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Abstract 

Programming can be challenging to learn, and for visually impaired (VI) learners, there are numerous additional 
barriers to the learning process. Many modern programming environments are inaccessible to VI learners, being 
difficult or impossible to interface with using a screen reader. A review of the literature has identified a number 
of strategies that have been employed in the quest to make learning to program accessible to VI learners. These 
can be broadly divided into the following categories; auditory and haptic feedback, making text-based languages 
(TBLs) accessible, making block-based languages (BBLs) accessible and physical artefacts. A common theme 
among the literature is the difficulty VI learners have in gaining an understanding of the overall structure of their 
code. Much of the research carried out in this space to date focuses on the evaluation of interventions aimed at 
VI high-school and undergraduate students, with limited attention given to the learning processes of VI learners. 
Additionally, the majority of the research deals with TBLs, this is despite the fact that most introductory 
programming courses for primary learners use BBLs. Therefore, further research is urgently needed to 
investigate potential strategies for introducing VI children in primary education to programming and the learning 
processes involved. 
 
Keywords: visual impairments, programming education, physical programming, special needs 

1. Introduction 

The introduction of computing into the national curriculum for England in 2014, brought with it the requirement 
for primary school children to be taught the basic concepts of programming from the age of 5 (Department for 
Education, 2014). Programming can be challenging to learn and, for visually impaired (VI), learners there are 
numerous additional barriers to the learning process. Many modern programming environments are inaccessible 
to VI learners, being challenging or impossible to interface with using a screen reader (Baker et al., 2015; Stefik 
et al., 2011) and user interfaces often employ highly graphical depictions (Ludi, 2013). Kane & Bigham (2014) 
identified the following criteria for the development of environments in which VI children can learn to program: 

• “Programming tools must be accessible to the student and must work with the assistive technology that 
he or she uses.” 

• “The student must be provided with programming tasks that hold their interest and provide encouraging 
feedback.” (Kane & Bigham, 2014, p. 257). 

This literature review sets out to provide an overview and discussion of the different strategies that have been 
employed in order to make learning programming accessible to VI learners. Additionally, areas that require 
further research will be identified and discussed. 
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2. Methodology 

This review examines literature from peer-reviewed sources, published between 2000 and November 2017. 
Studies were identified by searching research databases, in addition to citation tracing. The following databases 
were searched: ACM Digital Library, Taylor and Francis, IEEE, Eric and Wiley Online Library. The search 
terms “visually impaired”, “programming” and “education” were initially used, followed by additional searches 
employing alternative search terms with similar meanings, an overview of these terms is given in Table 1.  
 

Search Term Alternatives 

Visually Impaired Blind, visual impairments 
Programming Coding, software development 
Education Learning, learners, school 

Table 1 Summary of Search Terms 
 
Once a short list of articles was formed, the following criteria were used to decide whether the articles should be 
included in the literature review: 

• Papers were included if they had an educational focus, however a small number of other papers were 
retained in order to provide contextual information. 

• Papers were included if they were included in a peer-reviewed academic publication. 
• Papers published since 2000 were included. One exception was made for a paper that is frequently cited 

and therefore provides contextual information. 

Upon further examination of the literature, four main themes emerged; making text-based languages accessible, 
making block-based languages accessible, physical artefacts as well as auditory and haptic feedback. Each of 
these themes is explored in turn in the following sub-sections. An overview of the literature cross-referenced by 
theme is also provided in appendix A. 

3. Overview of Literature 

3.1 Making Text-Based Languages Accessible 
3.1.1 Accessibility of Programming Environments 

A survey of experienced VI developers has demonstrated that many programming environments are either not 
fully compatible with screen readers or challenging to navigate solely using auditory feedback alone, this makes 
them inaccessible to many VI programmers (Albusays & Ludi, 2016). For example Eclipse features a number of 
tabbed windows, which can be accessed through keyboard shortcuts, however this is a time consuming process 
when relying on auditory feedback (Cheong, 2010). Additionally, the BricxCC and Robot C programming 
environments, which are both designed for programming Lego Mindstorms robots, are not fully compatible with 
JAWS (a popular screen reader) (Ludi, 2013). Although Visual Studio (2010) is technically accessible, no sound 
is generated to indicate when the user switches between tabs (Stefik et al., 2011). 
One approach that has been taken to address the inaccessibility of programming environments is the use of a 
standard text editor alongside a screen reader (Bigham et al., 2008; Cheong, 2010; Kane & Bigham, 2014). A 
drawback of this approach is the loss of debugging tools that are standard in most modern programming 
environments. Tools have also been developed to improve the accessibility of programming environments, for 
example the Wicked Audio Debugger (WAD) was developed to work with the popular Visual Studio 
programming environment to assist VI programmers with the debugging process (Stefik et al., 2007).  

