
A Convergence Theory for Deep Learning

via Over-Parameterization

Zeyuan Allen-Zhu
zeyuan@csail.mit.edu

Microsoft Research AI

Yuanzhi Li
yuanzhil@stanford.edu

Stanford University

Zhao Song
zhaos@utexas.edu

UT-Austin

November 8, 2018∗

Abstract

Deep neural networks (DNNs) have demonstrated dominating performance in many fields,
e.g., computer vision, natural language progressing, and robotics. Since AlexNet, the neural
networks used in practice are going wider and deeper. On the theoretical side, a long line of
works have been focusing on why we can train neural networks when there is only one hidden
layer. The theory of multi-layer neural networks remains somewhat unsettled.

We present a new theory to understand the convergence of training DNNs. We only make
two assumptions: the inputs do not degenerate and the network is over-parameterized. The
latter means the number of hidden neurons is sufficiently large: polynomial in n, the number of
training samples and in L, the number of layers.

We show on the training dataset, starting from randomly initialized weights, simple al-
gorithms such as stochastic gradient descent attain 100% accuracy in classification tasks, or
minimize `2 regression loss in linear convergence rate, with a number of iterations that only
scale polynomial in n and L. Our theory applies to the widely-used but non-smooth ReLU
activation, and to any smooth and possibly non-convex loss functions. In terms of network ar-
chitectures, our theory at least applies to fully-connected neural networks, convolutional neural
networks (CNN), and residual neural networks (ResNet).

∗This work was done when Yuanzhi Li and Zhao Song were 2018 summer interns at Microsoft Research Redmond.
We would like to specially thank Greg Yang for very helpful conversations.

mailto:zeyuan@csail.mit.edu
mailto:yuanzhil@stanford.edu
mailto:zhaos@utexas.edu

1 Introduction

Neural networks have demonstrated a great success in numerous machine-learning tasks [5, 23, 28,
31, 34, 44, 45]. One of the empirical findings is that neural networks, trained by first-order methods
from random initialization, have a remarkable ability of fitting training data [55].

From a capacity perspective, the ability to fit training data may not surprising: modern neural
networks are always heavily over-parameterized — they have (much) more parameters than the
total number of training samples. Thus, in theory, there always exists parameter choices that
achieve zero training error as long as the data does not degenerate.

Yet, from an optimization perspective, the fact that randomly initialized first-order meth-
ods can find such an optimal solution on the training data is quite non-trivial : neural networks
used in practice are often equipped with the ReLU activation function, which makes the training
objective not only non-convex, but even non-smooth. Even the general convergence for finding
approximate first and second-order critical points of a non-convex, non-smooth function is not fully
understood [11], and appears to be a challenging question on its own. This is in direct contrast
to practice, in which ReLU networks trained by stochastic gradient descent (SGD) from random
initialization almost never face the problem of non-smoothness or non-convexity, and can converge
to even a global minimal over the training set quite easily.

Recently, there are quite a few papers trying to understand the success of neural networks from
optimization perspective. Many of them focus on the case when the inputs are random Gaussian,
and work only for two-layer neural networks [10, 17, 20, 33, 41, 48, 53, 57, 58].

In Li and Liang [32], it was shown that for a two-layer network with ReLU activation, SGD
finds nearly-global optimal (say, 99% classification accuracy) solutions on the training data, as long
as the network is over-parameterized, meaning that when the number of neurons is polynomially
large comparing to the input size. Moreover, if the data is sufficiently structured (say, coming from
mixtures of separable distributions), this perfect accuracy can be extended to test data as well. As
a separate note, over-parameterization is suggested as the possible key to avoid bad local minima
by Safran and Shamir [42] even for two-layer neural networks.

There are also results that go beyond two-layer neural networks but with limitations. Some
consider deep linear neural networks without any activation functions [6, 8, 24, 29]. The result of
Daniely [13] applies to multi-layer neural network with ReLU activation, but is about the convex
training process only with respect to the last layer. Daniely worked in a parameter regime where
the weight changes of all layers except the last one make negligible contribution to the final output
(and they form the so-called conjugate kernel). The result of Soudry and Carmon [50] shows that
under over-parameterization and under random input perturbation, there is bad local minima for
multi-layer neural networks. Their work did not show any provable convergence rate.

In this paper, we study the following fundamental question

Can DNN be trained close to zero training error efficiently under mild assumptions?

If so, can the convergence rate depend only polynomially in the number of layers?

Motivation. In 2012 AlexNet [31] was born with 5 convolutional layers. Since then, the common
trend in the deep learning community is to build network architectures that go deeper. In 2014,
Simonyan and Zisserman [47] proposed a VGG network with 19 layers. Later, Szegedy et al. [52]
proposed GoogleNet with 22 layers. In practice, we cannot make the network deeper by naively
stacking layers together due to the so-called vanishing / exploding gradient issues. For this reason,
in 2015, He et al. [28] proposed an ingenious deep network structure called Deep Residual Network
(ResNet), with the capability of handling at least 152 layers. For more overview and variants of
ResNet, we refer the readers to [19].

1

Compared to the practical neural networks that go much deeper, the existing theory has been
mostly around two-layer (thus one-hidden-layer) networks even just for the training process alone.
It is natural to ask if we can theoretically understand how the training process has worked for
multi-layer neural networks.

Remark. In this paper, we do not cover the study of the generalization of neural networks. We
refer interested readers to some practical evidence [51, 54] that deeper (and wider) neural networks
generalize better.

1.1 Our Result

In this paper, we extend the over-parameterization theory to multi-layer neural networks. We
show that over-parameterized neural networks can indeed be trained by regular first-order methods
to zero training error, as as long as the dataset is non-degenerate. We say that the dataset is
non-degenerate if the data points are distinct. This is a minimal requirement since a dataset
{(x1, y1), (x2, y2)} with the same input x1 = x2 and different labels y1 6= y2 can not be trained to
zero error.

For instance, consider the `2 regression task with an L-layer fully-connected feedforward neural
network, each of m neurons equipped with ReLU activation. We show that, as long as m ≥
poly(n,L, δ−1) where n is the number of data points and δ is the minimum (relative) distance
between two training data points, for every ε > 0, gradient descent (GD) and stochastic gradient
descent (SGD) can find an ε-error solution with linear convergence rate, starting from random
Gaussian initialized weights. Using the same network, if the task is multi-label classification, then
GD and SGD finds an 100% accuracy classifier on the training set in poly(n,L, δ−1) iterations. Our
result also applies to other Lipschitz-smooth loss functions, and some other network architectures
including convolutional neural networks (CNNs) and residual neural networks (ResNet).

Our result also gives the theoretical explanation about an important practical observation:
when training an over-parameterized deep neural network with small learning rate, the model
could rapidly memorize all the training examples and stop the learning process before a good
generalization error is reached.

1.2 Other Related Works

Li and Liang [32] only proved their result for the cross-entropy loss, and the “training accuracy”
part of this result was later extended to the `2 loss [18]. The result of [18] seems to have adopted
a learning rate that is m times larger than [32], but that is only because they have re-scaled the
network by a factor of

√
m.

Linear networks without activation functions are important subjects on its own. Besides the
already cited references [6, 8, 24, 29], there are a number of works that study linear dynamical
systems, which can be viewed as the linear version of recurrent neural networks or reinforcement
learning. Recent works in this line of research include [1, 7, 15, 16, 25–27, 37, 40, 46].

There is sequence of work about one-hidden-layer (multiple neurons) CNN [10, 17, 22, 39, 57].
Whether the patches overlap or not plays a crucial role in analyzing algorithms for such CNN. One
category of the results have required the patches to be disjoint [10, 17, 57]. The other category
[22, 39] have figured out a weaker assumption or even removed that patch-disjoint assumption. On
input data distribution, most relied on inputs being Gaussian [10, 17, 39, 57], and some assumed
inputs to be symmetrically distributed with identity covariance and boundedness [22].

As for ResNet, Li and Yuan [33] proved that SGD learns one-hidden-layer residual neural
networks under Gaussian input assumption. The techniques in [57, 58] can also be generalized to

2

one-hidden-layer ResNet under the Gaussian input assumption; they can show that GD starting
from good initialization point (via tensor initialization) learns ResNet. Hardt and Ma [24] deep
linear residual networks have no spurious local optima.

If no assumption is allowed, neural networks have been shown hard in several different perspec-
tives. Thirty years ago, Blum and Rivest [9] first proved that learning the neural network is NP-
complete. Stronger hardness results have been proved over the last decade [12, 14, 21, 30, 35, 36, 49].

An Over-Parameterized RNN Theory. For experts in DNN theory, one may view this present
paper as a deeply-simplified version of the recurrent neural network (RNN) paper [4] by the same
set of authors. A recurrent neural network executed on input sequences with time horizon L is
very similar to a feedforward neural network with L layers. The main difference between the two
is that in feedforward neural networks, the weight matrices are different across layers, and thus
independently randomly initialized; in contrast, in RNN, the same weight matrix is applied across
the entire time horizon so we do not have fresh new randomness for proofs that involve in induction.
This makes the over-parameterized convergence theory of DNN much simpler than that of RNN.
We write this DNN result as a separate paper because: (1) we believe the convergence of DNN is
important on its own, (2) the proof in this paper is much simpler (30 vs 80 pages) and could reach
out to a wider audience, (3) the simplicity of this paper allows us to tighten many parameters in
quite non-trivial ways, and (4) the simplicity of this paper allows us to also study convolutional
networks, residual networks, as well as different loss functions (all of them were missing from [4]).

2 Preliminaries

We use ‖v‖ to denote Euclidean norms of vectors v, and ‖M‖2, ‖M‖F to denote spectral and

Frobenius norms of matrices M. For a tuple
−→
W = (W1, . . . ,WL) of matrices, we let ‖

−→
W‖2 =

max`∈[L] ‖W`‖2 and ‖
−→
W‖F = (

∑L
`=1 ‖W`‖2F)1/2.

We use φ(x) = max{0, x} to denote the ReLU function, and extend it to vectors v ∈ Rm by
letting φ(v) = (φ(v1), . . . , φ(vm)). We use 1event to denote the indicator function for event.

The training data consist of vector pairs {(xi, y∗i)}i∈[n], where each xi ∈ Rd is the feature vector
and y∗i is the label of the i-th training sample. We assume for simplicity that data are normalized:
‖xi‖ = 1. We make the following separable assumption on the training data (motivated by [32]):

Assumption 2.1. For every pair i, j ∈ [n], we have ‖xi − xj‖ ≥ δ.

To present the simplest possible proof, the main body of this paper only focuses on depth-L
feedforward fully-connected neural networks with an `2-regression task. Therefore, each y∗i ∈ Rd
is a target vector for the regression task. We explain how to extend it to more general settings in
Section 3.3 and the Appendix. For notational simplicity, we assume all the hidden layers have the
same number of neurons, and our results trivially generalize to each layer having different number
of neurons. Specifically, we focus on the following network

gi,0 = Axi hi,0 = φ(Axi) for i ∈ [n]

gi,` = W`hi,`−1 hi,` = φ(W`hi,`−1) for i ∈ [n] and ` ∈ [L]

yi = Bhi,L for i ∈ [n]

where A ∈ Rm×d is the weight matrix for the input layer, W` ∈ Rm×m is the weight matrix for
the `-th hidden layer, and B ∈ Rd×m is the weight matrix for the output layer. For notational
convenience in the proofs, we may also use hi,−1 to denote xi and W0 to denote A.

3

Definition 2.2 (diagonal sign matrix). For each i ∈ [n] and ` ∈ {0, 1, . . . , L}, we denote by Di,`

the diagonal sign matrix where (Di,`)k,k = 1(W`hi,`−1)k≥0 for each k ∈ [m].

As a result, we have hi,` = Di,`W`hi,`−1 = Di,`gi,` and (Di,`)k,k = 1(gi,`)k≥0.
We make the following standard choices of random initialization:

Definition 2.3. We say that
−→
W = (W1, . . . ,WL), A and B are at random initialization if

• [W`]i,j ∼ N (0, 2
m) for every i, j ∈ [m] and ` ∈ [L];

• Ai,j ∼ N (0, 2
m) for every (i, j) ∈ [m]× [d]; and

• Bi,j ∼ N (0, 1
d) for every (i, j) ∈ [d]× [m].

Assumption 2.4. Throughout this paper we assume m ≥ Ω
(
(δ−1nL logm)30 · d · log2 ε−1

)
. To

present the simplest proof, we did not try hard to improve such polynomial factors.

2.1 Objective and Gradient

Our regression objective is

F (
−→
W)

def
=

n∑
i=1

Fi(
−→
W) where Fi(

−→
W)

def
=

1

2
‖Bhi,L − y∗i ‖2 for each i ∈ [n]

We also denote by lossi
def
= Bhi,L − y∗i the loss vector for sample i. For simplicity, we only focus on

training
−→
W in this paper and thus leave A and B at random initialization. Our techniques can be

extended to the case when A, B and
−→
W are jointly trained.

Definition 2.5. For each ` ∈ {1, 2, · · · , L}, we define Backi,`
def
= BDi,LWL · · ·Di,`W` ∈ Rd×m and

for ` = L+ 1, we define Backi,` = B ∈ Rd×m.

Using this notation, one can calculate the gradient of F (
−→
W) as follows.

Fact 2.6. The gradient with respect to the k-th row of W` ∈ Rm×m is

∇[W`]kF (
−→
W) =

∑n
i=1(Back>i,`+1lossi)k · hi,`−1 · 1〈[W`]k,hi,`−1〉≥0

The gradient with respect to W` is

∇W`
F (
−→
W) =

∑n
i=1 Di,`(Back

>
i,`+1lossi)h

>
i,`−1

We denote by ∇F (
−→
W) =

(
∇W1F (

−→
W), . . . ,∇WL

F (
−→
W)

)
.

2.2 Probability

Fact 2.7. Suppose x ∼ N (0, σ2) is a Gaussian random variable. For any t ∈ (0, σ) we have

Pr[x ≥ t] ∈
[

1
2(1− 4

5
t
σ), 1

2(1− 2
3
t
σ)
]
.

Similarly, if x ∼ N (µ, σ2), for any t ∈ (0, σ), we have

Pr[|x| ≥ t] ∈
[
1− 4

5
t
σ , 1−

2
3
t
σ

]
.

4

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.2

0.4

0.6

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

G
R

A
D

IE
N

T
N

O
R

M

O
B

JE
C

TI
V

E
V

A
LU

E

OF EPOCHS

Objective Value

Gradient Norm

(b)

Figure 1: (a) A typical landscape of the training objective F (W) near a point W = Wt that is on the SGD training
trajectory. Here, the x and y axes represent the gradient direction ∇F (Wt) and the most negatively curved
direction (found by Oja’s method [2, 3]), and the z axis represents the objective value.
(b) A typical training curve for SGD, where the norm of (full) gradient decreases as objective value decreases.
The gradient norm does tend to zero because we are using the cross-entropy loss for multi-label classification
(see Section 3.3). The training accuracy already becomes 99.8%.
The used dataset is CIFAR10, and used the neural network is ResNet with 32 layers. Similar landscapes
can also be spotted for AlexNet, VGG, DenseNet, etc.

3 Our Results and Techniques

To present our result in the simplest possible way, we choose to mainly focus on fully-connected
L-layer neural networks with the `2 regression loss. We shall extend it to more general settings
(such as convolutional and residual networks and other losses) in Section 3.3. Our main results can
be stated as follows;

Theorem 1 (gradient descent). Suppose m ≥ Ω̃
(
(nL/δ)30 ·d · log2 ε−1

)
. Starting from random ini-

tialization, with probability at least 1−e−Ω(log2m), gradient descent with learning rate η = Θ
(

dδ
n4L2m

)
finds a point F (

−→
W) ≤ ε in T = Θ

(
n6L2

δ2 log 1
ε

)
iterations.

This is known as the linear convergence rate because ε drops exponentially fast in T . We have not
tried to improve the polynomial factors in m and T , and are aware of several ways to improve these
factors (but at the expense of complicating the proof).

Theorem 2 (stochastic gradient descent). Suppose m ≥ Ω̃
((nL/δ)30·d·log2 ε−1

b

)
and b ∈ [n]. Starting

from random initialization, with probability at least 1− e−Ω(log2m), stochastic gradient descent with

learning rate η = Θ(bδd
n5L2m log2m

) and mini-batch size b finds F (
−→
W) ≤ ε in T = Θ

(n7L2 log2m
bδ2 log 1

ε

)
iterations.

This is a nearly-linear convergence rate because T ∝ log 1
ε log2 log 1

ε . The reason for the additional

log2 log 1
ε factor is because we have a 1− e−Ω(log2 m) high confidence bound.

Remark. For experts in optimization theory, one may immediately question the accuracy of Theorem 2,
because SGD is known to converge at a slower rate T ∝ 1

poly(ε) even for convex functions. There

is no contradiction here. Imaging a strongly convex function f(x) =
∑n

i=1 fi(x) that has a com-
mon minimizer x∗ ∈ arg minx{fi(x)} for every i ∈ [n], then SGD is known to converge in a linear
convergence rate.

