WS(i) \cap RS(j) \neq \emptyset$, we say there is a read-write dependency from $T(j)$ to $T(i)$. Intuitively, if there is such a dependency, $T(j)$ cannot be serialized after $T(i)$.

In addition, we must ensure the writes of the two transactions are installed in the correct order to maintain consistency in the storage. If they write to the same object, the updates must be applied in their serialization order. The original OCC algorithms achieve this by putting the validation and write phases in a critical section [34], but there has been much progress on OCC over the last decades to scale OCC-based OLTP systems that decouple the two phrases, resulting in out-of-order write requests. We handle such requests with a versioned datastore, where every object in the datastore is versioned and every write request is tagged with a version number equal to the updating transaction’s timestamp. If the datastore receives a write request with version (timestamp) i and a higher-numbered version $j > i$ already exists for the object, the write request is ignored.\(^1\)

The versioned datastore also provides an easy way to determine whether $T(j)$ and $T(i)$ overlap temporally; every time a transaction performs a read, we tag the read with the version of the object that was read. If $T(j)$’s read set contains an object X and the read saw version k, the validator only needs to check the write sets of all $T(i)$ with $k < i < j$ to see whether they contain X [16].

3. OVERVIEW

Batching involves buffering a number of operations as they arrive at some component of the system and processing them as a group. Given a batch, we run a lightweight algorithm

\(^1\)We assume full serializability here and in the remainder of this paper, although our ideas can easily be extended to snapshot isolation using multi-version storage.
to analyze the batch and then reorder the operations in the batch to reduce aborts. We will show two types of reordering opportunities: storage batching and validator batching.

We first make a conceptual distinction between two types of aborts: intra-batch and inter-batch aborts. Assume transaction \(t \) abort due to its conflict with \(t' \). If \(t \) and \(t' \) are in the same batch, we call the resulting abort of \(t' \) an intra-batch abort; otherwise, we call it an inter-batch abort. In this work, we focus on managing intra-batch aborts by strategically reordering batches at the storage and validator. Reducing inter-batch aborts is complementary to our effort.

Our approach is agnostic to isolation levels as long as the reordering respects the corresponding definitions of conflicts for write-read, write-write, and read-write dependencies. In the remainder of this paper, we describe how to batch and reorder for serializability, but our techniques can be adapted accordingly to other isolation levels, e.g., snapshot isolation.

3.1 Reordering at the Storage

If a transaction reads a stale version of an object from the storage layer, it is bound to abort at the validator as it conflicts with the update from a committed transaction. Thus, applying updates at the storage layer as early as possible can reduce the chance of aborts for incoming transactions.

We implement this idea as follows. We buffer a number of read and write requests from transactions into batches. As a batch of requests arrives at the storage layer, for each object, we apply the highest-version write request on that object. It is safe to discard all other writes on that object as explained in Section 2.

Next, we handle all the read requests for the same object. This strategy reduces intra-batch aborts, as it ensures that all available writes by committed transactions are applied to all objects before we handle any read requests on these objects.

3.2 Reordering at the Validator

In validator batching, we buffer transaction validation requests at the validator as they arrive. Once a batch has been collected, the validator can reduce intra-batch aborts by selectively aborting transactions while choosing a good validation (and thus resulting serialization) order. Such intra-batch transaction reordering can be done with several goals in mind. We can simply minimize intra-batch transaction aborts, i.e., maximize the number of transactions in each batch that commit. Alternatively, we may also want to prioritize certain transactions to have a greater chance of committing. For example, if we want to reduce transactions' tail latencies, we can increase a transaction's priority every time it has to abort and restart. Priorities could also be used for external factors, e.g., a transaction's monetary value or an application-defined transaction priority.

We define the problem of intra-batch validator reordering (IBVR) more formally. A batch \(B \) is a set of transactions to be validated. We assume all transactions \(t \in B \) are viable, that is, no \(t \in B \) conflicts with previously committed transactions. If there are non-viable transactions in \(B \), they can be removed in preprocessing, as they must always abort. Given \(B \), the goal of IBVR is to find a subset \(B' \subseteq B \) of transactions to abort such that there is a serialization order \(\prec \) for the the remaining transactions \(B' \setminus B' \), and all the transactions in \(B' \setminus B' \) commit when validated in this order.

Figure 2: An example of a directed graph; node 1 forms a feedback vertex set.