An alternative strategy is the development of accessible programming environments. An example is JavaSpeak, 
which was developed as a tool to assist VI undergraduate students learn how to program in Java (Francioni & 
Smith, 2002; Smith et al., 2000). It is based on the concept of EmacSpeak (Raman, 1996), which has a speech 
interface aimed at experienced programmers. Unlike EmacSpeak, JavaSpeak is designed for undergraduate 
students that are learning to program, enabling them to experience their code at different granularities. The 
development process of the JavaSpeak environment has been described, however there is no evidence of 
evaluation of the tool in use. 
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More recently, the JBrick programming environment was developed to make the programming of Lego 
Mindstorms robots accessible (Ludi, 2013). The NXC language (Not eXactly C) has been used in outreach 
programs along with the BricxCC programming environment to enable VI learners to program Lego Mindstorms 
robots (Dorsey et al., 2014; Ludi & Reichlmayr, 2011). However, the BricxCC programming environment is not 
fully compatible with JAWS (a popular screen reader). JBrick was developed as an alternative to BricxCC, it is 
compatible with common screen readers and braille displays, enables code to be easily located by line number 
and provides both audio and visual feedback (Ludi et al., 2014). 
 
3.1.2 Accessibility of Programming Languages 
Another important consideration is the choice of programming language; many commonly used languages, such 
as C and Java, make extensive use of non-alphanumeric characters such as brackets and curly braces, which can 
be challenging to work with using a screen reader. Additionally, the complex syntax of many languages can 
make typing mistakes more likely and debugging more challenging. Languages such as Ruby, which use mainly 
text and limit the number of non-alphanumeric symbols are preferable as they are less likely to cause problems 
with screen readers (Kane & Bigham, 2014). In their study, Kane and Bigham also considered Python, as it 
meets most of the previously mentioned criteria, however it also uses white space which could be confusing 
when used with a screen reader. During the course of their study, which took place over a week and involved 12 
VI learners, Kane and Bigham found that the students were successful in writing programs in Ruby, however the 
mispronunciation of some of the terms by the screen reader caused minor challenges. 

There are text-based languages that have been designed specifically for VI users, for example the APL (Audio 
Programming Language) for example, was developed by VI learners for VI learners (Sánchez & Aguayo, 2006). 
APL features a reduced set of commands which can be accessed and selected through a circular command list, 
with no requirement to memorise commands. The results of a small usability study of APL indicate that the 
language enables learners to understand programming concepts and apply them. 

In 2011, Stefik et al. conducted an exploratory study to evaluate the accessible programming environment 
Sodbeans, along with the Hop programming language, which they developed. Sodbeans is aimed at middle and 
high school students and makes use of audio cues for navigation along with an auditory debugger for the Hop 
programming language. The findings from the evaluation indicate an increase in learner self-efficacy after 
participation in a programming workshop that employed Sodbeans and Hop. 
The Hop programming language was developed further, becoming Quorum, a language designed for all, while 
still being accessible to VI learners (Stefik et al., 2011). The development of Quorum was informed by empirical 
studies investigating the intuitiveness of the syntax of different languages and the accuracy rates of novice 
programmers using them (Stefik & Siebert, 2013). 
 
3.1.3 Code Navigation 
A common theme that occurs among the literature is the difficulty VI learners have navigating their code and 
understanding the overall structure when using a screen reader (Bigham et al., 2008; Kane & Bigham, 2014; 
Ludi et al., 2014). This can often result in learners inserting code in the incorrect position. There are steps that 
can be taken to mitigate these difficulties; in order to gain a better understanding of their position in the code, 
learners can be encouraged to move the text cursor in order to hear the characters read out. In addition, learners 
can also be provided with code samples in braille to help them develop an understanding of the overall structure 
of the code. 