5

3.1 Technical Theorems

The main difficulty of this paper is to prove the following two technical theorems. The first one is
about the gradient bounds for points that are sufficiently close to the random initialization:

Theorem 3. With probability at least 1− e−Ω(m/poly(n,L,δ−1)) over the randomness of
−→
W(0),A,B,

it satisfies for every ` ∈ [L], every i ∈ [n], and every
−→
W with ‖

−→
W −

−→
W(0)‖2 ≤ 1

poly(n,L,δ−1)
,

‖∇F (
−→
W)‖2F ≤ O

(
F (
−→
W)× Lnm

d

)
and ‖∇F (

−→
W)‖2F ≥ Ω

(
F (
−→
W)× δm

dn2

)
.

The second one is about a smoothness property that is different but analogous to the classical
Lipschitz smoothness [38].

Theorem 4. With probability at least 1 − e−Ω(m/poly(L,logm)) over the randomness of
−→
W(0),A,B,

we have for every
−̆→
W ∈ (Rm×m)L with ‖

−̆→
W −

−→
W(0)‖2 ≤ 1

poly(L,logm) , and for every
−→
W′ ∈ (Rm×m)L

with ‖
−→
W′‖2 ≤ 1

poly(L,logm) ,

F (
−̆→
W +

−→
W′) ≤ F (

−̆→
W) + 〈∇F (

−̆→
W),

−→
W′〉+

poly(L)
√
nm logm√
d

· ‖
−→
W′‖2

(
F (
−̆→
W)

)1/2
+O

(nL2m

d

)
‖
−→
W′‖22

Intuitively, the second property of Theorem 3 says that as long as the gradient is large, the
objective value is also large. At the same time, Theorem 4 ensures that the objective is sufficiently
smooth, and thus moving in the gradient direction can indeed decrease the objective. The derivation
of our main Theorem 1 and 2 from technical Theorem 3 and 3 is quite straightforward, and can be
found in Section 9 and 10.

Remark. In our proofs, we show that GD and SGD can converge fast enough and thus the weights
stay close to random initialization, by a seemingly small spectral norm bound 1

poly(n,L,δ−1)
. In fact

this bound is large enough to totally change the outputs and fit the training data, because weights
are randomly initialized (per entry) at around 1√

m
for m being large.

In practice, we acknowledge that one often goes beyond this theory-predicted spectral-norm
boundary. However, quite interestingly, we still observe Theorem 3 and 4 happen in practice at

least for vision tasks. In Figure 1(b), we show the typical landscape near a point
−→
W on the

SGD training trajectory. The gradient is sufficiently large and going in its direction can indeed
decrease the objective; in contrast, though the objective is non-convex, the negative curvature of its
“Hessian” is not significant comparing to gradient. From Figure 1(b) we also see that the objective
function is sufficiently smooth (at least in the two interested dimensions that we plot).

3.2 Main Techniques

Our proof to the Theorem 3 and 4 mostly consist of the following steps.

Step 1: properties at random initialization. Let
−→
W =

−→
W(0) be at random initialization and

hi,` and Di,` be defined with respect to
−→
W. We first show that forward propagation neither explode

or vanish. That is, ‖hi,`‖ ≈ 1 for all i ∈ [n] and ` ∈ [L]. This is basically because for a fixed y, we
have ‖Wy‖2 is around 2, and if its signs are sufficiently random, then ReLU activation kills half of
the norm, that is ‖φ(Wy)‖ ≈ 1. Then applying induction finishes the proof.

Analyzing forward propagation is not enough. We also need spectral norm bounds on the back-
ward matrix ‖BDi,LWL · · ·Di,aWa‖2 ≤ O(

√
m/d), and on the intermediate matrix ‖Di,aWa · · ·Di,bWb‖2 ≤

O(
√
L) for every a, b ∈ [L]. Note that if one naively bounds the spectral norm by induction, then

6

‖Di,aWa‖2 ≈ 2 and it will exponentially blow up! Our more careful analysis ensures that even
when L layers are stacked together, there is no exponential blow up in L.

The final lemma in this step proves that, as long as ‖xi − xj‖ ≥ δ, then for each layer ` ∈ [L]
it also satisfies ‖hi,` − hj,`‖ ≥ Ω(δ). This can be proved by a careful induction. Details are in
Section 4.

Step 2: stability after adversarial perturbation. We show that for every
−→
W that is “close”

to initialization, meaning ‖W`−W
(0)
` ‖2 ≤ ω for every ` and for some ω ≤ 1

poly(L) , then the number

of sign changes ‖Di,` −D
(0)
i,` ‖0 is at most O(mω2/3L), and the perturbation amount ‖hi,` − h

(0)
i,` ‖

is at most O(ωL5/2). We emphasize here that
−→
W may depend on the randomness of W(0) so one

cannot use union bound. We call this “forward stability”, and it is one of the most technical proof
of this paper.

Another main result in this step is to show that the backward matrix BDi,LWL · · ·Di,aWa

does not change by more than O(ω1/3L2
√
m/d) in spectral norm. (Recall that in the Step 1 we

shown that this matrix is of spectral norm O(
√
m/d); thus as long as ω1/3L2 � 1, this change is

somewhat negligible. Details are in Section 5.

Step 3: gradient bound. The hard part of Theorem 3 is to show gradient lower bound. For this
purpose, recall from Fact 2.6 that each term in the gradient can be written as Di,`(Back

>
i,`+1lossi)h

>
i,`−1

where the backward matrix is applied to a loss vector lossi. To show that this is large, intuitively,
one wishes to show (Back>i,`+1lossi) and hi,`−1 are both vectors with large Euclidean norm. How-
ever, the main difficulty is that in calculating gradient, different samples i ∈ [n] may form different
gradient matrices and, when summing together, they could in principle each other and possibly
even form a zero matrix. To deal with this issue, we use ‖hi,` − hj,`‖ ≥ Ω(δ) from Step 1. In other
words, even if the gradient matrix with respect to one sample is fixed, that with respect to other
samples still have sufficient randomness so as the final gradient matrix will not be zero. This idea
comes from the prior work [32] and helps us prove Theorem 3.1 Details in Appendix 6 and 7.

Step 4: smoothness. In order to prove Theorem 4, one needs to argue, if we are currently at
−̆→
W and perturb it by

−→
W′, then how much does the objective change in second and higher order

terms. This is different from our stability theory in Step 2, because Step 2 is regarding having a

perturbation on
−→
W(0); in contrast, in Theorem 4 we need a (small) perturbation

−→
W′ on top of

−̆→
W,

which may already be a point perturbed from
−→
W(0). Nevertheless, we still manage to show that, if

h̆i,` is calculated on
−̆→
W and hi,` is calculated on

−̆→
W +

−→
W′, then ‖hi,` − h̆i,`‖ ≤ O(L1.5)‖W′‖2. This

is proportional to the small perturbation ‖W′‖2 so, along with other properties to prove, ensures
smoothness. This explains Theorem 4 and details are in Section 8.

3.3 Notable Extensions

Our Step 1 through Step 4 in Section 3.2 in fact give rise to a general plan for proving the training
convergence of any neural network (at least with respect to the ReLU activation). Thus, it is
expected that it can be generalized to many other settings. Not only we can have different number
of neurons each layer, our theorems can be extended at least in the following three major directions.2

1This is the only technical idea that we borrowed from Li and Liang [32], which is the over-parameterization
theory for 2-layer neural networks.

2In principle, each such proof may require a careful rewriting of the main body of this paper. We choose to sketch
only the proof difference in order to keep this paper short. If there is sufficient interest from the readers, we can
consider adding the full proofs in the future revision of this paper.

7

Different loss functions. There is absolutely no need to restrict our attention only to `2 regres-
sion loss. We prove in Appendix A that, for any Lipschitz-smooth loss function f):

• If f is cross-entropy for multi-label classification, then we achieve 100% training accuracy in
at most T = O(n6L2/δ2) iterations.

• If f is gradient dominant (a.k.a. Polyak- Lojasiewicz) but possibly non-convex, we still have
linear convergence.3

• If f is convex, then we have convergence rate T ∝ 1
ε .

• If f is non-convex, then we have convergence rate T ∝ 1
ε2

for finding ‖∇f‖ ≤ ε.4

Convolutional neural networks (CNN). There are lots of different ways to design CNN
and each of them may require somewhat different proofs. In Appendix B, we study the case when
A,W1, . . . ,WL−1 are convolutional while WL and B are fully connected. We assume for notational
simplicity that each hidden layer has d points each with m channels. (In vision tasks, a point is a
pixel). In the most general setting, these values d and m can vary across layers. Our Theorem 5
says that, as long as m is polynomially large, GD and SGD find an ε-error solution for `2 regression
in T = poly(n,L,d)

δ2 log 1
ε iterations.

Residual neural networks (ResNet). There are lots of different ways to design ResNet and
each of them may require somewhat different proofs. In symbols, between two layers, one may study
h` = φ(h`−1+Wh`−1), h` = φ(h`−1+W2φ(W1h`−1)), or even h` = φ(h`−1+W3φ(W2φ(W1h`−1))).
Since the main purpose here is to illustrate the generality of our techniques but not to attack
each specific setting, in Appendix C, we choose to consider the simplest residual setting h` =
φ(h`−1 + Wh`−1) (that was also studied for instance by theoretical work [24]). With appropriately
chosen random initialization, our Theorem C shows that one can also have linear convergence rate
T = O

(
n6L2

δ2 log 1
ε

)
in the over-parameterized setting.

4 Properties at Random Initialization

Throughout this section we assume
−→
W,A and B are randomly generated according to Def. 2.3.

The diagonal sign matrices Di,` are also determined according to this random initialization.

4.1 Forward Propagation

Lemma 4.1 (forward propagation). If ε ∈ (0, 1], with probability at least 1 − nLe−Ω(mε2/L) over

the randomness of A ∈ Rm×d and
−→
W ∈ (Rm×m)L, we have

∀i ∈ [n], ` ∈ {0, 1, . . . , L} : ‖hi,`‖ ∈ [1− ε, 1 + ε] .

Before proving Lemma 4.1 we note a simple mathematical fact:

Fact 4.2. Let h, q ∈ Rp be fixed vectors, W ∈ Rm×p be random matrix with i.i.d. entries Wi,j ∼
N (0, 2

m), and vector v ∈ Rm defined as vi = φ((Wh)i) = 1(W(h+q))i≥0(Wh)i. Then, the absolute

values of coordinates |vi| follow from from i.i.d. folded Gaussian distributions |N (0, ‖h‖
2

m)|. As a

result, m‖v‖2
‖h‖2 is in distribution identical to chi-square distribution χ2

m.
3Note that the loss function when combined with the neural network together f(Bhi,L) is not gradient dominant.

Therefore, one cannot apply classical theory on gradient dominant functions to derive our same result.
4Again, this cannot be derived from classical theory of finding approximate saddle points for non-convex functions,

because weights
−→
W with small ‖∇f(Bhi,L)‖ is a very different (usually much harder) task comparing to having small

gradient with respect to
−→
W for the entire composite function f(Bhi,L).

8

Proof of Fact 4.2. We assume each vector Wi is generated by first generating a gaussian vector
g ∼ N (0, 2I

m) and then setting Wi = ±g where the sign is chosen with half-half probability. Now,

|〈Wi, h〉| = |〈g, h〉| only depends on g, and is in distribution identical to |N (0, 2‖h‖2
m)|. Next, after

the sign is determined, the indicator 1〈Wi,h+q〉≥0 is 1 with half probability and 0 with another half.

Therefore, |vi| is in distribution identical to |N (0, ‖h‖
2

m)|. �

Proof of Lemma 4.1. We only prove Lemma 4.1 for a fixed i ∈ [n] and ` ∈ {0, 1, 2, . . . , L} because
we can apply union bound at the end. Below, we drop the subscript i for notational convenience,
and write hi,` and xi as h` and x respectively.

According to Fact 4.2, fixing any h`−1 and letting W` be the only source of randomness, we

have ∆`
def
= ‖h`‖2
‖h`−1‖2

is distributed according to a χ2
m random variable divided by m. Therefore, we

have

log ‖hb−1‖2 = log ‖x‖2 +
b−1∑
`=0

log ∆` =
b−1∑
`=0

log ∆` .

One can verify that E[log ∆`] = log 2
m + ψ(m2) where ψ(h) = Γ′(h)

Γ(h) is the digamma function. Using

the bound log h− 1
h ≤ ψ(h) ≤ log h− 1

2h of digamma function, we have

− 2

m
≤ E[log ∆`] ≤ −

1

m
. (4.1)

Let X = log ∆`, the following three case analysis proves that X is a m
8 -subgaussian random variable.

• Suppose λ < 0. Recall tail bound of chi-square distribution Pr[∆` ≤ h] ≤ (he1−h)m/2 when
h ∈ [0, 1]. Using this, we derive

Pr[log ∆` ≤ E[log ∆`]− λ] ≤ Pr[∆` ≤ e−λ] ≤ (e1−λ−e−λ)m/2 ≤ e−λ2m/4.

• Suppose λ ∈ [0, 4
m]. Using m ≥ 4, we have

Pr[log ∆` ≥ E[log ∆`] + λ] ≤ Pr[log ∆` ≥ −2/m] ≤ Pr[∆` ≥ e−2/m] ≤ Pr[∆` ≥ 1− 2/m]

=
Γ
(
m
2 ,

m−2
2

)
Γ
(
m
2

) ≤ 0.736 ≤ e−1/m ≤ e−λ2m/16.

• Suppose λ ≥ 4
m . Recall tail bound of chi-square distribution Pr[∆` ≥ h] ≤ (he1−h)m/2 when

h ≥ 1. Using this, we derive

Pr[log ∆` ≥ E[log ∆`] + λ] ≤ Pr[log ∆` ≥ −
2

m
+ λ] ≤ Pr[∆` ≥ eλ−2/m]

≤ (e1+λ−2/m−eλ−2/m
)m/2 ≤ (e−(λ−2/m)2/2)m/2

≤ (e−λ
2/8)m/2 = e−λ

2m/16.

Using martingale on subgaussian variables (see for instance [43]), we have for ε > 0,

Pr

[∣∣∣∣∣
b−1∑
`=0

log ∆` − E[log ∆`]

∣∣∣∣∣ > ε

]
≤ e−Ω(ε2m/L).

Combining this with (4.1), we have ‖hb−1‖2 ∈
[
1−ε, 1+ε

]
with probability at least 1−e−Ω(ε2m/L).

�

9

4.2 Intermediate Layers

Lemma 4.3 (intermediate layers). Suppose m ≥ Ω(nL log(nL)). With probability at least ≥ 1 −
e−Ω(m/L) over the randomness of

−→
W ∈ (Rm×m)L, for all i ∈ [n], 1 ≤ a ≤ b ≤ L,

(a) ‖WbDi,b−1Wb−1 · · ·Di,aWa‖2 ≤ O(
√
L).

(b) ‖WbDi,b−1Wb−1 · · ·Di,aWav‖ ≤ 2‖v‖ for all vectors v with ‖v‖0 ≤ O
(

m
L logm

)
.

(c) ‖u>WbDi,b−1Wb−1 · · ·Di,aWa‖ ≤ O(1)‖u‖ for all vectors u with ‖u‖0 ≤ O
(

m
L logm

)
.

For any integer s with 1 ≤ s ≤ O
(

m
L logm

)
, with probability at least 1− e−Ω(s logm) over the random-

ness of
−→
W ∈ (Rm×m)L:

(d) |u>WbDi,b−1Wb−1 · · ·Di,aWav| ≤ ‖u‖‖v‖·O
(√s logm√

m

)
for all vectors u, v with ‖u‖0, ‖v‖0 ≤ s.

Proof. Again we prove the lemma for fixed i, a and b because we can take a union bound at the
end. We drop the subscript i for notational convenience.

(a) Let za−1 be any fixed unit vector, and define z` = D`W` · · ·DaWaza−1. According to Fact 4.2

again, fixing any z`−1 and letting W` be the only source of randomness, we have ∆`
def
= ‖z`‖2
‖z`−1‖2

is distributed according to a χ2
m random variable divided by m. Therefore, we have

log ‖zb−1‖2 = log ‖za−1‖2 +
b−1∑
`=a

log ∆` =
b−1∑
`=a

log ∆` .

Using exactly the same proof as Lemma 4.1, we have

‖zb−1‖2 = ‖WbDb−1Wb−1 · · ·DaWaza−1‖2 ∈
[
1− 1/3, 1 + 1/3

]
with probability at least 1 − e−Ω(m/L). As a result, if we fix a subset M ⊆ [m] of cardinality
|M | ≤ O(m/L), taking ε-net, we know that with probability at least e−Ω(m/L), it satisfies

‖WbDb−1Wb−1 · · ·DaWau‖ ≤ 2‖u‖ (4.2)

for all vectors u whose coordinates are zeros outside M . Now, for an arbitrary unit vector
v ∈ Rm, we can decompose it as v = u1 + · · ·+ uN where N = O(L), each uj is non-zero only
at O(m/L) coordinates, and the vectors u1, . . . , uN are non-zeros on different coordinates. We
can apply (4.2) for each each such uj and triangle inequality. This gives

‖WbDb−1Wb−1 · · ·DaWav‖ ≤ 2
N∑
j=1

‖uj‖ ≤ 2
√
N
(N∑
j=1

‖uj‖2
)1/2

≤ O(
√
L) · ‖v‖.