We then process each batch by running IBVR to identify \(B' \) and \(\prec \), aborting all the transactions in \(B' \), and validating the transaction in \(B' \setminus B' \) in the order \(\prec \). Note that there is always a trivial solution to any IBVR instance, namely to abort all transactions but one. This solution is not useful; therefore, every instance of IBVR is associated with an objective function on \(B' \), and the goal is to find a \(B' \) that maximizes the objective function. A simple objective function is the size of \(B' \) (the fewer transactions to abort the better), and more complex functions can take transaction priorities or tail latencies of transactions into account. We call this objective function a policy \(P \).

How do we compute \(B' \)? We observe that every batch \(B \) of viable transactions has an associated dependency graph \(G \), a directed graph whose nodes are the transactions in \(B \) and whose edges are read-write dependencies. If \(G \) is acyclic, then there exists a commit order \(Q \) on \(G \) that respects all read-write dependencies. We can construct \(Q \) by repeatedly committing a transaction whose corresponding node in \(G \) has no outgoing edge using a topological sort.

If \(G \) is not acyclic, we can model this problem as an instance of the feedback vertex set problem. A feedback vertex set (FVS) of a directed graph is a subset of vertices whose removal makes the graph acyclic. For example, consider the graph in Figure 2. Node 1 forms a FVS since the graph becomes acyclic after removing Node 1 and its incoming and outgoing edges. Finding a minimal-size \(B' \) for IBVR is exactly the problem of finding the minimal (smallest-size) feedback vertex set on \(G \). If we have a more complex objective function for IBVR, we can assign weights to the vertices to represent the desired transaction priorities, and look for a minimum-weight FVS. Once we find the FVS \(B' \), removing the vertices in \(B' \) from \(G \) yields an acyclic graph that determines the desired commit order \(Q \). The directed graph FVS (DFVS) problem is well-studied as it has many applications, including deadlock detection, program verification, and Bayesian inference. Unfortunately, it is NP-hard and APX-hard [31, 32], and it is still an open problem whether there exists any constant-factor approximation. We propose several practical algorithms for finding a FVS next.

4. VALIDATOR BATCHING

All our IBVR algorithms begin by constructing the dependency graph \(G \). We create one node per transaction, and one edge per read-write dependency. To determine whether a read-write dependency holds from transaction \(t' \) to \(t \), we check whether \(WS(t) \cap RS(t') \not= \emptyset \). If so, we add an edge from \(t' \) to \(t \). We implement this by creating a hash table from the write sets and probing it with the read sets. Since a read in \(t \) can potentially conflict with all the other transactions in the batch, the time complexity to probe the hash table for a single read is \(O(|B|) \), where \(|B| \) is the size of the batch.
Algorithm 1: SCC-based greedy algorithm

```plaintext
1 Algorithm GreedySccGraph(G, P)
2   Input: Directed graph G, policy P
3   Output: V, a feedback vertex set for G
4   V ← ∅
5   G' ← trim(G)
6   SCC = StronglyConnectedComponents(G')
7   for S ∩ SCC do
8       V ← V ∪ GreedyComponent(S, P)
9   end
10  return V
```

Algorithm 2: Sort-based greedy algorithm

```plaintext
1 Algorithm GreedySortGraph(G, P, k)
2   Input: Directed graph G, policy P, multi factor k
3   Output: V, a feedback vertex set for G
4   V ← ∅
5   G ← trim(G)
6   if G.size < k then
7       V ← V ∪ GreedySortGraph(G, P, 1)
8       break
9   end
10  Q ← QuickSelectVertexByPolicy(G, P, k)
11  for i = 1; i ≤ k; i++ do
12      V ← V ∪ Q[i]
13      G ← GetGraphAfterVertexRemoval(G, Q[i])
14  end
15  G ← trim(G)
16  return V
```

The complexity of building G is thus $O(|B|^2 + |R| + |W|)$, where $|R|$ is the total number of reads, and $|W|$ is the total number of writes.

We now process G to find a feedback vertex set. Both before and during the execution of our FVS algorithms, we trim the graph to remove all the vertices that have no incoming edges and/or no outgoing edges, since such vertices cannot participate in any cycles.

4.1 Algorithms

SCC-Based Greedy Algorithm. The intuition behind our first algorithm is that each cycle must be contained in a strongly connected component (SCC) of the graph. After preprocessing, we partition the graph into SCCs. For a graph with V nodes and E edges, we can do this in time $O(|V| + |E|)$ using Tarjan’s SCC algorithm [47].

Nodes in SCCs of size one cannot belong to any cycle. For an SCC that contains more than one node, we choose a vertex to remove according to a policy. The policy is a ranking function over nodes, and we greedily choose the top-ranked vertex to remove. We then recurse on the remaining graph.