The challenge of navigating the code and understanding its structure was considered during the development of 
StructJumper, a plugin for the Eclipse programming environment which enables VI users to navigate through a 
program written in Java (Baker et al., 2015). StructJumper generates a tree that is made up of the nested 
structures contained within the program, this enables the user to easily jump between each nested structure in the 
code. The participants that took part in a small-scale evaluation of StructJumper found that it helped them speed 
up their navigation through the code. 
 
3.1.4 Other Considerations 

It is also important to consider that the level of vision among VI learners will vary considerably, as will their 
preferred assistive technologies (Bigham et al., 2008; Ludi et al., 2014). Experience with assistive technologies 
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may also vary. Bigham et al. (2008) found that students that were already proficient in the use of a screen reader 
were the most successful. Another factor that can impact on progress of VI learners is their familiarity with 
keyboard layout, with typing skills also being identified as an important skill for learning to program in a 
text-based language (Ludi, 2013; Ludi et al., 2014). 

Another factor to be considered is the accessibility of tools designed to create graphical user interfaces (GUIs), 
as existing tools that are employed to generate GUIs are either not accessible or very challenging to use for VI 
learners. In order to address this issue Siegfried (2006) developed a scripting language to enable VI programmers 
to produce Visual Basic Forms. More recently, Konecki (2014) developed GUIDL, a tool that enables VI 
learners to create GUIs for their programming projects. GUIDL was evaluated by a small group of adult novice 
programmers who found they were able to use the tool to successfully create GUIs that could be used in their 
own programs. 

Although there are a number of studies focusing on teaching VI learners to program in a text-based language 
(TBL), these mainly focus on high school and undergraduate students. The following section will look at the 
accessibility of (BBLs), which are targeted at students in primary school. 
 
3.2 Making Block-Based Languages Accessible 

When learning how to program a significant amount of time is spent learning the syntax of a specific language; 
this can potentially hinder the development of an understanding of the core programming concepts. BBLs such 
as Scratch (Maloney et al., 2010) enable learners to develop programs by snapping blocks together, removing the 
need for them to learn the complex syntax of a TBL. 
BBLs are intrinsically visual and are therefore not accessible to most VI learners. There is a need for an 
alternative to BBLs such as Scratch (Koushik & Lewis, 2016; Ludi, 2015). One such alternative is Noodle, a 
programming system for creating sound and music that has program elements which can be inserted and 
arranged purely using keyboard commands (Lewis, 2014). The concept of Noodle is promising; however, it does 
not appear to have been trialed with learners and the language used in the audio feedback is not appropriate for 
primary school children. This makes it an unsuitable choice for the introduction of programming to young VI 
children.  

Ludi (2015) and her team have been working on making the Blockly language accessible to VI learners. The 
language that Ludi and her team are developing will enable navigation purely by keyboard and also incorporate 
audio cues in order to communicate the level of nesting. Following on from the work on Noodle, Lewis has been 
working with Koushik in the development of another accessible Blockly-based language called the Pseudospatial 
Blocks (PB) language (Koushik & Lewis, 2016). Pseudospatial refers to the distorted nature of the geometry of 
movement. In PB the learner selects an insertion point using the keyboard and they can select the program 
element they want from a filtered list; the program elements are filtered by syntactic category. Koushik and 
Lewis (2016) argue that PB has advantages over visual languages for all learners as invalid program blocks for a 
given space are filtered out. 

The Lady Beetle and World of Sounds programming environments are alternatives to BBLs that were developed 
in order to introduce young VI children to the basic concepts of programming (Jašková & Kaliaková, 2014). The 
Lady Beetle programming environment enables the learner to select single word commands, without having to 
type them. These commands control the movement of a beetle across a grid. As the beetle moves, the coordinates 
of the current square are read out. World of Sounds, on the other hand, enables learners to create simple 
programs that produce sequences of sounds. 
The development of these accessible BBL alternatives is a promising step forward in the quest to find an 
accessible alternative to block-based languages, however they could still present learners with difficulties 
gaining an understanding of the overall structure of their code when using a screen reader. The table shown in 
appendix A demonstrates that there is still some way to go for BBL research to catch up with TBLs. 
 