(b) The proof of Lemma 4.3b is the same as Lemma 4.3a, except to take ε-net over all O
(

m
L logm

)
-

sparse vectors u and then applying union bound.

(c) Similar to the proof of Lemma 4.3a, for any fixed vector v, we have that with probability at
least 1− e−Ω(m/L) (over the randomness of Wb−1, . . . ,W1,A),

‖Db−1Wb−1 · · ·DaWav‖ ≤ 2‖v‖.

Conditioning on this event happens, using the randomness of Wb, we have for each fixed vector
u ∈ Rm, we have

Pr
Wb

[∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWav

)∣∣∣ ≥ 4√
L
‖u‖‖v‖

]
≤ e−Ω(m/L).

10

Now consider the case that v is a sparse vector that is only non-zero over some fixed index set
M ⊆ [m] (with |M | ≤ O(m/L)), and that u is of sparsity s = O

(
m

L logm

)
. Taking ε-net over all

such possible vectors u and v, we have with probability at least 1 − e−Ω(m/L), for all vectors
u ∈ Rm with ‖u‖0 ≤ s and all vectors v ∈ Rm that have non-zeros only in M ,∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWav

)∣∣∣ ≤ 8√
L
‖u‖‖v‖ . (4.3)

Back to the case when v is an arbitrary vector, we can partition [m] into N index sets [m] =
M1∪M2∪ · · ·∪MN and write v = v1 + v2 + · · ·+ vN , where N = O(L) and each vj is non-zero
only in Mj . By applying (4.3) for N times and using triangle inequality, we have∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWav

)∣∣∣ ≤ N∑
j=1

∣∣∣u>Wb

(
Db−1Wb−1 · · ·DaWavj

)∣∣∣
≤ 8√

L
‖u‖ ×

N∑
j=1

‖vj‖ ≤ O(1)× ‖u‖‖v‖ .

(d) We apply the same proof as Lemma 4.3c with minor changes to the parameters. We can show
with probability at least 1− e−Ω(m/L) (over the randomness of Wb−1, . . . ,W1,A), for a fixed
vector v ∈ Rm:

‖Db−1Wb−1 · · ·DaWav‖ ≤ 2‖v‖ .
Further using the randomness of Wb, we have that conditioning on the above event, fixing any
u ∈ Rm, with probability at least 1− e−Ω(s logm) over the randomness of Wb:∣∣uWb

(
Db−1Wb−1 · · ·DaWav

)∣∣ ≤ (s logm

m

)1/2 ×O(‖v‖‖u‖) .
Finally, taking ε-net over all possible vectors u, v that are s sparse, we have the desired result.

�

4.3 Backward Propagation

Lemma 4.4 (backward propagation). Suppose m ≥ Ω(nL log(nL)). If s ≥ Ω
(

d
logm

)
and s ≤

O
(

m
L logm

)
, then with probability at least 1− e−Ω(s logm), for all i ∈ [n], a = 1, 2, . . . , L+ 1,

(a) |v>BDi,LWL · · ·Di,aWau| ≤ O
(√s logm√

d

)
‖v‖‖u‖ for all v ∈ Rd and all u ∈ Rm with ‖u‖0 ≤ s.

With probability at least ≥ 1− e−Ω(m/L), for all i ∈ [n], 1 ≤ a ≤ L,

(b) ‖v>BDi,LWL · · ·Di,aWa‖ ≤ O(
√
m/d)‖v‖ for all vectors u ∈ Rd if d ≤ O

(
m

L logm

)
.

Proof. (a) The proof follows the same idea of Lemma 4.3 (but choosing b = L). Given any
fixed vector u, we have with probability at least 1 − e−Ω(m/L) (over the randomness of
WL, . . . ,W1,A),

‖DLWL · · ·DaWau‖ ≤ 2‖u‖ .
Conditioning on this event happens, using the randomness of B (recall each entry of B follows
from N (0, 1

d)), we have for each fixed vector u ∈ Rm,

Pr
B

[∣∣∣v>B
(
DLWL · · ·DaWau

)∣∣∣ ≥ √s logm√
d

·O(‖u‖‖v‖)
]
≤ e−Ω(s logm) .

11

Finally, one can take ε-net over all s-sparse vectors u ∈ Rm and all vectors v ∈ Rd and apply
union bound.

(b) The proof is identical to Lemma 4.3c, except the fact that each entry of B follows from N (0, 1
d)

instead of N (0, 2
m).

�

4.4 δ-Separateness

Lemma 4.5 (δ-separateness). Let m ≥ Ω
(L log(nL)

δ6

)
. There exists some constant C > 1 so that, if

δ ≤ 1
CL , ‖x1‖ = · · · = ‖xn‖ = 1 and ‖xi − xj‖ ≥ δ for every pair i, j ∈ [n], then with probability at

least 1− e−Ω(δ6m/L), we have :

∀i 6= j ∈ [n], ∀` ∈ {0, 1, . . . , L} : ‖(I−
hi,`h

>
i,`

‖hi,`‖2
)hj,`‖ ≥

δ

2
.

Proof of Lemma 4.5. We first apply Lemma 4.1 to show that ‖hi,`‖ ∈ [1− δ3/10, 1 + δ3/10]. Next
we prove Lemma 4.5 by induction.

In the base case of ` = −1, since ‖xi − xj‖ ≥ δ by our assumption, we already have

‖(I−
hi,`h

>
i,`

‖hi,`‖2
)hj,`‖2 = ‖(I− xix

>
i

‖xi‖2
)xj‖2 = ‖xj − xi · 〈xi, xj〉‖2 = 1−

(
〈xi, xj〉

)2 ≥ 3

4
δ2 .

Suppose hi,`−1 and hj,`−1 are fixed and satisfies ‖(I− hi,`−1h
>
i,`−1

‖hi,`−1‖2
)hj,`−1‖2 ≥ δ2

`−1 for some δ`−1 ≥ δ/2.

We write W`hi,`−1 = ~g1 where ~g1 ∼ N(0,
2‖hi,`−1‖2

m I).

Denoting by ĥ = hi,`−1/‖hi,`−1‖, we can write W`hj,`−1 = W`ĥĥ
>hj,`−1 + W`

(
I− ĥĥ>

)
hj,`−1

and the randomness of the two terms are independent. In particular, we can write

W`hj,`−1 =
〈hi,`−1, hj,`−1〉
‖hi,`−1‖2

· ~g1 + ‖
(
I− ĥĥ>

)
hj,`−1‖ · ~g2 (4.4)

where ~g2 ∼ N (0, 2
mI) is independent of g1. Applying Claim 4.6 for each coordinate k ∈ [m] (and

re-scaling by m
‖hi,`−1‖2

, we have

E[(φ(W`hi,`−1)− φ(W`hj,`−1))2
k] ≥

(
δ`−1

‖hi,`−1‖

)2(
1− δ`−1

‖hi,`−1‖

)
·
‖hi,`−1‖2

m
≥
δ2
`−1 (1−O(δ`−1))

m

Applying Chernoff bound (on independent subgaussian random variables), we have with probability

at least 1− e−Ω(δ4
`−1m),5

‖hi,` − hj,`‖2 = ‖φ(W`hi,`−1)− φ(W`hj,`−1)‖2 ≥ δ2
`−1 (1−O(δ`−1)) .

Since ‖hi,`‖ and ‖hj,`‖ are close to 1, we have∥∥∥∥∥
(

I−
hi,`h

>
i,`

‖hi,`‖2

)
hj,`

∥∥∥∥∥
2

= ‖hj,`‖2 −
〈hi,`, hj,`〉2

‖hi,`‖2

= ‖hj,`‖2 +
‖hi,` − hj,`‖2 − ‖hi,`‖2 − ‖hj,`‖2

2‖hi,`‖2
≥ δ2

`−1(1−O(δ`−1)) . �
5More specifically, we can let Xk = m (φ(W`hi,`−1)− φ(W`hj,`−1))2

k which is O(1)-subgaussian and let X =

X1 + · · ·+Xm. We have Pr[X ≥ E[X](1− δ`−1)] ≥ 1− e−Ω(δ2`−1 E[X]).

12

4.4.1 Auxiliary Claim

The following mathematical fact is needed in the proof of Lemma 4.5. Its proof is by carefully
integrating the PDF of Gaussian distribution.

Claim 4.6. Given g1, g2 ∼ N (0, 2), constant α ∈ R and δ ∈ [0, 1
6], we have

E
g1,g2

[
(φ(g1)− φ(αg1 + δg2))2

]
≥ δ2(1− δ) .

Proof of Claim 4.6. We first tackle two easy cases.
Suppose a < 3

4 . If so, then with probability at least 0.3 we have g1 > 1. If this happens, then
with probability at least 1/2 we have g2 < 0. If both happens, we have

φ(g1)− φ(αg1 + δg2) = g1 − φ(αg1 + δg2) ≥ g1 − αg1 ≥
1

4
.

Therefore, we have if a < 3
4 then the expectation is at least 0.03. For similar reason, if a > 5

4 we
also have the expectation is at least 0.03. In the remainder of the proof, we assume α ∈

[
3
4 ,

5
4

]
.

If g1 ≥ 0, we have

f(g1)
def
= E

g2

[
(φ(g1)− φ(αg1 + δg2))2 | g1 ≥ 0

]
=

∫ ∞
0

(x− g1)2 exp
(
− (x−αg1)2

4δ2

)
√

4πδ2
dx

=
(α− 2)δg1e

−α
2g21
4δ2

√
π

+
1

2

(
(α− 1)2g2

1 + 2δ2
) (

erf
(αg1

2δ

)
+ 1
)
.

If g1 < 0, we have

f(g1)
def
= E

g2

[
(φ(g1)− φ(αg1 + δg2))2 | g1 < 0

]
=

∫ ∞
0

x2 exp
(
− (x−αg1)2

4δ2

)
√

4πδ2
dx

=
1

2

(
α2g2

1 + 2δ2
) (

erf
(αg1

2δ

)
+ 1
)

+
αδg1e

−α
2g21
4δ2

√
π

.

Overall, we have

E
g1,g2

[
(φ(g1)− φ(αg1 + δg2))2

]
=

∫ ∞
0

f(g) exp
(
−g2

4

)
√

4π
dg +

∫ 0

−∞

f(g) exp
(
−g2

4

)
√

4π
dg

=

(
(α− 1)2αδ

π (α2 + δ2)
+

(α− 2)δ3

π (α2 + δ2)
+

1

2

(
(α− 1)2 + δ2

)
+

1

π

(
(α− 1)2 + δ2

)
arctan

(α
δ

))
+

1

2π

(
π
(
α2 + δ2

)
− 2

(
α2 + δ2

)
arctan

(α
δ

)
− 2αδ

)
=
δ
(
−2α2 + α− 2δ2

)
π (α2 + δ2)

+
(1− 2α) arctan

(
α
δ

)
π

+ (α− 1)α+ δ2 +
1

2

=
(
α2 − 2α+ 1

)
+ δ2 +

2

π

∞∑
k=1

(−1)k
(α+ k)δ2k+1

(2k + 1)α2k+1
.

13

It is easy to see that, as long as δ ≤ α, we always have (α+k)δ2k+1

(2k+1)α2k+1 ≥
(α+k+1)δ2k+3

(2k+3)α2k+3 . Therefore

E
g1,g2

[
(φ(g1)− φ(αg1 + δg2))2

]
≥
(
α2 − 2α+ 1

)
+ δ2 − 2

π

(α+ 1)δ3

3α3
≥ δ2(1− δ) . �

5 Stability against Adversarial Weight Perturbations

Let A, B and
−→
W(0) = (W

(0)
1 , . . . ,W

(0)
L) be matrices at random initialization (see Def. 2.3), and

throughout this section, we consider (adversarially) perturbing
−→
W by

−→
W′ = (W′

1, . . . ,W
′
L) satis-

fying ‖
−→
W′‖2 ≤ ω (meaning, ‖W′

`‖2 ≤ ω for every ` ∈ [L]). We stick to the following notations in
this section

Definition 5.1.

g
(0)
i,0 = Axi gi,0 = Axi for i ∈ [n]

h
(0)
i,0 = φ(Axi) hi,0 = φ(Axi) for i ∈ [n]

g
(0)
i,` = W

(0)
` hi,`−1 gi,` = (W

(0)
` + W′

`)hi,`−1 for i ∈ [n] and ` ∈ [L]

h
(0)
i,` = φ(W

(0)
` hi,`−1) hi,` = φ((W

(0)
` + W′

`)hi,`−1) for i ∈ [n] and ` ∈ [L]

Define diagonal matrices D
(0)
i,` ∈ Rm×m and Di,` ∈ Rm×m by letting (D

(0)
i,`)k,k = 1

(g
(0)
i,`)k≥0

and

(Di,`)k,k = 1(gi,`)k≥0,∀k ∈ [m]. Accordingly, we let g′i,` = gi,` − g
(0)
i,` , h′i,` = hi,` − h

(0)
i,` , and diagonal

matrix D′i,` = Di,` −D
(0)
i,` .

5.1 Forward Perturbation

Lemma 5.2 (forward perturbation). Suppose ω ≤ 1
CL9/2 log3 m

for some sufficiently large constant

C > 1. With probability at least 1− e−Ω(mω2/3L), for every
−→
W′ satisfying ‖

−→
W′‖2 ≤ ω,

(a) g′i,` can be written as g′i,` = g′i,`,1+g′i,`,2 where ‖g′i,`,1‖ ≤ O(ωL3/2) and ‖g′i,`,2‖∞ ≤ O
(
ωL5/2

√
logm√
m

)
(b) ‖D′i,`‖0 ≤ O(mω2/3L) and ‖D′i,`gi,`‖ ≤ O(ωL3/2).

(c) ‖g′i,`‖, ‖h′i,`‖ ≤ O(ωL5/2
√

logm).

Proof of Lemma 5.2. In our proof below, we drop the subscript with respect to i for notational
simplicity, and one can always take a union bound over all possible indices i at the end.

Using Lemma 4.1, we can first assume that ‖h(0)
` ‖, ‖g

(0)
` ‖ ∈ [2

3 ,
4
3] for all `. This happens with

probability at least 1− e−Ω(m/L). We also assume
∥∥∏a+1

b=` W
(0)
b D

(0)
b−1

∥∥
2
≤ c1

√
L where c1 > 0 is the

hidden constant in Lemma 4.3a.
We shall inductively prove Lemma 5.2. In the base case ` = 0, we have g′` = 0 so all the

statements holds. In the remainder of the proof, we assume that Lemma 5.2 holds for `− 1 and we

14

shall prove the three statements for layer `. We first carefully rewrite:

g′` = (W
(0)
` + W′

`)(D
(0)
`−1 + D′`−1)(g

(0)
`−1 + g′`−1)−W

(0)
` D

(0)
`−1g

(0)
`−1

= W′
`(D

(0)
`−1 + D′`−1)(g

(0)
`−1 + g′`−1) + W

(0)
` D′`−1(g

(0)
`−1 + g′`−1) + W

(0)
` D

(0)
`−1g

′
`−1

= · · ·

=
∑̀
a=1

(a+1∏
b=`

W
(0)
b D

(0)
b−1

)(
W′

a(D
(0)
a−1 + D′a−1)(g

(0)
a−1 + g′a−1)︸ ︷︷ ︸

(♦)

+ W(0)
a D′a−1(g

(0)
a−1 + g′a−1)︸ ︷︷ ︸

(♥)

)
For each term in (♦), we have∥∥∥(a+1∏

b=`

W
(0)
b D

(0)
b−1

)(
W′

a(D
(0)
a−1 + D′a−1)(g

(0)
a−1 + g′a−1)

)∥∥∥
≤
∥∥∥ a+1∏
b=`

W
(0)
b D

(0)
b−1

∥∥∥
2
·
∥∥∥W′

a

∥∥∥
2
·
∥∥∥D(0)

a−1 + D′a−1

∥∥∥
2
·
∥∥∥g(0)

a−1 + g′a−1

∥∥∥
¬
≤ c1 · ω · 1 ·

∥∥∥g(0)
a−1 + g′a−1

∥∥∥ ­
≤ 2c1

√
Lω +O

(
ω2L3

√
logm

)
.

Above, inequality ¬ uses Lemma 4.3a and ‖D(0)
a−1 + D′a−1‖2 = ‖Da−1‖2 ≤ 1; and inequality ­ has

used ‖g(0)
` ‖ ≤ 2 and our inductive assumption Lemma 5.2c. By triangle inequality, we have

g′` = −→err1 +
∑̀
a=1

(a+1∏
b=`

W
(0)
b D

(0)
b−1

)(
W(0)

a D′a−1(g
(0)
a−1 + g′a−1)︸ ︷︷ ︸

(♥)

)
where ‖−→err1‖ ≤ 2c1L

1.5ω + O
(
ω2L4

√
logm

)
. We next look at each term in (♥). For each a =

2, 3, . . . , `, we let

x
def
= D′a−1(g

(0)
a−1 + g′a−1) = D′a−1(W

(0)
a−1h

(0)
a−1 + g′a−1) .