Algorithm 1 shows the details of this procedure. We begin by trimming and partitioning the graph into SCCs (lines 3-4). We process each SCC S using GreedyComponent(S, P) (lines 5-7). This subroutine starts by eliminating SCCs of size one (lines 10-12). Next, it chooses the top-ranked vertex v from S under Policy P (line 13). It removes v from S and recursively calls GreedySccGraph on the remaining graph S' (lines 14-15). Finally, it returns the union of all the FVSs obtained in processing S (line 15). When the top-level procedure GreedySccGraph(G, P) has processed all the SCCs of G, it returns the union of the FVSs obtained (line 8).

Trimming and updating the graph after removing a node takes $O(|V| + |E|)$ in total, since each node / edge can be removed only once. In the worst case, i.e., in a fully connected graph, we may only remove one node per iteration. Since SCC takes $O(|V| + |E|)$ per iteration, the time complexity of this algorithm is $O(|V|(|V| + |E|))$. The policy P is at the heart of the algorithm, and it ranks nodes which are likely to be included in a desirable FVS highly. We discuss possible policies in Section 4.2.

An example. Figure 3 shows an instance of the SCC-based greedy algorithm that aims at minimizing the size of FVS, with a policy P selecting the node with the largest product of its in-degree and out-degree, i.e., prod-degree. The graph cannot be trimmed, so we partition it into SCCs. We remove all SCCs of size 1 – Nodes 0, 7, 10, 11, and 12 (Figure 3b). There are three remaining SCCs. We first look at the component containing Nodes 3 and 4. Since Nodes 3 and 4 have the same product of in-degree and out-degree, we can add either one of them to the FVS. We choose Node 3. Now Node 4 has neither incoming nor outgoing edges, so it is trimmed (Figure 3c). We repeat the process with the other components. For the SCC containing Nodes 2, 5, and 6, we add Node 6 to the FVS, as it has the largest product of in-degree and out-degree among the three nodes in this SCC. We now trim Nodes 2 and 5 (Figure 3d). Finally, we remove Node 8 from the last component, and trim Nodes 1 and 9 (Figure 3e). This leaves us with a final FVS consisting of Nodes 3, 6, and 8.

Sort-Based Greedy Algorithm. Our first algorithm relies on a SCC partitioning routine that takes linear time in the size of the graph. As this routine is called several times throughout the algorithm, the overhead can be high. Here we propose a faster greedy algorithm using a sort-based approach to remove nodes. Through extensive empirical tests of the SCC-based greedy algorithm, we find that at each iteration, all the top ranked nodes in the graph are very likely to be included in the final FVS. Our second algorithm is based on this observation; it sorts the nodes according to a policy P, and includes the k top-ranked nodes in the FVS. We call k the *multi factor* of the algorithm. The algorithm removes these nodes and iterates on the remaining graph until the remaining graph becomes empty.

Algorithm 2 shows this in more detail. We start by trimming the graph (line 3); if the graph has no more than k nodes, we reduce the multi-factor to 1 (lines 5-8). Otherwise, we sort and select the top ranked k nodes into a queue Q using P with the Quickselect algorithm [29], and include the k nodes in V (lines 9-13). After removing the selected nodes from G, we trim the remaining graph again (line 14).
We repeat this procedure until the graph is empty (line 4). As with the previous algorithm, trimming and updating the graph after removing a node takes $O(|V| + |E|)$ in total. Updating the weights of the remaining nodes takes $O(|V|)$ per iteration. The Quickselect algorithm [29] has an amortized time complexity of $O(|V|)$. In the worst case, it will take $O(|V|/k)$ iterations to terminate. So the overall time complexity is $O(|V|^2/k + |V| + |E|)$. This algorithm has smaller time complexity than the SCC-based greedy algorithm, and we can increase k to further trade accuracy for shorter runtime. As we will see in Section 5, it has comparable accuracy to the SCC-based algorithm in practice.

Example (Continued). Figure 4 shows the same example using the sort-based greedy algorithm with $k = 1$. After the first sort, we add Node 5 to the FVS since Node 5 has the highest product of in-degree and out-degree. After removing Node 5, Nodes 10 and 12 have only incoming edges and get trimmed (Figure 4b). We sort the remaining nodes. This time, we add Node 8 to the FVS and trim Nodes 0, 1, 9, 11 (Figure 4c). We repeat this process with the remaining nodes until the graph is empty. This yields a FVS with Nodes 3, 5, 6, and 8 (Figure 4e), which contains one more node than the FVS obtained with the SCC-based algorithm.