3.3 Physical Artefacts 
3.3.1 Programmable Devices 

The physical nature of programmable devices such as robots make them a common tool for the teaching of 
introductory programming and it is has been shown to be just as appealing to VI learners (Ludi, 2013). When 
teaching computing with robotics, the robots can either be pre-assembled or learners can be required to build 
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their own robots as part of the learning process. This has its own challenges, particularly for VI learners. 

Dorsey Rayshun, Chung Hyuk, & Howard (2014) conducted an evaluation of four educational robotics kits 
during a series of summer workshops, which investigated their suitability for use with VI learners. In each 
workshop the VI learners were paired with a sighted buddy and tasked with building robots using the various kits. 
The LEGO Mindstorm RCX was found to be the easiest for VI learners to work with, requiring the least support 
from their sighted buddies. 

A number of studies have been conducted, which investigate outreach programs designed to increase 
participation of VI students in computing using robotics (Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi 
& Reichlmayr, 2011). The findings of these studies indicate that after the workshops the confidence level of the 
students in programming improved, as did their desire to take computing in school or pursue it as a career. 
 
3.3.2 Physical Programming Languages 

Most systems used in physical computing, whilst being physical themselves are still programmed using a GUI on 
a computer. In physical programming languages (PPLs), commands are represented by physical objects which 
can be joined together to create programs. The Tern PPL uses wooden blocks that can be joined together in order 
to construct programs. A webcam is used to convert physical into digital code (Horn & Jacob, 2007a, 2007b). 
Tern was initially evaluated over the period of one week with nine sighted children. The children used Tern to 
program robots, not all of them were able to understand the effect of their programs on the robot. This may be 
partially down to the delay between code creation and execution as it has to be converted to digital code using a 
webcam connected to a computer. 
The physical nature of physical programming languages means they have the potential to be a powerful learning 
tool for VI children, howeverTern itself is not accessible. On the other hand there is Torino, a physical 
programming language that is designed to be inclusive of VI learners (Thieme et al., 2017). Torino features pods 
which can be joined together to create programs that produce sound and music. Each pod features dials, which 
act as parameters and enable the learner to change the sound sample or note and the duration. The physical 
nature of Torino programs could potentially enable the learner to gain an overall of the structure of the whole 
program. 
 
3.3.3 3D Models 
It is common practice for computing teachers to use diagrams, graphics or animations to illustrate programming 
concepts such as data structures, “most tools used to teach data structures, algorithmic thinking and basic 
programming are visually oriented” (Papazafiropulos et al., p. 491). While assistive technologies enable VI 
learners to access information, they are unable to present a complex concept in a simple form in the same way a 
visual representation can. 

3D models can be used to represent abstract concepts in a way that is accessible to VI learners. As part of their 
research Stefik et al. (2011) interviewed teachers in one school for VI children and found that where possible 
new concepts should be introduced through the use of physical objects. In response to this, they developed 
‘manipulatives’ for teaching key programming concepts, such as variables. Jašková & Kaliaková (2014) used a 
tactile table consisting of a 10x10 grid to teach VI children how to write simple algorithms. The children were 
given the task to write a sequence of commands in a text editor that guided a bee to follow a pre-set path through 
the tactile grid. The learners would simulate the execution of the program by moving the bee with their hands. 

With the advent of 3D printers, 3D models have become much easier to produce. Papazafiropulos et al. (2016) 
used 3D printed models in a small feasibility study to teach concepts such as data structures and algorithms to VI 
children. The model they used features cylinders of varying heights, with the height representing the value of the 
element. The cylinders slot into a tray which represents the array. It was used to teach how sorting and searching 
algorithms could be applied to arrays.  
3D printing was also used by Kane & Bigham (2014) as part of a week-long programming workshop, in which 
children produced code to generate physical visualizations of data. They found that the ability to generate and 
print their own tactile maps was extremely engaging for the children, however, the speed of 3D printing was a 
limitation as they had to be printed overnight. They also identified the need for universal tools that can be used to 
easily create tactile graphics. 