If we re-scale x by 1

‖h(0)
a−1‖

(which is a constant in [0.75, 1.5]), we can apply Claim 5.3 (with parameter

choices in Corollary 5.4) on x and this tells us, with probability at least 1− e−Ω(mω2/3L):

‖x‖0 ≤ O(mω2/3L) and ‖x‖ ≤ O(ωL3/2). (5.1)

Next, each term in (♥) contributes to g′` by

y =
(a+1∏
b=`

W
(0)
b D

(0)
b−1

)
W(0)

a

(
D′a−1(g

(0)
a−1 + g′a−1)

)
using (5.1) and Claim 5.5 (with s = O(mω2/3L)), we have with probability at least 1− e−Ω(s logm),
one can write y = y1 + y2 for

‖y1‖ ≤ O
(
ωL3/2 · L1/2ω1/3 logm

)
and ‖y2‖∞ ≤ O

(
ωL3/2 ·

√
logm√
m

)
.

And therefore by triangle inequality we can write

g′` = −→err1 +−→err2 +−→err3

where ‖−→err2‖ ≤ O
(
L·ωL3/2 ·L1/2ω1/3 logm

)
= O

(
ω4/3L3 logm

)
and ‖−→err3‖∞ ≤ O

(
L·ωL3/2 ·

√
logm√
m

)
.

15

Together with the upper bound on −→err1, we have

‖−→err1 +−→err2‖ ≤ 2c1L
1.5ω +O

(
ω2L4

√
logm+ ω4/3L3 logm

)
.

Therefore, when ω is sufficiently small, the above term is at most 4c1L
1.5ω. This finishes the proof

of Lemma 5.2a for layer `. Finally,

• Lemma 5.2b is due to (5.1),

• g′` part of Lemma 5.2c is a simple corollary of Lemma 5.2a, and

• h′` part of Lemma 5.2c is due to h′` = D`g
′
` + D′`g` together with the bound on ‖g′`‖ and the

bound on D′`g` from Lemma 5.2b.

�

5.1.1 Auxiliary Claim

Claim 5.3. Suppose W(0) ∈ Rm×m is a random matrix with entries drawn i.i.d. from N
(
0, 2

m

)
,

and suppose ωL3/2 ≤ O(1). With probability at least 1− e−Ω(mω2/3L), the following holds.
For all unit vector h(0) ∈ Rm, and for all g′ ∈ Rm that can be written as

g′ = g′1 + g′2 where ‖g′1‖ ≤ O(1) and ‖g′2‖∞ ≤
1

4
√
m

.

Let D′ ∈ Rm×m be the diagonal matrix where (D′)k,k = 1(W(0)h(0)+g′)k≥0−1(W(0)h(0))k≥0,∀k ∈ [m].

Then, letting x = D′(W(0)h(0) + g′) ∈ Rm, we have

‖x‖0 ≤ ‖D′‖0 ≤ O(m‖g′1‖2/3 + ‖g′2‖∞m3/2) and ‖x‖ ≤ O(‖g′1‖+ ‖g′2‖3/2∞ m3/4) .

Corollary 5.4. In particular, if ‖g′1‖ ≤ O(ωL3/2) and ‖g′2‖∞ ≤ O
(
ω2/3L
m1/2

)
, then

‖x‖0 ≤ O(mω2/3L) and ‖x‖ ≤ O(ωL3/2) .

Proof of Claim 5.3. We first observe g(0) = W(0)h(0) follows from N
(
0, 2I

m

)
regardless of the choice

of h(0). Therefore, in the remainder of the proof, we just focus on the randomness of g(0).
We also observe that (D′)j,j is non-zero for some diagonal j ∈ [m] only if

|(g′1 + g′2)j | > |(g(0))j | . (5.2)

Let ξ ≤ 1
2
√
m

be a parameter to be chosen later. We shall make sure that ‖g′2‖∞ ≤ ξ/2.

• We denote by S1 ⊆ [m] the index sets where j satisfies |(g(0))j | ≤ ξ. Since we know (g(0))j ∼
N (0, 2/m), we have Pr[|(g(0))j | ≤ ξ] ≤ O (ξ

√
m) for each j ∈ [m]. Using Chernoff bound for

all j ∈ [m], we have with probability at least 1− e−Ω(m3/2ξ),

|S1| =
∣∣∣{i ∈ [m] : |(g(0))j | ≤ ξ

}∣∣∣ ≤ O(ξm3/2) .

Now, for each j ∈ S1 such that xj 6= 0, we must have |xj | = |(g(0) + g′1 + g′2)j | ≤ |(g′1)j | + 2ξ
so we can calculate the `2 norm of x on S1:∑

i∈S1

x2
j ≤ O(‖g′1‖2 + ξ2|S1|) ≤ O(‖g′1‖2 + ξ3m3/2) .

• We denote by S2 ⊆ [m] \ S1 the index set of all j ∈ [m] \ S1 where xj 6= 0. Using (5.2), we
have for each j ∈ S2:

|(g′1)j | ≥ |(g(0))j | − |(g′2)j | ≥ ξ − ‖g′2‖∞ ≥ ξ/2 .

16

This means

|S2| ≤
4‖g′1‖2

ξ2
.

Now, for each j ∈ S2 where xj 6= 0, we know that the signs of (g(0) + g′1 + g′2)j and (g(0))j are
opposite. Therefore, we must have

|xj | = |(g(0) + g′1 + g′2)j | ≤ |(g′1 + g′2)j | ≤ |(g′1)j |+ ξ/2 ≤ 2|(g′1)j |

and therefore ∑
j∈S2

x2
j ≤ 4

∑
j∈S2

(g′1)2
j ≤ 4‖g′1‖2 .

From above, we have ‖x‖0 ≤ |S1| + |S2| ≤ O
(
ξm3/2 +

‖g′1‖2
ξ2

)
and ‖x‖2 ≤ O

(
‖g′1‖2 + ξ3m3/2

)
.

Choosing ξ = max{2‖g′2‖∞,Θ(
‖g′1‖2/3
m1/2)} for the former, and choosing ξ = 2‖g′2‖∞ for the latter, we

have the desired result. �

Claim 5.5. For any 2 ≤ a ≤ b ≤ L and any positive integer s ≤ O
(

m
L logm

)
, with probability at least

1−e−Ω(s logm), for all x ∈ Rm with ‖x‖ ≤ 1 and ‖x‖0 ≤ s, letting y = W
(0)
b D

(0)
b−1W

(0)
b−1 · · ·D

(0)
a W

(0)
a x,

we can write y = y1 + y2 with

‖y1‖ ≤ O
(√

s/m logm
)

and ‖y2‖∞ ≤
2
√

logm√
m

.

Proof of Claim 5.5. First of all, fix any x, we can let u = D
(0)
b−1W

(0)
b−1 · · ·D

(0)
a W

(0)
a x and the same

proof of Lemma 4.3 implies that with probability at least 1− e−Ω(m/L) we have ‖u‖ ≤ O(‖x‖). We
next condition on this event happens.

Let β =
√

logm/
√
m. If u is fixed and using only the randomness of Wb, we have yi ∼

N
(
0, 2‖u‖2

m

)
so for every p ≥ 1, by Gaussian tail bound

Pr[|yi| ≥ βp] ≤ e−Ω(β2p2m/‖x‖2) ≤ e−Ω(β2p2m) .

As long as β2p2m ≥ β2m ≥ Ω(logm), we know that if |yi| ≥ βp occurs for q/p2 indices i out of
[m], this cannot happen with probability more than(

m

q/p2

)
×
(
e−Ω(β2p2m)

)q/p2

≤ e
q

p2

(
O(logm)−Ω(β2p2m)

)
≤ e−Ω(β2qm) .

In other words,

Pr
[
|{i ∈ [m] : |yi| ≥ βp}| > q/p2

]
≤ e−Ω(β2qm) .

Finally, by applying union bound over p = 1, 2, 4, 8, 16, . . . we have with probability ≥ 1−e−Ω(β2qm) ·
log q,

∑
i : |yi|≥β

y2
i ≤

dlog qe∑
k=0

(2k+1β)2
∣∣∣{i ∈ [m] : |yi| ≥ 2kβ

}∣∣∣ ≤ dlog qe∑
k=0

(2k+1β)2 · q
22k
≤ O(qβ2 log q) (5.3)

In other words, vector y can be written as y = y1 + y2 where ‖y2‖∞ ≤ β and ‖y1‖2 ≤ O(qβ2 log q).
Finally, we want to take ε-net over all s-sparse inputs x. This requires β2qm ≥ Ω(s logm), so

we can choose q = Θ
(s logm
mβ2

)
= Θ(s). �

17

5.2 Intermediate Layers

Lemma 5.6 (intermediate perturbation). For any integer s with 1 ≤ s ≤ O
(

m
L3 logm

)
, with proba-

bility at least 1− e−Ω(s logm) over the randomness of
−→
W(0),A,

• for every i ∈ [n], 1 ≤ a ≤ b ≤ L,

• for every diagonal matrices D′′i,0, . . . ,D
′′
i,L ∈ [−3, 3]m×m with at most s non-zero entries.

• for every perturbation matrices W′
1, . . . ,W

′
L ∈ Rm×m with ‖

−→
W′‖2 ≤ ω ∈ [0, 1].

we have

(a) ‖W(0)
b (D

(0)
i,b−1 + D′′i,b−1) · · · (D(0)

i,a + D′′i,a)W
(0)
a ‖2 ≤ O(

√
L).

(b) ‖(W(0)
b + W′

b)(D
(0)
i,b−1 + D′′i,b−1) · · · (D(0)

i,a + D′′i,a)(W
(0)
a + W′

a)‖2 ≤ O(
√
L) if ω ≤ O(1

L1.5).

Proof. For notational simplicity we ignore subscripts in i in the proofs.

(a) Note that each D′′` can be written as D′′` = D
0/1
` D′′`D

0/1
` , where each D

0/1
` is a diagonal matrix

satisfying

(D
0/1
`)k,k =

{
1, (D′′`)k,k 6= 0;
0, (D′′`)k,k = 0.

and ‖D0/1
` ‖0 ≤ s .

In order to bound the spectral norm of W
(0)
b (D

(0)
b−1+D′′b−1)W

(0)
b−1 · · · (D

(0)
a +D′′a)W

(0)
a , by trian-

gle inequality, we can expend it into 2b−a matrices and bound their spectral norms individually.
Each such matrix can be written as (ignoring the subscripts)

(W(0)D(0) · · ·W(0)D0/1)D′′(D0/1W(0)D(0) · · ·W(0)D0/1)D′′ · · ·D′′(D0/1W(0)D(0) · · ·W(0))
(5.4)

Therefore, it suffices for us to bound the spectral norm of the following four types of matrices:

• W(0)D(0) · · ·W(0)D0/1, such matrix has spectral norm at most 2 owing to Lemma 4.3b;

• D0/1W(0)D(0) · · ·W(0), such matrix has spectral norm at mostO(1) owing to Lemma 4.3c;

• D0/1W(0)D(0) · · ·W(0)D0/1, such matrix has spectral norm at most 1
100L1.5 owing to

Lemma 4.3d and our choice s ≤ O(m
L3 logm

);

• D′′, such matrix has spectral norm at most 3.

Together, we have∥∥∥W(0)
b (D

(0)
b−1 + D′′b−1)W

(0)
b−1 · · · (D

(0)
a + D′′a)W

(0)
a

∥∥∥
≤ O(

√
L) +

b−a∑
j=1

(
b− a
j

)
·O(1) ·

(
1

100L1.5

)j−1

· 3j ·O(1) ≤ O(
√
L) .

(b) In order to bound the spectral norm of (W
(0)
b +W′

b)(D
(0)
b−1+D′′b−1) · · · (D(0)

a +D′′a)(W
(0)
a +W′

a),

by triangle inequality, we can expend it into 2b−a+1 matrices in terms of W′ and bound their
spectral norms individually. Each such matrix can be written as (ignoring the subscripts, and
denoting D̆ = D(0) + D′)

(W(0)D̆ · · ·W(0)D̆)W′(D̆W(0) · · ·W(0)D̆) · · ·W′(D̆W(0) · · · D̆W(0))

Moreover, from Lemma 5.6a, we know the following three types of matrices

• W(0)D̆ · · ·W(0)D̆,

18

• D̆W(0) · · ·W(0)D̆, and

• D̆W(0) · · · D̆W(0)

all have spectral norm at most O(
√
L). Together, using ‖W′

`‖2 ≤ O(1
L1.5), we have∥∥∥(W

(0)
b + W′

b)(D
(0)
b−1 + D′′b−1)(W

(0)
b−1 + W′

b−1) · · · (D(0)
a + D′′a)(W

(0)
a + W′

a)
∥∥∥

≤
b−a+1∑
j=0

(
b− a+ 1

j

)
·
(
O(
√
L)
)j+1

·
(
O(

1

L1.5
)
)j
≤ O(

√
L) .

�

5.3 Backward

Lemma 5.7 (backward perturbation). For any integer s ∈
[
Ω
(

d
logm

)
, O
(

m
L3 logm

)]
, for d ≤

O
(

m
L logm

)
, with probability at least 1− e−Ω(s logm) over the randomness of

−→
W(0),A,B,

• for all i ∈ [n], a = 1, 2, . . . , L+ 1,

• for every diagonal matrices D′′i,0, . . . ,D
′′
i,L ∈ [−3, 3]m×m with at most s non-zero entries,

• for every perturbation matrices W′
i,1, . . . ,W

′
i,L ∈ Rm×m with ‖

−→
W′‖2 ≤ ω = O(1

L1.5),

it satisfies ‖B(D
(0)
i,L+D′′i,L)(W

(0)
L +W′

L) · · · (W(0)
a+1+W′

a+1)(D
(0)
i,a+D′′i,a)−BD

(0)
i,LW

(0)
L · · ·W

(0)
a+1D

(0)
i,a‖2 ≤

O
(√L3s logm+ω2L3m√

d

)
. Note that if s = O(mω2/3L), this upper bound becomes O

(ω1/3L2
√
m logm√
d

)
.

Proof. For notational simplicity we ignore subscripts in i in the proofs.
Ignoring the subscripts for cleanness, we have∥∥B(D

(0)
i,L + D′′i,L)(W

(0)
L + W′

L) · · · (W(0)
a+1 + W′

a+1)(D
(0)
i,a + D′′i,a)−BD

(0)
i,LW

(0)
L · · ·W

(0)
a+1D

(0)
i,a

∥∥
2

≤
L∑
`=a

∥∥BD
(0)
i,LW

(0)
L · · ·W

(0)
`+1D

0/1
`

∥∥
2︸ ︷︷ ︸

Lemma 4.4a

‖D′′`‖2
∥∥D0/1

` (W
(0)
` + W′

`) · · · (D
(0)
i,a + D′′i,a)

∥∥
2︸ ︷︷ ︸

Lemma 5.6b

+

L∑
`=a+1

∥∥BD
(0)
i,LW

(0)
L · · ·W

(0)
`+1D

(0)
`

∥∥
2︸ ︷︷ ︸

Lemma 4.4b

‖W′
`‖2
∥∥(D

(0)
`−1 + D′′`−1)(W

(0)
`−1 + W′

`−1) · · · (D(0)
i,a + D′′i,a)

∥∥
2︸ ︷︷ ︸

Lemma 5.6b

≤ L ·O
(√

s logm√
d

)
·O(
√
L) + L ·O(

√
m/d) · ω ·O(

√
L)

�

6 Gradient Bound at Random Initialization

Throughout this section we assume
−→
W,A and B are randomly generated according to Def. 2.3.

The diagonal sign matrices Di,` are also determined according to this random initialization.

Recall we have defined Backi,`
def
= BDi,LWL · · ·Di,`W` ∈ Rd×m. In this section, we introduce

the following notion

19

Definition 6.1. For any vector tuple ~v = (v1, . . . , vn) ∈ (Rd)n (viewed as a fake loss vector), for
each ` ∈ [L], we define

∇̂~v[W`]k
F (
−→
W)

def
=

n∑
i=1

(Back>i,`+1vi)k · hi,`−1 · 1〈[W`]k,hi,`−1〉≥0, ∀k ∈ [m]

∇̂~vW`
F (
−→
W)

def
=

n∑
i=1

∇̂~vW`
Fi(
−→
W) where ∇̂~vW`

Fi(
−→
W)

def
= Di,`(Back

>
i,`+1vi)h

>
i,`−1

Remark 6.2. It is an easy exercise to check that, if letting ~v = (v1, . . . , vn) where vi = Bhi,L − y∗i ,
then ∇̂~v[W`]k

F (
−→
W) = ∇[W`]kF (

−→
W) and ∇̂~vW`

Fi(
−→
W) = ∇W`

Fi(
−→
W).