Hybrid Algorithm. We combine the SCC-based greedy algorithm and the precise brute-force FVS search into a **hybrid algorithm**. The algorithm is similar to the SCC-based greedy algorithm but runs a precise, brute-force FVS search whenever it can afford to. Instead of processing all SCCs via GreedyComponent (lines 5-7 of Algorithm 1), it runs the precise search when processing SCCs that are smaller than a **threshold**, and the GreedyComponent on SCCs that are larger than the threshold. Adjusting the threshold allows us to trade off precision versus runtime.

4.2 Policies

Policies are of utmost importance for our algorithms. Recall that a policy is a ranking function on vertices of the graph, and a good policy ranks vertices which are likely to be in a desirable FVS highly. We discuss three kinds of policies designed for different performance objectives and system architectures.

Minimize the number of aborts. We first discuss policies that aim at minimizing the number of conflicts, i.e., the size of the FVS. The simplest such policy is **random** that assigns all nodes random rankings. We can instead rank nodes using degree-based heuristics, based on the intuition that the removal of a node will break many cycles if the node is high in some measurement of its graph degree. Such heuristics have been shown to work well for FVS computation [14]. For example, the policy **max-degree** chooses the node with the largest degree (either in-degree or out-degree), **sun-degree** chooses the node with the largest total degree (in-degree plus out-degree), and **prod-degree** chooses the node with the largest product of in-degree and out-degree.

Minimize tail latency. More sophisticated policies are possible if the system is optimizing for a metric beyond maximizing the number of commits. For example, we may want to bound the transactions’ tail latency; we can do that by incorporating latency information in our policies. With this approach, we can rank transactions based on how many times they have been aborted and restarted; thus, transactions that have been restarted many times are less likely to enter the FVS and have a higher chance of committing. Alternatively, we can also devise policies that combine the information about a transaction’s number of restarts and its graph degree. For example, we can compute the ranking of a vertex as the product of its in-degree and out-degree divided by an exponential function of how many times it restarts. In business applications, the monetary value of different transactions varies. Optimizing for maximal monetary value, we can design policies that favor more valuable transactions. For example, we can customize the policy to always add a transaction with the lowest value to the FVS until the resulting dependency graph is acyclic.

Reduce inter-thread conflicts. Many recent OCC-based OLTP systems use a decentralized architecture [38, 50, 56, 33], where there is no centralized validation. Each transaction is scheduled to a dedicated thread and processed by this thread synchronously for its entire lifetime. Since a transaction is executed synchronously, it can only conflict with transactions executed by other threads.

In such an architecture, while batching operations across transactions does not apply, we can assign transactions to specific threads to reduce inter-thread conflicts. Intuitively, for a batch of transactions, we schedule conflicting transactions to be executed on the same thread, where they are processed serially without conflicts. Because conflicting transactions access the same objects, reordering also improves caching within a thread.

We design a **thread-aware policy** which assigns transactions thread by thread. We batch a number of transactions and assign the same number of transactions to each thread.\(^3\)

\(^3\)More sophisticated assignments are possible as future work.
At each thread, we compute the weight of a transaction t first based on the number of conflicts to the set of transactions S in the batch that have already been assigned to this thread, then the number of object accesses shared between t and S, and finally t’s number of conflicts to the unassigned transactions in this batch. For each thread, our sort-based algorithm will first pick the transaction with the most conflicts against the remaining transactions, and then it iteratively updates the weights of the transactions left to pick the next one with the highest weight. This policy greedily puts conflicting transactions on the same thread to minimize conflicts across threads; as a side effect, it tries to assign transactions accessing the same objects to the same thread, resulting in better caching.

4.3 Parallelism

Since batching and reordering occur during transaction execution, they can increase transaction latency, resulting in a higher chance of conflicts. Thus, we introduce parallelism into validation. Recall that the validator first prepares a batch of transactions, then reorders them, and finally validates them and caches the resulting updates of transactions that commit. Each step corresponds to a subcomponent in the validator. Parallelism across these components seems difficult since there are strict sequential dependencies among them. We first explain how to parallelize execution within each component and then across components.

Figure 19 shows the architecture of our parallel validator, including three components: The batch preparation component receives transactions from the processor, packages them into batches, and sends the batches to the transaction reordering component. The transaction reordering component reorders the transactions, and then sends a validation request to the transaction validation component. The transaction validation component takes a batch of ordered transactions and validates them against the latest validator cache. It also updates the validator cache with the updates from transactions that pass the validation.