Lego provides a quick and simple method of producing basic 3D models for use in the teaching of programming 
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concepts to VI learners. Capovilla et al. (2013) discovered this when they employed Lego models in the teaching 
of sorting and searching algorithms to a small group of adult VI learners. Once the learners had familiarized 
themselves with the algorithms using the Lego models, they were then asked to solve sorting and searching tasks 
in a spreadsheet. All participants were able to complete the assigned tasks. 
 
3.4 Auditory and Haptic Feedback 
Sounds that vary in tone and pitch can be used to indicate the different states of a physical object or virtual 
representation, as can haptic feedback in the form of vibrations. PLUMB EXTRA (EXploring data sTRuctures 
using Audible Algorithm Animation) was developed to enable VI undergraduate students to access simulations 
of algorithms designed to manipulate data structures (Calder et al., 2007). It is based on PLUMB, a system 
designed to enable VI learners navigate graphs (Calder et al., 2006). The PLUMB EXTRA system enables 
learners to explore the state of data structures at any point using a series of audio cues. In the Calder et al. (2007) 
study, the development of the system is described; however, the evaluation of the system is limited. 

During a series of workshops, Dorsey et al. (2014) made use of different piano notes and vibrations in a Wii 
remote in order to indicate the different states of a robot while navigating a maze. The results are this study 
indicate that if sufficient haptic and auditory feedback is provided, VI learners are able to perform tasks that are 
considered to be highly visual. 

4. Discussion 

This review has demonstrated the dominance of TBLs in the literature, this is despite the fact that in primary 
computing education BBLs are most prevalent, as highlighted by the recent Royal Society Report (The Royal 
Society, 2017). According to the national curriculum (Department for Education, 2014), all children in England 
should learn the basic concepts of programming from the age of 5. However, the inherent inaccessibility of 
BBLs, along with their widespread use in primary computing lessons can lead to VI learners being excluded 
from programming lessons. Initial steps have been taken towards making BBLs accessible to VI learners, 
however there is still a long way to go and more research is needed. 
Research relating to the use of TBLs with VI learners has identified the difficulty learners can have in gaining an 
understanding of the overall structure of their code as can they only listen to one line of code at a time, putting a 
heavy reliance on short term memory. Even though it has been shown that it is possible to make BBLs accessible 
to VI learners, this difficulty could still present a barrier for learners. PPLs, on the other hand, could potentially 
enable VI learners to develop an understanding of the structure of the code through touch, as long as the 
individual blocks or elements used in the PPL are physically different. Therefore, the use of PPLs with VI 
learners needs to be investigated in terms of learning processes and possible benefits. 

The literature relating to TBLs has identified a number of potential challenges for VI learners in addition to 
possible strategies to overcome them. This research can be used to inform the teaching of programming to 
high-school VI learners, however more research is still required. If VI learners are successfully introduced to 
programming in primary school through PPLs or accessible BBLs, they will enter high-school understanding the 
basic concepts. This could potentially smooth the transition to TBLs and as a result possibly reduce the 
significance of some of the challenges currently associated with TBLs. This highlights the urgent need for 
research into strategies for making programming accessible to primary VI learners. 

5. Conclusion 

Much of the research carried out in this space to date focuses on the development of interventions and their 
impact on student perceptions and engagement, with limited attention given to the pedagogy of teaching 
programming to VI learners. This is certainly an area that warrants further research. 
Currently the most popular languages for introductory programming in primary schools in the UK are 
block-based (The Royal Society, 2017), which are currently not accessible to VI learners. Therefore, there is a 
need for further investigation into potential accessible alternatives to BBLs, PPLs are a promising candidate 
given their potential to enable learners to gain an understanding of the overall structure of their code. 
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6. Summary 

A range of studies have investigated ways in which learning text-based languages can be made accessible to VI 
learners (Bigham et al., 2008; Dorsey et al., 2014; Kane & Bigham, 2014; Ludi, 2013; Ludi et al., 2014; Ludi & 
Reichlmayr, 2011; Smith et al., 2000; Stefik et al., 2011), however, these have focused mainly on high school 
and undergraduate students. Block-based languages have also been examined, with the aim of making them 
accessible to VI learners (Koushik & Lewis, 2016; Lewis, 2014). Pseudospacial Blocks (PB) is a promising 
development, which is more suited to the needs of VI learners in primary education. It should be noted however, 
that it could be challenging for learners to gain an understanding of the overall structure of their code when using 
PB, as is the case with text-based languages. 