Our main lemma of this section is the following.

Lemma 6.3 (gradient bound at random initialization). Fix any ~v ∈ (Rd)n, with probability at least

1− e−Ω(δm/n) over the randomness of A,
−→
W,B, it satisfies for every ` ∈ [L]:

‖∇̂~vW`
Fi(
−→
W)‖2F ≤ O

(‖vi‖2
d
×m

)
‖∇̂~vW`

F (
−→
W)‖2F ≤ O

(‖~v‖2
d
×mn

)
‖∇̂~vWL

F (
−→
W)‖2F ≥ Ω

(maxi∈[n] ‖vi‖2

dn/δ
×m

)
6.1 Proof of Lemma 6.3: Upper Bound

For each i ∈ [n], ` ∈ [L], we can calculate that∥∥∥∇̂~vW`
Fi(
−→
W)

∥∥∥
F

=
∥∥∥Di,`(Back

>
i,`+1 · vi) · h>i,`−1

∥∥∥
F

=
∥∥∥Di,`(Back

>
i,`+1 · vi)

∥∥∥
2
· ‖hi,`−1‖2

≤ ‖Backi,`+1‖2 · ‖vi‖2 · ‖hi,`−1‖2
≤ ‖BWLDL−1 · · ·Di,`+1W`+1‖2 · ‖vi‖2 · ‖hi,`−1‖2
¬
≤ O(

√
m/d) ·O(1) · ‖vi‖2 .

where inequality ¬ uses Lemma 4.4b and Lemma 4.1 with high probability. Applying triangle
inequality with respect to all ` ∈ [L], taking square on both sides, and summing up over all i ∈ [n]
finish the proof.

6.2 Proof of Lemma 6.3: Lower Bound

Let i∗ = arg maxi∈[n]{‖vi‖}. Recall

∇̂~v[WL]k
F (
−→
W) =

n∑
i=1

〈Bk, vi〉 · hi,L−1 · 1(WLhi,L−1)k≥0

Let ĥ
def
=

hi∗,L−1

‖hi∗,L−1‖
. For analysis purpose, after ĥ is fixed (so after fixing the randomness of

A,W1, . . . ,WL−1), we redefine WLĥ =
√

1− θ2ĝ1 + θĝ2 where ĝ1 and ĝ2 are generated inde-
pendently from N (0, 2I

m). We can do so because the two sides are equal in distribution. In other
words, we can set

W′
L

def
= WL

(
I− ĥĥ>)−

√
1− θ2ĝ1ĥ

> and W′′
L

def
= θĝ2ĥ

>,

then we have WL = W′
L + W′′

L. In particular, the randomness of W′
L and W′′

L are independent.

20

In the remainder of the proof, let us choose θ
def
= δ

5n ≤
1
5 .

We first make two technical claims, and the proof of the first one can be found in Section 6.2.1.

Claim 6.4. We have PrW′
L,WL−1,...,W1,A

[
|N2| ≥ δ

40nm
]
≥ 1− eΩ(δm/n)

N2
def
=

{
k ∈ [m] :

(∣∣(W′
Lhi∗,L−1)k

∣∣ ≤ δ

10n
√
m

)∧(
∀i ∈ [n] \ {i∗}, |

(
W′

Lhi,L−1

)
k
| ≥ δ

4n
√
m

)}
Claim 6.5. Given set N2 ⊂ [m] and ~v, we have

Pr
Bk

[∣∣∣∣{k ∈ N2 :
∣∣〈Bk, vi∗〉

∣∣ ≥ ‖vi∗‖√
d

}∣∣∣∣ ≥ |N2|
2

]
≥ 1− e−Ω(|N2|)

Proof of Claim 6.5. Observe that each 〈Bk, vi∗〉 follows from N (0, ‖vi∗‖2/d), so with probability at

least 0.68 it satisfies |〈Bk, vi∗〉| ≥ ‖vi∗‖√d . Using Chernoff bound we have the desired claim. �

Combining Claim 6.4 and Claim 6.5, we can obtain a set N ⊆ [m] satisfying

N
def
=

{
k ∈ [m] :

(∣∣(W′
Lhi∗,L−1)k

∣∣ ≤ δ

10n
√
m

)∧(
∀i ∈ [n] \ {i∗}, |

(
W′

Lhi,L−1

)
k
| ≥ δ

4n
√
m

)
∧∣∣〈Bk, vi∗〉

∣∣ ≥ ‖vi∗‖√
d

}
of cardinality |N | ≥ δ

100nm. Let us fix the randomness of W′
L so that N is fixed. Let k be any

index in N . We can write

∇̂~v[WL]k
F (
−→
W) =

n∑
i=1

〈Bk, vi〉 · hi,L−1 · 1(W′
Lhi,L−1)k+(W′′

Lhi,L−1)k≥0.

The only remaining source of randomness comes from W′′
L = θĝ2ĥ

>.

Recalling that θ = 1
5n and ĝ2 ∼ N (0, 2

mI), so since θ(ĝ2)k ∼ N (0, 2θ2

m), using numerical values
of Gaussian CDF, one can verify that

Pr
ĝ2

[
|θ(ĝ2)k| ∈

(δ

9n
√
m
,

δ

5n
√
m

)]
≥ 0.2 .

Let us denote this event of ĝ2 as Ek. Conditioning on Ek happens, recalling ‖hi,L−1‖ ∈ [0.9, 1.1]
from Lemma 4.1,

• For every i ∈ [n] \ {i∗}, we have

|(W′′
Lhi,L−1)k| = |(θĝ2ĥ

>hi,L−1)k| ≤ |(θĝ2)k| · ‖hi,L−1‖ <
δ

5n
√
m
· 1.1 < |(W′

Lhi,L−1)k|

and this means 1(WLhi,L−1)k≥0 = 1(W′
Lhi,L−1)k≥0.

• For i = i∗, we have

|(W′′
Lhi∗,L−1)k| = |(θĝ2ĥ

>hi∗,L−1)k| = |(θĝ2)k| · ‖hi∗,L−1‖ >
δ

9n
√
m
· 0.9 > |(W′

Lhi∗,L−1)k|

and this means 1(WLhi∗,L−1)k≥0 6= 1(W′
Lhi∗,L−1)k≥0 with probability exactly 1

2 — this is because,
conditioning on event Ek, the sign of (θĝ2)k is ±1 each with half probability.

Recall that for every k ∈ N ,

∇̂~v[WL]k
F (
−→
W) = 〈Bk, vi∗〉 · hi∗,L−1 · 1(WLhi∗,L−1)k≥0︸ ︷︷ ︸

♠

+
∑

i∈[n]\{i∗}

〈Bk, vi〉 · hi,L−1 · 1(WLhi,L−1)k≥0︸ ︷︷ ︸
♣

21

Now, fix the randomness of A,B,W1, . . . ,WL−1,W
′
L and let ĝ2 be the only randomness. Condi-

tioning on Ek, we have that each term in♣ is fixed (i.e., independent of ĝ2) because 1(WLhi,L−1)k≥0 =
1(W′

Lhi,L−1)k≥0. In contrast, conditioning on Ek, the indicator 1(WLhi∗,L−1)k≥0 of the ♠ term may
be 1 or 0 each with half probability. This means,

Pr
(ĝ2)k

[
‖∇̂~v[WL]k

F (
−→
W)‖2 ≥ |〈Bk, vi∗〉|2 · ‖hi∗,L−1‖2

∣∣∣ k ∈ N ∧ Ek

]
≥ 1

2
.

Taking into account the fact that |〈Bk, vi∗〉| ≥ ‖vi∗‖√d (by definition of N), the fact that ‖hi,L−1‖ ≥
0.9, and the fact that Pr(ĝ2)k [E] ≥ 0.2, we have

Pr
(ĝ2)k

[
‖∇̂~v[WL]k

F (
−→
W)‖2 ≥ 0.8

‖vi∗‖2

d

∣∣∣ k ∈ N] ≥ 1

10
.

Using the independence of (ĝ2)k with respect to different k ∈ N , we can apply Chernoff bound and
derive:

Pr
ĝ2

[∑
k∈N
‖∇̂~v[WL]k

F (
−→
W)‖2 ≥ 0.8

‖vi∗‖2

d
· |N |

15

∣∣∣N] ≥ 1− e−Ω(|N |) .

Finally, using and |N | ≥ δ
100nm, we have

Pr

[
‖∇̂~vWL

F (
−→
W)‖2F ≥

‖vi∗‖2

d

δ

2000n
m

]
≥ 1− e−Ω(δm/n) .

We finish the upper bound proof of Lemma 6.3. �

6.2.1 Proof of Claim 6.4

Claim 6.4. We have PrW′
L,WL−1,...,W1,A

[
|N2| ≥ δ

40nm
]
≥ 1− eΩ(δm/n)

N2
def
=

{
k ∈ [m] :

(∣∣(W′
Lhi∗,L−1)k

∣∣ ≤ δ

10n
√
m

)∧(
∀i ∈ [n] \ {i∗}, |

(
W′

Lhi,L−1

)
k
| ≥ δ

4n
√
m

)}
Proof of Claim 6.4. Throughout the proof we assume WL−1, . . . ,A are good enough so that Lemma 4.1
holds (for ε = 0.01) and we fix their randomness. Define

N1
def
=

{
k ∈ [m] :

∣∣(W′
Lhi∗,L−1)k

∣∣ ≤ δ

10n
√
m

}
Since ‖hi∗,L−1‖2 ≤ 1.1 by Lemma 4.1, and since by definition of W′

L we have (W′
Lhi∗,L−1)k ∼

N (0,
2(1−θ2)‖hi∗,L−1‖2

m). By standard properties of Gaussian CDF (see Fact 2.7), we know |(W′
Lhi∗,L−1)k| ≤

δ
10n
√
m

with probability at least δ
25n for each k ∈ [m]. By Chernoff bound,

Pr
W′

L

[
|N1| ≥

δ

30n
m

]
≥ 1− e−Ω(δm/n)

Next, suppose we fix the randomness of W′
Lĥ. Define

N2
def
=

{
k ∈ N1 : ∀i ∈ [n] \ {i∗}, |

(
W′

Lhi,L−1

)
k
| ≥ δ

4n
√
m

}
For each k ∈ N1 and i ∈ [n] \ {i∗}, we can write

W′
Lhi,L−1 = W′

Lĥ(ĥ>hi,L−1) + W′
L(I− ĥĥ>)hi,L−1 .

Above, the first term on the right hand side is fixed (because we have fixed the randomness of

22

W′
Lĥ); however, W′

L(I− ĥĥ>)hi,L−1 is still fresh new random Gaussian. In symbols,

W′
Lhi,L−1 ∼ N

(
W′

Lĥĥ
>hi,L−1,

2‖(I− ĥĥ>)hi,L−1‖2

m
I

)
.

According to Lemma 4.5, the variance here is at least 2
m‖(I− ĥĥ

>)hi,L−1‖2 ≥ δ2

2m . Using standard

properties of Gaussian CDF (see Fact 2.7), we know |(W′
Lhi,L−1)k| ≥ δ

4n
√
m

with probability at

least 1− 1
8n for each k ∈ [m]. By union bound, for this k ∈ [m], with probability at least 7

8 we know

|(W′
Lhi,L−1)k| ≥ δ

4n
√
m

for all i ∈ [n] \ {i∗}. By Chernoff bound (over all k ∈ N1), we conclude that

Pr
W′

L

[
|N2| ≥

3

4
|N1|

∣∣∣N1

]
≥ 1− e−Ω(|N1|) = 1− e−Ω(δm/n) .

Combining the two bounds we finish the proof. �

7 Gradient Bound at After Perturbation

In this section we prove our main theorem on the gradient upper and lower bounds.

Theorem 3 (gradient bound at after perturbation). Let ω
def
= O

(
δ3/2

n9/2L6 log3 m

)
. With probability at

least 1−e−Ω(mω2/3L) over the randomness of
−→
W(0),A,B, it satisfies for every ` ∈ [L], every i ∈ [n],

and every
−→
W with ‖

−→
W −

−→
W(0)‖2 ≤ ω,

‖∇W`
Fi(
−→
W)‖2F ≤ O

(Fi(−→W)

d
×m

)
‖∇W`

F (
−→
W)‖2F ≤ O

(F (
−→
W)

d
×mn

)
‖∇WL

F (
−→
W)‖2F ≥ Ω

(maxi∈[n] Fi(
−→
W)

dn/δ
×m

)
.

Remark 7.1. Our Theorem 3 only gives gradient lower bound on ‖∇WL
F (
−→
W)‖F . In principle, one

can derive similar lower bounds on ‖∇W`
F (
−→
W)‖F for all ` = 1, 2, . . . , L − 1. However, the proof

will be significantly more involved. We choose not to derive those bounds at the expense of losing
a polynomial factor in L in the final running time. For readers interested in the techniques for
obtaining those bounds, we refer to them to the “randomness decomposition” part of our separate
paper [4].

Proof of Theorem 3. Again we denote by D
(0)
i,` and Di,` respectively the sign matrix at the initial-

ization
−→
W(0) and at the current point

−→
W; and by h

(0)
i,` and hi,` respectively the forward vector at

−→
W(0) and at

−→
W. Let us choose s = O(mω2/3L) which bounds the sparsity of ‖Di,` −D

(0)
i,` ‖0 by

Lemma 5.2b. Recall

∇̂~vW`
F (
−→
W(0))− ∇̂~vW`

F (
−→
W)

=

n∑
i=1

((
v>i BD

(0)
i,LW

(0)
L · · ·W

(0)
`+1D

(0)
i,`

)>
(h

(0)
i,`−1)> −

(
v>i BDi,LWL · · ·W`+1Di,`

)>
(hi,`−1)>

)
By Lemma 5.7, we know that

‖v>i BD
(0)
i,LW

(0)
L · · ·D

(0)
i,aW(0)

a D
(0)
i,a−1−v

>
i BDi,LWL · · ·Di,aWaDi,a−1‖ ≤ O(ω1/3L2

√
m logm/

√
d)·‖vi‖

By Lemma 4.4b we know

‖v>i BD
(0)
i,LW

(0)
L · · ·D

(0)
i,aW(0)

a D
(0)
i,a−1‖ ≤ O(

√
m/d) · ‖vi‖

23

By Lemma 4.1 and Lemma 5.2c, we have

‖hi,`−1‖ ≤ 1.1 and ‖hi,`−1 − h
(0)
i,`−1‖ ≤ O(ωL5/2

√
logm)

Together, they imply∥∥∥∇̂~vW`
F (
−→
W(0))− ∇̂~vW`

F (
−→
W)

∥∥∥2

F
≤ n‖~v‖2 ·O

(
ω1/3L2

√
m logm/

√
d+

√
m/d× ωL5/2

√
logm

)2

≤ n‖~v‖2 ·O
(
m logm

d
· ω2/3L4

)
With our parameter assumption on ω, this together with Lemma 6.3 implies the same upper and

lower bounds at point
−→
W =

−→
W(0) +

−→
W′:

‖∇̂~vW`
Fi(
−→
W(0) +

−→
W′)‖2F ≤ O

(‖vi‖2
d
×m

)
‖∇̂~vW`

F (
−→
W(0) +

−→
W′)‖2F ≤ O

(‖~v‖2
d
×mn

)
‖∇̂~vWL

F (
−→
W(0) +

−→
W′)‖2F ≥ Ω

(maxi∈[n] ‖vi‖2

dn/δ
×m

)
.

Finally, taking ε-net over all possible vectors ~v = (v1, . . . , vn) ∈ (Rd)n, we know that the above
bounds hold not only for fixed ~v but for all ~v. In particular, we can now plug in the choice of
vi = lossi = Bhi,L − y∗i and it implies our desired bounds on the true gradients. �

8 Objective Smoothness

The purpose of this section is to prove

Theorem 4 (objective smoothness, restated). Let ω ∈
[
Ω(d3/2

m3/2L3/2 log3/2m
), O(1

L4.5 log3/2 m
)
]

and
−→
W(0),A,B be at random initialization. With probability at least 1−e−Ω(mω2/3L) over the randomness

of
−→
W(0),A,B, we have for every

−̆→
W ∈ (Rm×m)L with ‖

−̆→
W −

−→
W(0)‖2 ≤ ω, and for every

−→
W′ ∈

(Rm×m)L with ‖
−→
W′‖2 ≤ ω, we have

F (
−̆→
W +

−→
W′) ≤ F (

−̆→
W) + 〈∇F (

−̆→
W),

−→
W′〉+

√
nF (
−̆→
W) · ω

1/3L2
√
m logm√
d

·O(‖
−→
W′‖2) +O

(nL2m

d

)
‖
−→
W′‖22

We introduce the following notations before we go to proofs.