Parallelism within a component. In batch preparation, multiple threads can package transactions into batches. We can either assign each processor to send its validation request to a specific batch preparation thread, or we can create a consumer-producer queue to connect the processors and the batch preparation threads. In transaction reordering, multiple threads can consume reordering requests from the batch preparation threads, and reorder batches of transactions concurrently. Since the batches are not ordered yet in the reordering stage (although transactions within each batch are now ordered), the threads can send the processed batches to the validation component in any order. At the validation component, the batches are processed serially and validated against all previously committed transactions. Within an ordered batch, since the transactions are already serialized by the reordering component, the only source of conflicts is from transactions committed prior to the batch. Thus, transactions within a batch can be validated in parallel. Since conflicts can happen across batches, a new batch can only be processed after transactions from previous batches have been validated. Updates from committed transactions in a batch are applied to the validator cache in serialization order at the end of the processing of the batch. We can further partition the key space to parallelize within a batch, which is similar to the design of a partitioned validator [16].

Parallelism across components. We can further increase parallelism by running the three validator components with pipelined parallelism, with each component working on a different batch in parallel. The batches then shift from one component to the next component in the validator.

A further refinement: Pre-validation. As mentioned in Section 3.2, prior to reordering, we can remove non-viable transactions, i.e., transactions that conflict with previously committed transactions. While this pre-validation adds an additional validation for transactions on top of the final validation which serializes them, it reduces the number of transactions to reorder and the reordering algorithm runs faster. Empirically, we observe that the reordering component is the bottleneck piece, and removing non-viable transactions with pre-validation significantly improves performance. Thus, after batch creation, we first pre-validate the batch, reorder the remaining transactions, and then perform a second and final validation against the current database state.

In Figure 19, the bottom row shows a set of database snapshots, each after a batch of transactions that has been validated. With pre-validation, a batch B will get validated against a “stale” database state S. Those transactions within batch B that have passed the pre-validation are then re-ordered and validated a second time in the transaction validation component against the “correct” database state S'. Since S' now reflects all the updates from transactions committed after S while B is in the reordering component, transactions in B can still show additional conflicts during the final validation.

Figure 4: An example of the sort-based greedy algorithm using prod-degree policy and multi factor 1. Blue nodes are trimmed during the algorithm, and yellow nodes form the FVS.
5. EVALUATION

We first describe the experimental setup for our prototype to isolate and study the impact of different parameters in our algorithms. Section 5.5 and 5.6 describe our experiments with an open-source OLTP system and a commercial database system; both of these sections will describe their own experimental setups, respectively.

Our research prototype system architecture has four components: transaction clients, processors, storage, and a validator as shown in Figure 1. The components communicate through consumer-producer queues. The transaction client continuously produces new transactions until the system reaches the maximum permitted concurrency level. The processor acts as a transaction coordinator and multiplexes multiple transactions in parallel. It receives transaction requests from clients, sends read/write requests to the storage, and sends validation requests to the validator, restarts aborted transactions, and sends commit messages back to the clients.

The processor is non-blocking: It processes requests from its consumer-producer queue without waiting for the response of the request. For example, when it receives a transaction request from a client, it sends read requests on behalf of this transaction to the storage, and then it continues to process the next request in its queue without waiting for the response from the storage. This asynchronous processing allows the processor to multiplex many transactions in parallel to improve its throughput.

The storage processes read and write requests. With storage batching, the storage buffers requests into batches and processes the requests as described in Section 3.1.

The validator performs backward validation. For every transaction, a validation request consists of the keys and versions of its reads and the keys of its writes. The validator caches the write keys of committed transactions in an in-memory hash table, until these writes are overwritten by later updates. When batching is enabled, the validator collects the requests into a batch as they arrive, and runs one of the algorithms from Section 4.1 to determine a serialization order. Every transaction that passes the validation is assigned an integer commit timestamp, which corresponds to the version number of the updates it will install in storage. By default, the validator uses the sort-based greedy algorithm with the prod-degree policy and multi factor 2.

We parallelize the transaction generation with two transaction clients. We run two storage workers concurrently to process reads and writes, and the writes are applied based on its data versioning as described in Section 3.1. We decouple the validator into subcomponents and parallelize them as described in Section 4.3.

We use a key-value model for the storage, implemented as an in-memory hash table. In our micro benchmark, we populate the database with 100K objects, each with an 8-byte key. The values are left null as they are not relevant to our evaluation. We generate a workload where each transaction reads 5 objects and writes to 5 objects, drawn from a Zipfian distribution [24], with one of the reads and one of the writes on the same object. We limit the concurrency level to 300, i.e., at any time there are at most 300 active transactions. The default batch size is 40 for both storage and validator. We choose the concurrency level and batch size empirically to properly load the system.

The baseline configuration (base) represents the system running with storage and validator batching turned off. We optimize the code path for transactions without batching to avoid the overhead from batching and reordering, including skipping buffering transactions into batches as well as the reordering workers in validator. We further add a batch mode (batch) to separately measure the effects of batching and reordering, where requests are batched at both storage and validator, but no reordering is performed. The batch mode has improved performance over base, because it benefits from better caching with tighter loops in the processing.