Physical artefacts can be employed to engage sighted and VI learners alike, the use robotics is one such example 
(Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi & Reichlmayr, 2011). The drawback of this approach is 
that it currently still relies on TBLs, bringing with them their own complications, which have based discussed 
previously. PPLs, on the other hand have the potential to be a powerful tool in the teaching of programming to 
VI learners in primary education, combining the physical with the facility to gain an understanding of the overall 
structure of a program. 

3D models (Kane & Bigham, 2014; Papazafiropulos et al., 2016; Stefik et al., 2011) along with auditory and 
haptic feedback (Calder et al., 2007; Dorsey et al., 2014) have been shown to be useful aids in the teaching 
process, however they cannot be used to teach programming in isolation and need to be combined with other 
strategies. 

7. Guidelines 

Drawing on the literature, a set of guidelines has been produced for educators and developers working with VI 
learners. It should be noted, however that these guidelines are based on the literature that is currently available 
and may change as the field develops and more evidence is gathered. 

1. Accessible physical programming languages may be a suitable alternative to block-based languages 
when introducing young VI children to programming.  

2. Simple programming concepts can be taught to young VI children using 3D artefacts, for example 
writing an algorithm to move a bee in a tactile grid. 

3. When teaching with text-based programming languages, the choice of language is important. Either 
choose a language that is specially designed for VI learners, or a general-purpose language with simple 
syntax and limited use of non-alphanumeric characters, for example Ruby. 

4. Ensure you choose a programming environment that is fully accessible and easy to navigate using a 
screen reader. If an appropriate environment is not available, a plain text editor can be used, although 
the lack of debugging tools can be challenge. 

5. Abstract concepts that are usually taught using visual representations can often be effectively taught to 
VI learners using 3D artefacts. For example, teaching data structures using different sized cylinders that 
slot into a tray. 

6. VI learners often struggle to gain an overall understanding of the structure of code written in text-based 
languages, one support strategy is to provide example code in Braille (for braillists). 

7. Choosing an appropriate theme for programming activities can make them accessible and engaging for 
VI learners. For example, tasks that involve programming a physical device, such as a robot can be very 
engaging. However, it is important to provide positional information for the robot in non-visual forms, 
this can include the use of auditory and haptic feedback. 
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Abstract 

This study attempts to understand the relationship between learning styles and self-regulated learning of 
pre-service computer teachers in a programming course. Students’ strategies for self-regulation with regard to 
their learning styles were assessed on the basis of qualitative data in terms of programming course. The Turkish 
version of Felder-Soloman learning style inventory was used to identify the students’ learning styles and 
interviews were conducted to evaluate students’ SRL strategies in programming. The results suggest that the 
characteristics of learning styles are somewhat related to self-regulation strategies. Time management was 
identified as a leading self-regulation strategy among learning styles, while shortcomings regarding target setting 
and self-efficacy strategies were prominent with almost all learning styles. Characteristics of other 
self-regulation strategies do not directly match with expected behaviors of learning styles in the context of 
learning programming. It is hoped that the study may shed light for instructors and instructional designers to 
design more appropriate settings for teaching programming taking learning styles in to consideration. 
 
Keywords: self-regulated learning, learning styles, programming  

1. Introduction 

Computer programming is considered as a challenging course given the extensive set of knowledge and skills 
through the years (Bennedsen and Caspersen, 2008). Researchers often addressed that students struggle in the 
transition from introductory level programming to more advanced level. This is because in programming 
learning processes, students need to use various cognitive and metacognitive strategies to control and regulate 
their own learning (Brennan and Resnick, 2012; Hwang, Liang, and Wang, 2016). Numerous studies indicated 
that learning programming cannot be confined in the classroom only, and emphasize the need for applicable 
work for outside the classroom (Azevedo and Hadwin, 2005; Kozlowski and Bell, 2006; Wiedenbeck, LaBelle 
and Kain, 2004). Accordingly, investigating metacognitive processes underlying the learning programming has 
gained more attention. Thus, prior work in teaching programming pedagogy has focused on some problem 
solving strategies and techniques for overcoming difficulties in teaching programming (Lau and Yuen, 2011; 
Nam, Kim and Lee, 2010; Saeli et al., 2011). 
In this circumstance, some researchers address greater involvement in the learning process and students’ 
responsibility in their learning (Akpınar and Altun, 2014; Lye and Koh, 2014).  In order to manage their 
learning; Self-regulated Learning (SRL) enables students to be active in the learning process while developing 
programming skills (Zimmerman, 2008). In this circumstance, specific SRL strategies are required to perform 
the programming tasks (Armstrong, 1989). It is evident that students who use these strategies can perform high 
in the process of learning programming (Alharbi et al., 2014; Falkner et al., 2014). Since programming requires 
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self-regulation, many efforts are ongoing about developing self-regulation for programming. In this context, 
perspectives about how SRL arise in learning programming are discussed in the following section. 
 