Definition 8.1. For i ∈ [n] and ` ∈ [L]:

g
(0)
i,0 = Axi ği,0 = Axi gi,0 = Axi

h
(0)
i,0 = φ(Axi) h̆i,0 = φ(Axi) hi,0 = φ(Axi)

g
(0)
i,` = W

(0)
` h

(0)
i,`−1 ği,` = W̆`h̆i,`−1 gi,` = (W̆` + W′

`)hi,`−1

h
(0)
i,` = φ(W

(0)
` h

(0)
i,`−1) h̆i,` = φ(W̆`h̆i,`−1) hi,` = φ((W̆` + W′

`)hi,`−1)

˘lossi = Bh̆i,L − y∗i

Define diagonal matrices D
(0)
i,` ∈ Rm×m and D̆i,` ∈ Rm×m respectively by letting

(D
(0)
i,`)k,k = 1

(g
(0)
i,`)k≥0

and (D̆i,`)k,k = 1(ği,`)k≥0,∀k ∈ [m].

The following claim gives rise to a new recursive formula to calculate hi,` − h̆i,`.

24

Claim 8.2. There exist diagonal matrices D′′i,` ∈ Rm×m with entries in [−1, 1] such that,

∀i ∈ [n], ∀` ∈ [L] : hi,` − h̆i,` =
∑̀
a=1

(D̆i,` + D′′i,`)W̆` · · ·W̆a+1(D̆i,a + D′′i,a)W
′
ahi,a−1 (8.1)

Furthermore, we have ‖hi,` − h̆i,`‖ ≤ O(L1.5)‖W′‖2, ‖Bhi,` − Bh̆i,`‖ ≤ O(L
√
m/d)‖W′‖2 and

‖D′′i,`‖0 ≤ O(mω2/3L).

Proof of Theorem 4. First of all, since

1

2
‖Bhi,L − y∗i ‖2 =

1

2
‖ ˘lossi + B(hi,L − h̆i,L)‖2 =

1

2
‖ ˘lossi‖2 + ˘loss

>
i B(hi,L − h̆i,L) +

1

2
‖B(hi,L − h̆i,L)‖2

(8.2)

we can write

F (
−̆→
W +

−→
W′)− F (

−→
W)− 〈∇F (

−→
W),

−→
W′〉

¬
= −〈∇F (

−̆→
W),

−→
W′〉+

1

2

n∑
i=1

‖Bhi,L − y∗i,L‖2 − ‖Bh̆i,L − y∗i,L‖2

­
= −〈∇F (

−̆→
W),

−→
W′〉+

n∑
i=1

˘loss
>
i B(hi,L − h̆i,L) +

1

2
‖B(hi,L − h̆i,L)‖2

®
=

n∑
i=1

˘loss
>
i B

(
(hi,L − h̆i,L)−

L∑
`=1

D̆i,LW̆L · · ·W̆`+1D̆i,`W
′
`h̆i,`−1

)
+

1

2
‖B(hi,L − h̆i,L)‖2

¯
=

n∑
i=1

˘loss
>
i B

(
L∑
`=1

(D̆i,L + D′′i,L)W̆L · · ·W̆`+1(D̆i,` + D′′i,`)W
′
`hi,`−1 − D̆i,LW̆L · · ·W̆`+1D̆i,`W

′
`h̆i,`−1

)

+
1

2

n∑
i=1

‖B(hi,L − h̆i,L)‖2 (8.3)

Above, ¬ is by the definition of F (·); ­ is by (8.2); ® is by the definition of ∇F (·) (see Fact 2.6
for an explicit form of the gradient).

We next bound the RHS of (8.3). We first note that by Lemma 5.2b, we have ‖D̆i,` + D′′i,` −
D

(0)
i,` ‖0 ≤ s and ‖D̆i,` −D

(0)
i,` ‖0 ≤ s for s = O(mω2/3L).

We ignore subscripts in i for notational convenience. We first use Claim 8.2 to get

‖B(hL − h̆L)‖ ≤ O(L
√
m/d) · ‖

−→
W′‖2 . (8.4)

Next we calculate that∣∣∣ ˘loss
>
i B(D̆L + D′′L)W̆L · · · (D̆` + D′′`)W

′
`h`−1 − ˘loss

>
i BD̆LW̆L · · · D̆`W

′
`h`−1

∣∣∣
≤ ‖ ˘lossi‖ ·

∥∥∥B(D̆L + D′′L)W̆L · · ·W̆`−1(D̆` + D′′`)−BD̆LW̆L · · ·W̆`−1D̆`

∥∥∥
2︸ ︷︷ ︸

Lemma 5.7 with s = O(mω2/3L)

·‖W′
`h`−1‖

≤ ‖ ˘lossi‖ ·O

(√
L3ω2/3Lm logm√

d

)
·O(‖W′

`‖2) . (8.5)

25

Finally, we also have∣∣∣ ˘loss
>
i BD̆LW̆L · · · D̆`W

′
`(h`−1 − h̆`−1)

∣∣∣
¬
≤ ‖ ˘lossi‖2 ·O

(√
m/d+

ω1/3L2
√
m logm√
d

)
· ‖W′

`‖2 · ‖h` − h̆`‖2

­
≤ O(L0.5

√
m/d) · ‖ ˘lossi‖2 · L1.5‖W′

`‖22 (8.6)

where ¬ uses Lemma 4.4b (and Lemma 5.7 for bounding the perturbation) and ­ uses Claim 8.2
to bound ‖h` − h̆`‖2 and our choice of ω.

Putting (8.4), (8.5) and (8.6) back to (8.3), and using triangle inequality, we have the desired
result. �

8.1 Proof of Claim 8.2

We first present a simple proposition about the ReLU function.

Proposition 8.3. Given vectors a, b ∈ Rm and D ∈ Rm×m the diagonal matrix where Dk,k =
1ak≥0. Then, then there exists a diagonal matrix D′′ ∈ Rm×m with

• |Dk,k + D′′k,k| ≤ 1 and |D′′k,k| ≤ 1 for every k ∈ [m],

• D′′k,k 6= 0 only when 1ak≥0 6= 1bk≥0, and

• φ(a)− φ(b) = (D + D′′)(a− b)

Proof. We verify coordinate by coordinate for each k ∈ [m].

• If ak ≥ 0 and bk ≥ 0, then (φ(a)− φ(b))k = ak − bk =
(
D(a− b)

)
k
.

• If ak < 0 and bk < 0, then (φ(a)− φ(b))k = 0− 0 =
(
D(a− b)

)
k
.

• If ak ≥ 0 and bk < 0, then (φ(a) − φ(b))k = ak = (ak − bk) + bk
ak−bk (ak − bk) =

(
D(a − b) +

D′′(a− b)
)
k
, if we define (D′′)k,k = bk

ak−bk ∈ [−1, 0].

• If ak < 0 and bk ≥ 0, then (φ(a)−φ(b))k = −bk = 0 · (ak − bk)− bk
bk−ak (ak − bk) =

(
D(a− b) +

D′′(a− b)
)
k
, if we define (D′′)k,k = bk

bk−ak ∈ [0, 1]. �

Proof of Claim 8.2. We ignore the subscript in i for cleanness, and calculate that

h` − h̆`
¬
= φ((W̆` + W′

`)h`−1)− φ(W̆`h̆`−1)

­
= (D̆` + D′′`)

(
(W̆` + W′

`)h`−1 − W̆`h̆`−1

)
= (D̆` + D′′`)W̆`(h`−1 − h̆`−1) + (D̆` + D′′`)W

′
`h`−1

®
=
∑̀
a=1

(D̆` + D′′`)W̆` · · ·W̆a+1(D̆a + D′′a)W
′
aha−1

Above, ¬ is by the recursive definition of h` and h̆`; ­ is by Proposition 8.3 and D′′` is defined

according to Proposition 8.3; and inequality ® is by recursively computing h`−1− h̆`−1. As for the
remaining properties:

• We have ‖D′′`‖0 ≤ O(mω2/3L).

26

This is because, (D′′`)k,k is non-zero only at the coordinates k ∈ [m] where the signs of ğ` and g`

are opposite (by Proposition 8.3). Such a coordinate k must satisfy either (D
(0)
`)k,k 6= (D̆`)k,k

or (D
(0)
`)k,k 6= (D`)k,k, and therefore by Lemma 5.2b there are at most O(mω2/3L) such

coordinates k.

• We have ‖h` − h̆`‖ ≤ O(L1.5)‖
−→
W′‖2.

This is because we have
∥∥(D̆` + D′′`)W̆` · · ·W̆a+1(D̆a + D′′a)

∥∥
2
≤ O(

√
L) from Lemma 5.6b,

we have ‖ha−1‖ ≤ O(1) (by ‖h(0)
a−1‖ ≤ O(1) from Lemma 4.1 and ‖h(0)

a−1 − ha−1‖ ≤ o(1) from

Lemma 5.2c); and and ‖W′
aha−1‖ ≤ ‖W′

a‖2‖ha−1‖ ≤ O(‖
−→
W′‖2).

• We have ‖Bh` −Bh̆`‖ ≤ O(L
√
m/d)‖

−→
W′‖2.

This is because we have
∥∥B(D̆`+D′′`)W̆` · · ·W̆a+1(D̆a+D′′a)

∥∥
2
≤ O(

√
m/d) from Lemma 4.4b

(along with perturbation bound Lemma 5.7), we have ‖ha−1‖ ≤ O(1) (by ‖h(0)
a−1‖ ≤ O(1) from

Lemma 4.1 and ‖h(0)
a−1−ha−1‖ ≤ o(1) from Lemma 5.2c); and and ‖W′

aha−1‖ ≤ ‖W′
a‖2‖ha−1‖ ≤

O(‖
−→
W′‖2).

�

9 Convergence Rate of GD

Theorem 1 (gradient descent, restated). For any ε ∈ (0, 1], δ ∈
(
0, O(1

L)
]
. Let m ≥ Ω̃

(
(nL/δ)30 ·

d · log2 ε−1
)
, η

def
= Θ

(
dδ

n4L2m

)
, and

−→
W(0),A,B are at random initialization. Then, with probability

at least 1− e−Ω(log2 m), suppose we start at
−→
W(0) and for each t = 0, 1, . . . , T − 1,

−→
W(t+1) =

−→
W(t) − η∇F (

−→
W(t)) .

Then, it satisfies

F (
−→
W(T)) ≤ ε for T = Θ

(
n6L2

δ2
log

1

ε

)
.

In other words, the training loss drops to ε in a linear convergence speed.

Proof of Theorem 1. Using Lemma 4.1 we have ‖hi,L‖2 ≤ 1.1 and then using the randomness of B,

it is easy to show that ‖Bh(0)
i,L−y∗i ‖2 ≤ O(log2m) with at least 1−e−Ω(log2 m) (where h

(0)
i,L is defined

with respect to the random initialization
−→
W(0)), and therefore

F (
−→
W(0)) ≤ O(n log2m) .

Let us assume for every t = 0, 1, . . . , T − 1, the following holds

‖
−→
W(t) −

−→
W(0)‖F ≤ ω

def
= O

(
n3
√
d

δ
√
m

log
n logm

ε

)
. (9.1)

We shall prove the convergence of GD assuming (9.1) holds, so that previous statements such as
Theorem 4 and Theorem 3 can be applied. At the end of the proof, we shall verify that (9.1) is
satisfied.

27

Letting ∇t = ∇F (
−→
W(t)), we calculate that

F (
−→
W(t+1))

¬
≤ F (

−→
W(t))− η‖∇F (

−→
W(t))‖2F + η

√
nF (
−→
W(t)) ·O

(
ω1/3L2

√
m logm√
d

)
· ‖∇t‖2 +O

(
η2nL

2m

d

)
‖∇t‖22

­
≤ F (

−→
W(t))− η‖∇F (

−→
W(t))‖2F +O

(
ηnL2mω1/3

√
logm

d
+
η2n2L2m2

d2

)
· F (
−→
W(t))

®
≤
(

1− Ω
(ηδm
dn2

))
F (
−→
W(t)) . (9.2)

Above, ¬ uses Theorem 4; ­ uses Theorem 3 (which gives ‖∇t‖22 ≤ max`∈[L] ‖∇W`
F (
−→
W(t))‖2F ≤

O
(F (
−→
W(t))
d × mn

)
); ® use gradient lower bound from Theorem 3 and our choice of η. In other

words, after T = Ω(dn
2

ηδm) log n logm
ε iterations we have F (

−→
W(T)) ≤ ε.

We need to verify for each t, ‖
−→
W(t) −

−→
W(0)‖F is small so that (9.1) holds. By Theorem 3,

‖W(t)
` −W

(0)
` ‖F ≤

t−1∑
i=0

‖η∇W`
F (
−→
W(i))‖F ≤ O(η

√
nm/d) ·

t−1∑
i=0

√
F (
−→
W(i))

≤ O(η
√
nm/d) ·O(T ·

√
n) ≤ ηT ·O(

√
n2m/d) ≤ O

(
n3
√
d

δ
√
m

log
n logm

ε

)
.

where the last step follows by our choice of T . �

10 Convergence Rate of SGD

Theorem 2 (stochastic gradient descent, stated). For any ε ∈ (0, 1], δ ∈
(
0, O(1

L)
]
, b ∈ [n].

Let m ≥ Ω̃
((nL/δ)30·d·log2 ε−1

b

)
, η

def
= Θ(bδd

n5L2m log2m
), and

−→
W(0),A,B are at random initialization.

Suppose we start at W (0) and for each t = 0, 1, . . . , T − 1,

W (t+1) = W (t) − η · n
|St|

∑
i∈St

∇F (W (t)) (for a random subset St ⊆ [n] of fixed cardinality b.)

Then, it satisfies with probability at least 1− e−Ω(log2m) over the randomness of S1, . . . , ST :

F (W (T)) ≤ ε for all T
def
= Θ

(dn2

ηδm
log

n logm

ε

)
= Θ

(n7L2 log2m

bδ2
log

n logm

ε

)
.

Proof of Theorem 2. Using similar argument as the proof of Theorem 1, we have with at least
1− e−Ω(log2 m) probability

F (
−→
W(0)) ≤ O(n log2m) .

Let us assume for every t = 0, 1, . . . , T − 1, the following holds

‖
−→
W(t) −

−→
W(0)‖F ≤ ω

def
= O

(
n3.5
√
d

δ
√
bm

log
n logm

ε

)
. (10.1)

We shall prove the convergence of SGD assuming (10.1) holds, so that previous statements such as
Theorem 4 and Theorem 3 can be applied. At the end of the proof, we shall verify that (10.1) is
satisfied throughout the SGD with high probability.

28

For each t = 0, 1, . . . , T − 1, using the same notation as Theorem 1, except that we choose

∇t = n
|St|
∑

i∈St ∇Fi(
−→
W(t)). We have ESt [∇t] = ∇F (

−→
W(t)) and therefore

E
St

[F (
−→
W(t+1))]

¬
≤ F (

−→
W(t))− η‖∇F (

−→
W(t))‖2F + η

√
nF (
−→
W(t)) ·O

(
ω1/3L2

√
m logm√
d

)
· E
St

[‖∇t‖2]

+O
(
η2nL

2m

d

)
E
St

[‖∇t‖22]

­
≤ F (

−→
W(t))− η‖∇t‖2F +O

(
ηnL2mω1/3

√
logm

d
+
η2n2L2m2

d2

)
· F (
−→
W(t))

®
≤
(

1− Ω
(ηδm
dn2

))
F (
−→
W(t)) . (10.2)

Above, ¬ uses Theorem 4 and ESt [∇t] = ∇F (
−→
W(t)); ­ uses Theorem 3 which give

E
St

[
‖∇t‖22

]
≤ n2

b
E
St

[∑
i∈St

max
`∈[L]

∥∥∥∇W`
Fi(
−→
W(t))

∥∥∥2

F

]
≤ O

(nmF (
−→
W(t))

d

)
E
St

[
‖∇t‖2

]
≤
(
E
St

[
‖∇t‖22

])1/2

≤ O
((nmF (

−→
W(t))

d

)1/2)
;

® use gradient lower bound from Theorem 3 and our choice of η.
At the same time, we also have the following absolute value bound:

F (
−→
W(t+1))

¬
≤ F (

−→
W(t)) + η‖∇F (

−→
W(t))‖F · ‖∇t‖F

+ η

√
nF (
−→
W(t)) ·O

(
ω1/3L2

√
m logm√
d

)
· ‖∇t‖2 +O

(
η2nL

2m

d

)
· ‖∇t‖22

­
≤ F (

−→
W(t)) + η ·O

√LF (
−→
W(t))mn

d

 ·O
√n2mLF (

−→
W(t))

bd


+ η

√
nF (
−→
W(t)) ·O

(
ω1/3L2

√
m logm√
d

)
·

√
n2mF (

−→
W(t))

√
bd

+O
(
η2nL

2m

d

)
· n

2

b
O
(mF (

−→
W(t))

d

)
®
≤
(

1 +O
(ηLmn1.5

√
bd

+
ηn1.5ω1/3L2m

√
logm√

bd
+
η2n3L2m2

d2b

))
F (
−→
W(t)) . (10.3)

Above, ¬ uses Theorem 4 and Cauchy-Schwarz 〈A,B〉 ≤ ‖A‖F ‖B‖F , and ­ uses Theorem 3 which
give

‖∇t‖22 ≤
n2

b

[∑
i∈St

max
`∈[L]

∥∥∥∇W`
Fi(
−→
W(t))

∥∥∥2

F

]
≤ n2

b
O
(mF (

−→
W(t))

d

)

‖∇t‖2F ≤
n2

b

[∑
i∈St

L∑
`=1

∥∥∥∇W`
Fi(
−→
W(t))

∥∥∥2

F

]
≤ Ln2

b
O
(mF (

−→
W(t))

d

)

29

and the derivation from (10.2).
Next, taking logarithm on both sides of (10.2) and (10.3), and using Jensen’s inequality E[logX] ≤

logE[X], we have

E[logF (
−→
W(t+1))] ≤ logF (

−→
W(t))− Ω

(ηδm
dn2

)
and logF (

−→
W(t+1)) ≤ logF (

−→
W(t)) +O

(ηLmn1.5

√
bd

)
By (one-sided) martingale concentration, we have with probability at least 1−e−Ω(log2 m), for every
t = 1, 2, . . . , T :

logF (
−→
W(t))− E[logF (

−→
W(t))] ≤

√
t ·O

(ηLmn1.5

√
bd

)
· logm .