Our prototype is implemented in Java. All the experiments are run on a machine with an Intel Xeon E5-2630 CPU @2.20GHz and 16GB RAM. All our experimental figures show the averages of 10 runs, each lasting for 60 seconds between a 10-second warm-up and a 10-second cool-down. The standard deviation is not significant in any of the experiments, so we omit the error bars for clarity of presentation. We report throughput (the number of committed transactions per second), average, and percentile latencies.

5.1 Validator Reordering Algorithms

We first investigate the performance of the feedback vertex set algorithms from Section 4.1 for their accuracy and running time. We run the algorithms on graphs constructed as described in Section 4, using our micro benchmarks. We test the SCC-based greedy algorithm with the max-degree (greedy_max), sum-degree (greedy_sum) and prod-degree policies (greedy_prod). We also test the sort-based greedy...
algorithm \texttt{greedy-sort} (using the \texttt{prod-degree} policy for sorting and multi factor 2), as well as the hybrid algorithm \texttt{hybrid}_m. The hybrid algorithm uses \texttt{greedy-prod} as a subroutine when the size of the SCC is larger than \(m \), and switches to the brute force search otherwise. By increasing the threshold, we can progressively approximate the optimal solution. We test these algorithms against several baselines: \texttt{search} is an accurate, brute force search algorithm; \texttt{random} is the SCC-based greedy algorithm which removes a vertex at random from each SCC to break the cycle; \texttt{random}_3 runs \texttt{random} 3 times for each graph constructed from a batch of transactions and returns the smallest FVS, mitigating the effect of bad random choices.

Figure 5 shows the average size of the feedback vertex set found by each algorithm. The brute force search algorithm is so slow that it cannot produce results once the skew factor increases beyond 0.7 as the graphs become too dense. The \texttt{random} baseline computes a FVS whose size is almost twice as large as the greedy and the hybrid algorithms. Running the random algorithm multiple times produces similar results. This confirms the theoretical results which show that finding a good FVS is hard. The greedy algorithms, on the other hand, produce very accurate results. The average size of the FVS is almost identical to that of the brute force search when the skew factor is no larger than 0.7, and it is very close to the best hybrid algorithm (\texttt{hybrid}_20, i.e., one that uses the brute force search when the size of the SCC is no larger than 20). Among the greedy algorithms, \texttt{greedy-prod} is consistently the best, although the difference is small.

Figure 6 shows the running time of the algorithms. The running time of the hybrid algorithm depends on the threshold for switching to brute force search. Thus, \texttt{hybrid}_20 and \texttt{hybrid}_15 have a longer running time than other algorithms, while the running time of \texttt{hybrid}_10 is comparable to the SCC-based algorithms. Each of the SCC-based algorithms (\texttt{greedy-max}, \texttt{greedy-sum}, \texttt{greedy-prod}, \texttt{random}) has a similar running time. The random algorithm takes slightly longer than the greedy algorithms because it removes more nodes and thus requires more iterations to find FVS. The running time of \texttt{random}_3 is three times that of \texttt{random}, since it runs the random algorithm three times. The sort-based greedy algorithm (\texttt{greedy-sort}), while slightly less accurate than the SCC-based greedy algorithms, reduces the running time of these algorithms by 74%.

We compare the end-to-end performance of the best SCC-based algorithm (\texttt{greedy-prod}) with the sort-based greedy algorithm. Figures 7 and 8 show the throughput and the average latency of the system with \texttt{greedy-prod} (g) and \texttt{greedy-sort} (gs) with storage batching enabled. The \texttt{base} line shows the throughput with both storage and validator batching disabled. The two greedy algorithms have similar throughput when the skew is very low. However, \texttt{greedy-prod} degrades significantly with increasing data skew. This is because while \texttt{greedy-prod} is slightly more accurate, it takes much longer to run. This increases transaction latency and leads to more conflicts, especially with high data contention. \texttt{greedy-sort} consistently gives the highest throughput over all the workloads for its high accuracy and low running time. Figure 9 shows the percentile latencies, i.e., the latency thresholds for up to 95% of the transactions. The tail latencies of \texttt{greedy-sort} are much lower than that of the other two, consistent with the throughput data.

5.2 Storage and Validator Batching

Next, we perform a detailed analysis on the effects of storage and validator batching. We configure the system in several different modes: no batching (\texttt{base}), batching without reordering (\texttt{batch}), storage only batching with reordering (\texttt{sr}), validator only batching with reordering (\texttt{ve}), and both storage and validator batching with reordering (\texttt{srvine}).

Figures 10, 11, and 12 show the throughput, average, and percentile latencies of different system modes under various data skews. Using batching with reordering at the storage
5.3 Reducing Tail Latency

We now explore validator reordering with more sophisticated policies as discussed in Section 4.2. Our baselines are the prod-degree policy that maximizes the number of commits (mc) as well as no batching (base) and batching without reordering (batch). Our first tail-latency aware policy (ret) favors transactions that have already been aborted and restarted. When choosing a node to include in the FVS, it chooses the node with the smallest number of restarts, breaking ties using prod-degree. Our second latency-aware policy (rdeg) combines the number of restarts and the incoming/outgoing degrees of a transaction into a weight. It computes the weight of a node as the product of in-degree and out-degree over the exponential of the number of restarts base 2. When choosing a node to include in the FVS, it picks the node with the highest weight. Thus, a node with a high degree product can have its weight reduced if the corresponding transaction has restarted several times. Figures 16 and 17 show the throughput and average latency, where the impact of tail-latency aware policies is negligible as compared to when we maximize the number of commits (mc). Figure 18 shows the tail latencies. The more advanced policy rdeg consistently performs significantly better than all the others, and it reduces the tail latencies by up to 86%.

5.4 Parallel Validation

We now evaluate the benefits of parallelism. Since we have observed that the reordering of FVS is the most time consuming subcomponent in the validator, we increase the number of threads to perform batch reordering as described in Section 4.3. Figures 20 and 21 show the throughput and average latency varying the number of reordering workers from 1 to 4 (w_1, w_2, w_3, w_4). The performance improves significantly with more reordering workers when data skew is medium to high. With four workers, the throughput increases by up to $2.6 \times$ and the average latency reduces by up to 39%, compared to using one worker. Figure 22 shows the
percentile latencies. With more reordering workers, more transactions are reordered concurrently, and the transaction queuing time at validator is reduced. With four workers, the tail latencies reduce by up to 41%.

5.5 Integration with Cicada

We integrate the idea of transaction batching and reordering into Cicada, an open-source OLTP system [38]. Cicada represents an important class of in-memory OCC-based OLTP system architectures. In Cicada, every thread executes its transactions independently, and there are no centralized threads for transaction validation or storage access. We apply our techniques to this architecture by batching and reordering the transactions in a preprocessing step using the thread-aware policy described in Section 4.2.

We configure our strategy with a batch size of 4 times the number of threads and assign 4 transactions to each thread within a batch after reordering, i.e., a transaction is never reordered across batch boundaries. The reordering has low overhead, which is up to 5x in throughput compared to the original Cicada paper [38]. Each transaction consists of 16 requests generated from a Zipfian distribution, with 50% read and 50% read-modify-write. The database consists of 10 million keys, each with 100-byte payload.

We run the experiment on a machine with two Intel Xeon Processor E5-2690 v4 CPUs (each with 14 physical cores) and 256GB of DRAM. We pin threads to different cores and use NUMA-aware memory to allocate hugepages.

Figure 23 shows the throughput of these systems with a write-intensive, highly-skewed workload, varying the number of threads. Figures 24 and 25 show the throughput and tail latencies with the maximal number of threads (i.e., 28) under workloads with different degrees of data contention. As the degree of data contention increases, either with more threads or more data skew, using reordering outperforms the other systems resulting in higher throughput and lower tail latencies. With 28 threads and skew factor 0.99, using reordering improves throughput by up to 2.2x and reduces the 99% tail latency by up to 71%.

5.6 Integration with DBMS-X

We implement our techniques on top of a commercial DBMS-X, a high performance OLTP engine using OCC. We implement validator reordering for the transactions batched at the middle tier, i.e., before submitting them to the database server. Since the transactions haven’t started executing and their read timestamps are not yet available, we conservatively assume that all the transactions in a batch read from the same snapshot of the database. We analyze the potential conflicts between the transactions and reorder them to minimize the number of aborts. The transactions excluded from the batch, together with future incoming transactions, are included in the next batch for reordering.

We use JDBC to issue transactions. A connection to DBMS-X can send transaction statements individually or in batch through JDBC calls, where the call returns after all the transactions are processed. Whenever DBMS-X receives a batch of statements, it executes them concurrently. Batching the statements reduces communication overhead and increases the concurrency level.

We use the SmallBank benchmark as described in Section 5.2, with a Zipf skew of 0.9 as a high-data-contention scenario. We compare transaction batching and reordering (reorder) with two baselines: no batching (nobatch) and batching without reordering (batch). In nobatch, we submit transactions to DBMS-X one at a time. In batch and reorder,
we batch transactions before sending them to DBMS-X. We choose 50 as a proper batch size.