This implies two things.

• On one hand, if T ≥ Ω
(
L2n7

bδ2 log2m
)

and T = Ω(dn
2

ηδm log n logm
ε) iterations we have

logF (
−→
W(T)) ≤

√
T ·O

(ηLmn1.5

√
bd

)
· logm+ logF (

−→
W(0))− Ω

(ηδm
dn2

)
T

≤ logF (
−→
W(0))− Ω

(ηδm
dn2

)
T ≤ logO(n log2m)− Ω

(
log

n log2m

ε

)
≤ log ε .

Therefore, we have F (
−→
W(T)) ≤ ε.

• On the other hand, for every t = 1, 2, . . . , T , we have

logF (
−→
W(t)) ≤

√
t ·O

(ηLmn1.5

√
bd

)
· logm+ logF (

−→
W(0))− Ω

(ηδm
dn2

)
t

¬
= logF (

−→
W(0))−

(√
ηδm

dn2
· Ω(
√
t)−

√
dn2

ηδm
·O
(ηLmn1.5

√
bd

logm
))2

+O
(ηL2mn5

bδd
log2m

)
­
≤ logF (

−→
W(0)) + 1

where in ¬ we have used 2a
√
t − b2t = −(b

√
t − a/b)2 + a2/b2, and in ­ we have used our

choice of η. This implies F (
−→
W(t)) ≤ O(n). We can now verify for each t, ‖

−→
W(t) −

−→
W(0)‖F is

small so that (10.1) holds. By Theorem 3,

‖W(t)
` −W

(0)
` ‖F ≤

t−1∑
i=0

∥∥∥η n

|St|
∑
i∈St

∇W`
Fi(
−→
W(t))

∥∥∥
F
≤ O

(
η

√
n2m

bd

)
·
t−1∑
i=0

√
F (
−→
W(i))

≤ O

(
η

√
n2m

bd

)
·O(T

√
n) ≤ ηT ·O(

√
mn3/bd) = O

(
n3.5
√
d

δ
√
bm

log
n logm

ε

)
.

where the last step follows by our choice of T . �

30

Appendix

A Extension to Other Loss Functions

For simplicity, in them main body of this paper we have used the `2 regression loss. Our results
generalize easily to other Lipschitz smooth (but possibly nonconvex) loss functions.

Suppose we are given loss function f(z; y) that takes as input a neural-network output z ∈
Rd and a label y. Then, our training objective for the i-th training sample becomes Fi(W) =

f(Bhi,L; y∗i). We redefine the loss vector lossi
def
= ∇f(Bhi,L; y∗i) ∈ Rd (where the gradient is with

respect to z). Note that if f(z; y) = 1
2‖z − y‖2 is the `2 loss, then this notion coincides with

Section 2. We assume that f(z; y) is 1-Lipscthiz (upper) smooth with respect to z.6

All the results in Section 4, 5 and 6 remain unchanged. Section 7 also remains unchanged,
except we need to restate Theorem 3 with respect to this new notation:

‖∇W`
Fi(
−→
W)‖2F ≤ O

(‖lossi‖2
d

×m
)

‖∇W`
F (
−→
W)‖2F ≤ O

(‖loss‖2
d

×mn
)

‖∇WL
F (
−→
W)‖2F ≥ Ω

(maxi∈[n] ‖lossi‖2

dn/δ
×m

)
.

Section 8 also remains unchanged, except that we need to replace the precise definition of `2 loss
in (8.2) with the smoothness condition:

Fi(
−→
W) = f(Bhi,L; y∗i) ≤ f(Bh̆i,L; y∗i) + 〈∇f(Bh̆i,L, y

∗
i),B(hi,L − h̆i,L)〉+

1

2
‖B(hi,L − h̆i,L)‖2

= Fi(
−̆→
W) + 〈 ˘lossi,B(hi,L − h̆i,L)〉+

1

2
‖B(hi,L − h̆i,L)‖2 (A.1)

and the rest of the proof remains unchanged.
As for the final convergence theorem of gradient descent, we can replace (9.2) with

F (
−→
W(t+1)) ≤ F (

−→
W(t))− Ω

(ηδm
dn2

)
· ‖loss(t)‖2 . (A.2)

This means many things:

• If the loss is bounded (say, |f(z; y)| ≤ O(1)), then in T = O
(

dn2

ηδmε2

)
= O

(
n6L2

δ2ε2

)
iterations, we

can find a point
−→
W(T) with ‖loss(T)‖ ≤ ε. (We choose m ≥ Ω̃

(
(nL/δ)30dε−4

)
.)

• If the loss is cross entropy f(z; y) = ezy∑d
i=1 e

zi
for classification, then ‖∇f(z; y)‖ < 1/4 implies

perfect classification.7 Thus, we have 100% training accuracy in T = O
(
n6L2

δ2

)
iterations.

• If the loss satisfies the Polyak- Lojasiewicz condition ‖∇f(z; y)‖2 ≥ σ(f(z; y)− f(z∗; y)), then

in T = Ω
(

dn2

ηδmσ

)
= O

(
n6L2

δ2σ
log 1

ε

)
iterations, we can find a point

−→
W(T) with ‖loss(T)‖ ≤ ε.

(We choose m ≥ Ω̃
(
(nL/δ)30dσ−2 log2 ε−1

)
.)

• If the loss is convex and its minimizer has bounded norm, meaning there exists z∗ so that
f(z∗; y) = minz f(z; y) and ‖z − z∗‖ ≤ D. Then, by convexity

f(z; y)− f(z∗; y) ≤ 〈∇f(z; y), z − z∗〉 ≤ D‖∇f(z; y)‖
6That is, f(z + z′; y) ≤ f(z) + 〈∇f(z; y), z′〉+ 1

2
‖z′‖2.

7Recall ∂f(z;y)
zy

= py(1− py) where pj = e
zj∑d

i=1 e
zi

. If py > 1/2, then z correctly predicts the target label y because

py > pj for j 6= z.

Appendix-1

Putting this into (A.2), we have (here
−→
W∗ = arg min−→

W
Fi(
−→
W) for all i ∈ [n])

F (
−→
W(t+1))− F (

−→
W∗) ≤ F (

−→
W(t))− F (

−→
W∗)− Ω

(ηδm

dn2D2

)
·
∑
i∈[n]

(
Fi(
−→
W(t))− Fi(

−→
W∗)

)2
≤ F (

−→
W(t))− F (

−→
W∗)− Ω

(ηδm

dn3D2

)
·
(
F (
−→
W(t))− F (

−→
W∗)

)2
.

This implies (see for instance the classical calculation steps in [38]) that after T = O
(
dn3D2

ηδmε

)
=

O
(
n7L2D2

δ2ε

)
iterations, we can have F (

−→
W(T))− F (

−→
W∗) ≤ ε.

B Extension to Convolutional Neural Networks

There are numerous versions of convolutional neural networks (CNNs) that are used in practice.
To demonstrate the capability of applying our techniques to such convolutional settings, in this
section, we study a simple enough CNN for the `2 regression task.

A Simple CNN Model. We assume that for the input layer (corresponding to A) and for
each hidden layer ` = 1, 2, . . . , L− 1 (corresponding to W1, . . . ,WL−1), there are d positions each
consisting of m channels. (Each position can be thought as a pixel of an image in computer vision
tasks.) We assume the last hidden layer ` = L (corresponding to WL) and the output layer
(corresponding to B) are fully connected. We assume for each j ∈ [d], there exists a set Qj ⊆ [d]
of fixed cardinality q ∈ [d] so that the value at position j in any convolutional layer is completely
determined by positions k ∈ Qj of the previous layer.

Assumption B.1. We assume that (Q1, . . . ,Qd) give rise to a q-regular bipartite graph: each Qj
has exactly q entries and each k ∈ [d] appears in exactly q different sets Qj.
(In vision tasks, if 3×3 kernels are used then |Qj | = 9. We ignore the padding issue for simplicity.)

The output of each convolutional layer ` = 0, 1, 2, . . . , L− 1 is represented by a dm-dimensional
vector h` = (h`,1, . . . , h`,d) where each h`,j ∈ Rm,∀j ∈ [d]. In the input layer and each j ∈ [d], we
assume

h0,j = φ
(
AjxQj

)
∈ Rm

where xQj ∈ Rq denotes the concatenation of xk for all k ∈ Qj given input x ∈ Rd, and Aj ∈ Rm×q is
randomly initialized at N (0, 2√

qm) per entry. For notational simplicity, we define matrix A ∈ Rdm×d

so that it satisfies h1 = φ
(
Ax
)
. Each row of A has q non-zero entries.

For each layer ` = 1, . . . , L− 1 and each j ∈ [d], we assume

h`,j = φ
(
W`,jh`−1,Qj + τ · b`,j

)
∈ Rm

where h`−1,Qj ∈ Rqm denotes the concatenation of h`−1,k for all k ∈ Qj , the weights W`,j ∈ Rm×(qm)

and the bias the b`,j ∈ Rm are randomly initialized atN (0, 2
qm) per entry, and τ is a small parameter

(say, τ = δ2

10dL) for bias. For notational simplicity, we define matrix W` ∈ Rdm×dm and vector

b` ∈ Rdm so that it satisfies h` = φ
(
W`h`−1 + τb`

)
, and define vector g`

def
= W`h`−1 + τb` ∈ Rdm.

Note that each row of W` has qm non-zero entries.
We assume the last layer WL and the output layer B are simply fully connected (say without

bias). That is, each entry of WL ∈ Rdm×dm is from N (0, 2
qm), and of B ∈ Rd×dm is from N (0, 1

d).
We denote by hi,` the value of h` when the input vector is xi, and define gi,`, Di,` in the same

way as before.

Appendix-2

B.1 Changes in the Proofs

If one is willing to loose polynomial factors in L and d in the final complexity, then changes to each
of the lemmas of this paper is very little.8

Changes to Section 4. The first main result is Lemma 4.1: ‖hi,`‖ is in [1− ε, 1 + ε] with high
probability. In the CNN case, for every j ∈ [d], recalling that hi,`,j = φ(W`,jhi,`−1,Qj + τb`).

Applying Fact 4.2, we have that
qm‖hi,`,j‖2

‖hi,`−1,Qj ‖
2+τ2 is distributed as χ-square distribution of order

m. Due to concentration of χ-square distribution, ‖hi,`,j‖2 is extremely close to its expectation
‖hi,`−1,Qj ‖

2+τ2

q . Summing this up over all j ∈ [d], and using Assumption B.1, we have ‖hi,`,j‖2 is

concentrated at ‖hi,`−1‖2+ τ2d
q . Applying induction, we have ‖hi,`‖ is in [1−ε, 1+ε] with probability

at least 1− e−Ω(mε2/L2), as long as τ2 ≤ εq
10dL .9

The changes to Lemma 4.3 and Lemma 4.4 are the same as above, but we loose some polynomial
factors in L (because we are not careful in the argument above). For instance, the intermediate
bound in Lemma 4.3a becomes ‖WbDi,b−1Wb−1 · · ·Di,aWa‖2 ≤ O(L).

As for the δ-separateness Lemma 4.5, we need to redefine the notion of δ-separateness between
hi,` and hj,`: ∑

k∈[d]

∥∥∥(I− hi,`,kh
>
i,`,k

‖hi,`,k‖2
)hj,`,k

∥∥∥2
≥ Ω(δ2) (B.1)

Then, denoting by ĥk = hi,`−1,k/‖hi,`−1,k‖, we have

hj,`,k = φ(W`,khj,`−1,Qj + τb`,k) = φ
(
~g1 +

(∑
z∈Qk

‖(I− ĥzĥ>z)hj,`−1,z‖2
)1/2

~g2

)
where ~g2 ∼ N (0, 2

qmI) is independent of the randomness of hi,`,k once A,W1, . . . ,W`−1 are fixed.
One can use this to replace (4.4) and the rest of the proof follows.

Changes to Section 5. The first main result is Lemma 5.2, and we discuss necessary changes
here to make it work for CNN. The first change in the proof is to replace 2c1L

1.5 with 2c1L
2 due

to the above additional factor from Lemma 4.3a. Next, call that the proof of Lemma 5.2 relied on
Claim 5.3 and Claim 5.5:

• For Claim 5.3, we can replace the definition of x with x = D′(W(0)h(0) + τb + g′) for b ∈
N (0, 2

qmI). This time, instead of using the randomness of W(0) like in the old proof (because

W(0) is no longer a full matrix), we use the randomness of τb. The new statement becomes

‖x‖0 ≤ O
(dm

τ2/3
‖g′1‖2/3 +

1

τ
‖g′2‖∞(dm)3/2

)
and ‖x‖ ≤ O

(
‖g′1‖+

1√
τ
‖g′2‖3/2∞ (dm)3/4

)
.

and its proof is by re-scaling x by 1
τ and then applying the old proof (with dimension m

replaced with dm).

• For Claim 5.5, it becomes ‖y1‖ ≤ O
(√

qs/m logm
)

and ‖y2‖∞ ≤ 2
√

logm√
qm .

After making all of these changes, we loose at most some polynomial factors in L and d for the new
statement of Lemma 5.2:

8We acknowledge the existence of more careful modifications to avoid loosing too many such factors, but do not
present such result for the simplicity of this paper.

9We note that in all of our applications of Lemma 4.1, the minimal choice of ε is around δ3 from the proof of

δ-separateness. Therefore, choosing τ = δ2

10dL
is safe. We are aware of slightly more involved proofs that are capable

of handling much larger values of τ .

Appendix-3

(a) ‖D′i,`‖0 ≤ mω2/3poly(L, d) and ‖D′i,`gi,`‖ ≤ ωpoly(L, d).

(b) ‖g′i,`‖, ‖h′i,`‖ ≤ ωpoly(L, d)
√

logm.

Finally, the statements of Lemma 5.6 and Lemma 5.7 only loose polynomial factors in L and d.

Changes to Section 6. The norm upper bound part is trivial to modify so we only focus on
the gradient norm lower bound. Since we have assumed WL to be fully connected, the gradient on
WL is the same as before:

∇̂~v[WL]k
F (
−→
W) =

n∑
i=1

〈Bk, vi〉 · hi,L−1 · 1(WLhi,L−1)k≥0

Since we still have δ-separateness (B.1), one can verify for ` = L− 1,

‖hi,` − hj,`‖2 =
∑
k∈[d]

‖hi,`,k − hj,`,k‖2 ≥
∑
k∈[d]

∥∥∥(I−
hi,`,kh

>
i,`,k

‖hi,`,k‖2
)hj,`,k

∥∥∥2
≥ Ω(δ2) .

Since ‖hi,`‖ ≈ 1 and ‖hj,`‖ ≈ 1, this gives back the old definition of δ-separateness:
(I − hi,`h>i,`/‖hi,`‖2)hj,` has norm at least Ω(δ). Therefore, the entire rest of Section 6 follows as
before.

Final Theorem. Since Section 7 and 8 rely on previous sections, they do not need to be changed
(besides some polynomial factor blowup in L and d). Our final theorem becomes

Theorem 5 (CNN). Let m ≥ Ω̃
(
poly(n,L, d, δ−1)·d·log2 ε−1

)
. For the convolutional neural network

defined in this section, with probability at least 1 − e−Ω(log2 m) over the random initialization, GD

and SGD respectively need at most T = poly(n,L,d)
δ2 log 1

ε and T = poly(n,L,d)·log2 m
δ2 log 1

ε iterations to

find a point F (
−→
W) ≤ ε.

C Extension to Residual Neural Networks

Again as we have discussed in Section C, there are numerous versions of residual neural networks
that are used in practice. To demonstrate the capability of applying our techniques to residual
settings, in this section, we study a simple enough residual network for the `2 regression task
(without convolutional layers).

A Simple Residual Model. We consider an input layer h0 = φ(Ax), L − 1 residual layers
h` = φ(h`−1 + τW`h`−1) for ` = 1, 2, . . . , L − 1, a fully-connected layer hL = φ(WLhL−1) and an
output layer y = BhL. We assume that h0, . . . , hL ∈ Rm and the entries of W` ∈ Rm×m are from
N (0, 2

m) as before. We choose τ = 1
Ω(L logm) which is similar as previous work [56].

We denote by g0 = Ax, g` = h`−1 + τW`h`−1 for ` = 1, 2, . . . , L − 1 and gL = WLhL−1. For
analysis, we use hi,` and gi,` to denote the value of h` when the input vector is xi, and Di,` the
diagonal sign matrix so that [Di,`]k,k = 1(gi,`)k≥0.

C.1 Changes in the Proofs

Conceptually, we need to replace all the occurrences of W` with (I + W`) for ` = 1, 2, . . . , L − 1.
Many of the proofs in the residual setting becomes much simpler when residual links are present.
The main property we shall use is that the spectral norm

‖(I + Wa)Di,a+1 · · ·Di,b(I + Wb)‖2 ≤ 1.01 (C.1)

Appendix-4

for any L− 1 ≥ a ≥ b ≥ 1 with our choice of τ .

Changes to Section 4. For Lemma 4.1, ignoring subscripts in i for simplicity, we can combine
the old proof with (C.1) to derive that ‖h`‖ ≤ 1.02 for every i and `. We also have ‖h`‖ ≥ 1

2 by
the following argument.

• Fact 4.2 says each coordinate of h0 follows from an independent folded Gaussian distribution
|N (0, 1

m)| and therefore, with high probability, at least m/2 of the coordinates k ∈ [m] will
satisfy |(h0)k| ≥ 0.6√

m
. Denote this set as M0 ⊆ [m].

• In the following layer ` = 1, (h`)k ≥ (h`−1)k − τ |(W`h`−1)k|. Since W`h`−1 ∼ N (0,
2‖h`−1‖2

m I)
and ‖h`−1‖ ≤ 1.02, we know with high probability, at least 1− 1

10L fraction of the coordinates in

M0 will satisfy |(W`h`−1)k| ≤ O(logL√
m

). Therefore, for each of these (1− 1
10L)|M0| coordinates,

we have (h`)k ≥ (h`−1)k − 1
10L by our choice of τ . Denote this set as M1 ⊆M0, then we have

(h`)k ≥ 0.6√
m
− 1

10L
√
m

for each k ∈M1.

• Continuing this argument for ` = 2, 3, . . . , L−1, we know that every time we move from M`−1

to M`, its size shrinks by a factor 1 − 1
10L , and the magnitude of (h`)k for k ∈ M` decreases

by 1
10L
√
m

. Putting this together, we know ‖h`‖2 ≥ (0.6√
m
− 1

10
√
m

)2 · (1− 1
10L)L · m2 ≥

1
10 for all

` = 1, 2, . . . , L− 1. The proof of the last layer hL is the same as the old proof.

Lemma 4.3 is not needed anymore because of (C.1). Lemma 4.4 becomes trivial to prove using
(C.1): for instance for Lemma 4.4a, we have ‖Di,LWLDi,L−1(I + WL−1) · · ·Di,aWau‖ ≤ O(‖u‖)
and thus ‖BDi,LWLDi,L−1(I + WL−1) · · ·Di,aWau‖ ≤ O

(√s logm√
d

)
‖u‖ for all s-sparse vectors u.

Lemma 4.5 needs the following changes in the same spirit as our changes to Lemma 4.1. With
probability at least 1 − e−Ω(log2m) it satisfies ‖W`hi,`‖∞ ≤ O(logm√

m
) for all i ∈ [n] and ` ∈ L. In

the following proof we condition on this event happens.10 Consider i, j ∈ [n] with i 6= j.

• In the input layer, since ‖xi − xj‖ ≥ δ, the same Claim 4.6 shows that, with high probability,
there are at least 3

4m coordinates k ∈ [m] with |(hi,0 − hj,0)k| ≥ δ
10
√
m

. At the same time,

at least 3
4m coordinates k ∈ [m] will satisfy (hi,0)k ≥ 1

10
√
m

and (hj,0)k ≥ 1
10
√
m

. Denote

M0 ⊆ [m] as the set of coordinates k satisfying both properties. We have |M0| ≥ m
2 and∑

k∈M0
|(hi,0 − hj,0)k| ≥ δ

20

√
m.

• In the following layer ` = 1, we have

(hi,` − hj,`)k = φ((hi,`−1)k + τ(W`hi,`−1)k)− φ((hj,`−1)k + τ(W`hj,`−1)k)

Using ‖W`hi,`‖∞ ≤ O(logm√
m

) and our choice of τ , we know for every k ∈ M0, it satisfies

(hi,`)k ≥ 1
10
√
m
− 1

100L
√
m

and (hj,`)k ≥ 1
10
√
m
− 1

100L
√
m

. Therefore, the ReLU activation

becomes identity for such coordinates k ∈M0 and

∆k
def
= (hi,` − hj,`)k = (hi,`−1 − hj,`−1)k + τ(W`(hi,`−1 − hj,`−1))k .

Let sk = 1 if (hi,`−1 − hj,`−1)k ≥ 0 and sk = −1 otherwise. Then,∑
k∈M0

|∆k| ≥
∑
k∈M0

sk ·∆k =
∑
k∈M0

|(hi,`−1 − hj,`−1)k|+ τ · sk(W`(hi,`−1 − hj,`−1))k

Note that when hi,`−1 and hj,`−1 are fixed, the values sk(W`(hi,`−1−hj,`−1))k are independent

10For simplicity, we only show how to modify Lemma 4.5 with success probability 1 − e−Ω(log2m) because that is
all we need to the downstream application of Lemma 4.5. If one is willing to be more careful, the success probability
can be much higher.

Appendix-5

Gaussian with mean zero. This means, with probability at least 1−e−Ω(log2m), the summation∑
k∈M0

sk(W`(hi,`−1 − hj,`−1))k is at most O(logm) in absolute value. Putting this into the
above equation, we have∑

k∈M0

|∆k| ≥
∑
k∈M0

|(hi,`−1 − hj,`−1)k| −O(τ logm) ≥ δ

20

√
m−O(τ logm) .

• Continuing this process for ` = 2, 3, . . . , L − 1, we can conclude that
∑

k∈M0
|(hi,L−1 −

hj,L−1)k| ≥ δ
30

√
m and therefore ‖hi,L−1 − hj,L−1‖ ≥ Ω(δ2). This is the same statement

as before that we shall need for the downstream application of Lemma 4.5.

Changes to Section 5. Lemma 5.2 becomes easy to prove with all the L factors disappear for
the following reason. Fixing i and ignoring the subscript in i, we have for ` = 1, 2, . . . , L− 1:

h′` = D′′`
(
(I + τW` + τW′

`)h`−1 − (I + τW`)h
(0)
`−1

)
= D′′`

(
(I + τW`)h

′
`−1 + τW′

`h`−1

)
For some diagonal matrix D′′` ∈ Rm×m with diagonal entries in [−1, 1] (see Proposition 8.3). By
simple spectral norm of matrices bound we have

‖h′`‖ ≤ (1+τ‖W`‖2+τ‖W′
`‖2)‖h′`−1‖+τ‖W′

`‖2‖h
(0)
`−1‖ ≤ (1+

1

10L
)‖h′`−1‖+O(τω) ≤ · · · ≤ O(τω)

This implies ‖h′`‖, ‖g′`‖ ≤ O(τω) for all ` ∈ [L − 1], and combining with the old proof we have
‖h′L‖, ‖g′L‖ ≤ O(ω).

As for the sparsity ‖D′`‖0, because g
(0)
` = h

(0)
`−1 + τW

(0)
` h

(0)
`−1 ∼ N

(
h

(0)
`−1,

2τ2‖h(0)
`−1‖

2

m

)
and ‖g′`‖ ≤

O(τω), applying essentially the same Claim 5.3, we have ‖D′`‖0 ≤ O(mω2/3) for every ` = 1, 2, . . . , L−
1. One can similarly argue that ‖D′L‖0 ≤ O(mω2/3).

Next, Lemma 5.6 and Lemma 5.7 become trivial to prove (recall we have to change W
(0)
` with

I + τW
(0)
` for ` < L) and the L factor also gets improved.

Changes to Section 6. The proofs of this section require only notational changes.

Final Theorem. Since Section 7 and 8 rely on previous sections, they do not need to be changed
(besides improving polynomial factors in L). Our final theorem becomes

Theorem 6 (ResNet). Let m ≥ Ω̃
(
poly(n,L, d, δ−1) · d · log2 ε−1

)
. For the residual neural net-

work defined in this section, with probability at least 1− e−Ω(log2 m) over the random initialization,

GD needs at most T = O
(
n6L2

δ2 log 1
ε

)
iterations and SGD needs at most T = O

(n7L2 log2 m
bδ2 log 1

ε

)
iterations to find a point F (

−→
W) ≤ ε.

References

[1] Atiye Alaeddini, Siavash Alemzadeh, Afshin Mesbahi, and Mehran Mesbahi. Linear model
regression on time-series data: Non-asymptotic error bounds and applications. arXiv preprint
arXiv:1807.06611, 2018.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the Compressed Leader: Faster Online Learning of
Eigenvectors and Faster MMWU. In ICML, 2017. Full version available at http://arxiv.

org/abs/1701.01722.

Appendix-6

http://arxiv.org/abs/1701.01722
http://arxiv.org/abs/1701.01722

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding Local Minima via First-Order Oracles. In
NIPS, 2018. Full version available at http://arxiv.org/abs/1711.06673.

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent
neural networks. arXiv preprint arXiv:1810.12065, 2018.

[5] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Batten-
berg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep
speech 2: End-to-end speech recognition in English and Mandarin. In International Conference
on Machine Learning (ICML), pages 173–182, 2016.

[6] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

[7] Sanjeev Arora, Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Towards
provable control for unknown linear dynamical systems. 2018.

[8] Peter Bartlett, Dave Helmbold, and Phil Long. Gradient descent with identity initialization
efficiently learns positive definite linear transformations. In International Conference on Ma-
chine Learning (ICML), pages 520–529, 2018.

[9] Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is np-complete. In Ma-
chine learning: From theory to applications (A preliminary version of this paper was appeared
in NIPS 1989), pages 9–28. Springer, 1993.

[10] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a con-
vnet with gaussian inputs. In International Conference on Machine Learning (ICML).
http://arxiv.org/abs/1702.07966, 2017.

[11] James V Burke, Adrian S Lewis, and Michael L Overton. A robust gradient sampling algorithm
for nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751–779, 2005.

[12] Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing (STOC), pages 105–117. ACM,
2016.

[13] Amit Daniely. SGD learns the conjugate kernel class of the network. In Advances in Neural
Information Processing Systems (NIPS), pages 2422–2430, 2017.

[14] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning dnfs. In
Conference on Learning Theory (COLT), pages 815–830, 2016.

[15] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample
complexity of the linear quadratic regulator. arXiv preprint arXiv:1710.01688, 2017.

[16] Sarah Dean, Stephen Tu, Nikolai Matni, and Benjamin Recht. Safely learning to control the
constrained linear quadratic regulator. arXiv preprint arXiv:1809.10121, 2018.

[17] Simon S. Du, Jason D. Lee, Yuandong Tian, Barnabás Póczos, and Aarti Singh. Gradient
descent learns one-hidden-layer CNN: don’t be afraid of spurious local minima. In International
Conference on Machine Learning (ICML). http://arxiv.org/abs/1712.00779, 2018.

[18] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient Descent Provably
Optimizes Over-parameterized Neural Networks. ArXiv e-prints, 2018.

Appendix-7

http://arxiv.org/abs/1711.06673

[19] Vincent Fung. An overview of resnet and its variants. https://towardsdatascience.com/an-
overview-of-resnet-and-its-variants-5281e2f56035, 2017.

[20] Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. In ICLR, 2017. URL http://arxiv.org/abs/1711.00501.

[21] Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the ReLU
in polynomial time. In Conference on Learning Theory (COLT), 2017.

[22] Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer with over-
lapping patches. In International Conference on Machine Learning (ICML). arXiv preprint
arXiv:1802.02547, 2018.

[23] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6645–6649. IEEE, 2013.

[24] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In ICLR, 2017. URL
http://arxiv.org/abs/1611.04231.

[25] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical
systems. Journal of Machine Learning Research (JMLR), 19(29):1–44, 2018.

[26] Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral
filtering. In Advances in Neural Information Processing Systems (NIPS), pages 6702–6712,
2017.

[27] Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general
linear dynamical systems. In Advances in Neural Information Processing Systems (NINPS),
2018.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[29] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

[30] Adam R Klivans and Alexander A Sherstov. Cryptographic hardness for learning intersections
of halfspaces. Journal of Computer and System Sciences, 75(1):2–12, 2009.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[32] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic
gradient descent on structured data. In Advances in Neural Information Processing Systems
(NIPS), 2018.

[33] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
ReLU activation. In Advances in Neural Information Processing Systems (NIPS).
http://arxiv.org/abs/1705.09886, 2017.

Appendix-8

http://arxiv.org/abs/1711.00501
http://arxiv.org/abs/1611.04231

[34] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[35] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in Neural Information Processing Systems (NIPS), pages 855–
863, 2014.

[36] Pasin Manurangsi and Daniel Reichman. The computational complexity of training ReLU(s).
arXiv preprint arXiv:1810.04207, 2018.

[37] Jakub Marecek and Tigran Tchrakian. Robust spectral filtering and anomaly detection. arXiv
preprint arXiv:1808.01181, 2018.

[38] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course, vol-
ume I. Kluwer Academic Publishers, 2004. ISBN 1402075537.

[39] Samet Oymak. Learning compact neural networks with regularization. arXiv preprint
arXiv:1802.01223, 2018.

[40] Samet Oymak and Necmiye Ozay. Non-asymptotic identification of LTI systems from a single
trajectory. arXiv preprint arXiv:1806.05722, 2018.

[41] Rina Panigrahy, Ali Rahimi, Sushant Sachdeva, and Qiuyi Zhang. Convergence results for
neural networks via electrodynamics. In ITCS, 2018.

[42] Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer
ReLU neural networks. In International Conference on Machine Learning (ICML).
http://arxiv.org/abs/1712.08968, 2018.

[43] Ohad Shamir. A variant of azuma’s inequality for martingales with subgaussian tails. ArXiv
e-prints, abs/1110.2392, 10 2011.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529
(7587):484–489, 2016.

[45] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of Go without human knowledge. Nature, 550(7676):354, 2017.

[46] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning
without mixing: Towards a sharp analysis of linear system identification. In Conference on
Learning Theory (COLT). arXiv preprint arXiv:1802.08334, 2018.

[47] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[48] Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. CoRR, abs/1705.04591, 2017.
URL http://arxiv.org/abs/1705.04591.

Appendix-9

http://arxiv.org/abs/1705.04591

[49] Le Song, Santosh Vempala, John Wilmes, and Bo Xie. On the complexity of learning neural
networks. In Advances in Neural Information Processing Systems (NIPS), pages 5514–5522,
2017.

[50] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[51] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Advances in neural information processing systems (NIPS), pages 2377–2385, 2015.

[52] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[53] Yuandong Tian. An analytical formula of population gradient for two-layered ReLU network
and its applications in convergence and critical point analysis. In International Conference on
Machine Learning (ICML). http://arxiv.org/abs/1703.00560, 2017.

[54] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[55] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations (ICLR), 2017.

[56] Jiong Zhang, Yibo Lin, Zhao Song, and Inderjit S Dhillon. Learning long term dependencies
via Fourier recurrent units. In International Conference on Machine Learning (ICML). arXiv
preprint arXiv:1803.06585, 2018.

[57] Kai Zhong, Zhao Song, and Inderjit S Dhillon. Learning non-overlapping convolutional neural
networks with multiple kernels. arXiv preprint arXiv:1711.03440, 2017.

[58] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In International Conference on Machine
Learning (ICML). arXiv preprint arXiv:1706.03175, 2017.

Appendix-10

	1 Introduction
	1.1 Our Result
	1.2 Other Related Works

	2 Preliminaries
	2.1 Objective and Gradient
	2.2 Probability

	3 Our Results and Techniques
	3.1 Technical Theorems
	3.2 Main Techniques
	3.3 Notable Extensions

	4 Properties at Random Initialization
	4.1 Forward Propagation
	4.2 Intermediate Layers
	4.3 Backward Propagation
	4.4 -Separateness
	4.4.1 Auxiliary Claim

	5 Stability against Adversarial Weight Perturbations
	5.1 Forward Perturbation
	5.1.1 Auxiliary Claim

	5.2 Intermediate Layers
	5.3 Backward

	6 Gradient Bound at Random Initialization
	6.1 Proof of Lemma 6.3: Upper Bound
	6.2 Proof of Lemma 6.3: Lower Bound
	6.2.1 Proof of Claim 6.4

	7 Gradient Bound at After Perturbation
	8 Objective Smoothness
	8.1 Proof of Claim 8.2

	9 Convergence Rate of GD
	10 Convergence Rate of SGD
	A Extension to Other Loss Functions
	B Extension to Convolutional Neural Networks
	B.1 Changes in the Proofs

	C Extension to Residual Neural Networks
	C.1 Changes in the Proofs