Figures 26, 28, and 27 show the throughput, latency, and abort rate when we increase the number of database connections. Without batching, the concurrency level is small, resulting in low throughput and a slim chance of conflict (i.e., a low abort rate). As we batch transactions, the throughput increases dramatically. However, as the load continues to increase, the system runs into data contention. This further leads to resource contention due to restarts. Thus, both the abort rate and the average latency rise significantly. When we batch and reorder transactions, the performance improves on all metrics: Peak throughput increases by 1.25×, throughput increases by up to 3.1×, latency reduces by up to 66%, and the abort rate drops by up to 62%. Moreover, the performance degrades much more gracefully with increasing load.

5.7 Summary
The main takeaways from our experiments are:

1. The sort-based greedy algorithm finds accurate FVS and reduces the running time of SCC-based greedy algorithms by 74%, resulting in the best end-to-end system performance among all the algorithms.

2. Batching and reordering increases throughput by up to 2.7×, and it reduces the average and tail latencies by up to 67% and 82%, respectively. While it is always beneficial to use storage reordering, validator reordering consistently improves tail latencies but can hurt throughput and average latency under extremely high data contention.

3. For alternative reordering policies at the validator, prioritizing transactions with a combination of the degree of a transaction in the dependency graph and its number of restarts reduces tail latencies by up to 82%, without sacrificing either throughput or average latency.

4. Integrated to a high performance OCC-based OLTP system, our techniques with a thread-aware reordering policy improve the throughput by up to 2.2× and reduces tail latencies by up to 71% compared with other state-of-the-art OLTP systems under write-intensive workload.

5. Integrated to a commercial DBMS-X, our techniques increase the throughput by up to 2.8× and reduce the average latency by up to 66% under high data contention. This shows that there is much room for performance improvements using our techniques even for mature DBMSs.

6. RELATED WORK
We discussed OCC and its applications in Section 1. High contention concurrency control. The performance of concurrency control protocols suffers when either concurrency level and/or data contention are high [20, 5]; this has particular impact on OCC [3]. Hybrid approaches combine OCC and locking to limit the number of transaction restarts [48, 55]. The problem can also be addressed by adjusting the concurrency level adaptively, limiting the number of arriving transactions and/or using an exponential backoff for aborted transactions [28, 38]. Transaction chopping partitions transactions into smaller pieces and executing dependent pieces in a chained manner [40, 46, 54]. Other work analyzes data accesses of transactions to expose
Batching. Batching is a common optimization technique to amortize costs and condense work. One application is to pack networking and logging messages [12, 16, 22, 23]. Batching is also widely applied to aggregate application requests to improve performance, including group commits [15, 25], condensing IO requests [15, 19], and Paxos [45]. Since batching is often associated with a throughput/latency tradeoff, there is work on adaptive batching [21, 41]. Those uses of batching are low-level and are not aware of the overall system infrastructure or the application semantics. Our work uses batching as a core design principle at multiple stages of transaction execution. In addition, unlike previous work, we focus on the use of batching for reordering.

7. CONCLUSIONS AND FUTURE WORK

We show how to significantly improve transaction performance in OLTP systems based on optimistic concurrency control through storage and validator batching and reordering. Besides clean problem formulations and reducing validator reordering to the problem of finding the minimal feedback vertex set (FVS), we propose two new practical greedy algorithms for this problem that are fast and that perform well in practice. We show that our algorithms can integrate different policies into the reordering to optimize for a variety of performance objectives and system architectures, such as low tail latencies and multi-threaded decentralized OLTP architectures. We further propose a parallel validator design to reduce the overhead of reordering. Our extensive experimental study both in a prototype system, as well as with a state-of-the-art OLTP system and a commercial database system show that both storage and validator batching consistently improve throughput, and that validator reordering significantly reduces latency profiles. We also demonstrate how we optimize for low tail latencies with alternative policies, and how our parallelization further improves throughput and reduces latency.

In future work, we plan to explore more sophisticated batch creation techniques. Since we empirically observe a sweet spot for the batch size, we want to study how to intelligently adjust the batch size. We are also interested in applying the idea of batching and reordering to alternative system architectures and concurrency control protocols.

Acknowledgments

The authors would like to thank Magdalena Balazinska, Cristian Diaconu, Kunal Karoth, and the anonymous reviewers for their valuable feedback.

This work was partially supported by NSF Grants IIS-0911036 and IIS-1012593 while Ding, Kot, and Gehrke were at Cornell University. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

8. REFERENCES