1.1. Self-Regulation in Programming	
SRL allows students to be active and to direct their learning (Fernández et al., 2012; Zimmerman, 2002). 
Researchers have reached a consensus that students’ SRL strategies have been positively related to their 
achievements (Artino, 2008; Artino, 2009; Lee, Shen, and Tsai, 2010; Liaw and Huang, 2013; Paechter, Maier 
and Macher, 2010; Pintrich, 2000; Puzziferro, 2008; Wang, Shannon and Ross, 2013). In general, the activities 
in the learning processes are considered as mediators between students, contexts, and achievement within SRL 
strategies (Pintrich, 2004). Safari and Hejazi (2017) argued that self-regulated learners can get advantage of their 
own learning because they know how to apply the acceptable actions in order to reach the goals. In the 
educational context; SRL strategies are seen in the dimensions of self-evaluation, organization, and 
transformation; goal setting and planning; seeking information, keeping records, and monitoring; environment 
structuring; self-consequences; rehearsing and memorizing; seeking social assistance; and reviewing records are 
used (Pintrich and DeGroot, 1990; Schunk and Zimmerman, 1998; Zimmerman, 2002; Zimmerman and 
Martinez-Pons, 1990).  

In programming learning domain self-regulation arguably plays a key role in facilitating the development of 
major skills of problem solving such as logical thinking and reasoning, and helps students to manage their 
learning process during programming (Ramalingam, LaBelle and Wiedenbeck (2004). Some studies suggest that, 
self-regulated learners can find a number of ways to achieve the goals in programming learning process (Bergin, 
Reilly and Traynor 2005; Kumar et al. (2005). In this sense, some recent studies suggest planning, 
self-evaluation and self-monitoring (Falkner, Vivian, and Falkner, 2014; Falkner, Szabo, Vivian, and Falkner, 
2015; Li, Ko, and Zhu, 2015) are prominent strategies to achieve learning objectives in programming. Also, 
self-efficacy is considered as one of the main strategies of SRL which keeps students on track in learning 
programming (Kuo, Wu and Lin, 2013; Ramalingam et al., 2004; Wiedenbeck, 2005). Self-satisfaction is 
another factor which is emphasized by Kuo, Wu and Lin (2013) in their model. In addition, a recent study 
suggests that designing instruction through self-regulation skills for programming courses enhances problem 
solving skills (Loksa et al., 2016). 

On the other hand; Hui and Umar (2010) highlighted some individual characteristics, such as learning styles and 
Wiedenbeck (2005) addressed previous programming experience and knowledge of organization were also 
important for learning programming. The fact that learning styles as processing information can certainly affect 
students’ progress and their programming performances. In this context, the recent studies frequently reference 
to learning styles to understand the progression in learning programming. 
	
1.2. Learning Styles in Programming	
Safari and Hejazi (2017) point out that one of the learning obstacles in classroom is the lack of coordination 
between the instructional methods and the learning styles. Learning styles which are related to the way of 
students’ information processing skills may influence to the student’s performance in introductory programming’ 
(Norwawi, Abdusalam, Hibadullah, and Shuaibu; 2009). When students are aware of their own different styles, 
they can learn better. Research studies indicate that matching learning styles with teaching methods provide high 
academic achievements.  For instance, Alharbi et al. (2011) reported that some of the students in computer 
science programs are not aware of their SRL, and that they do not know how to apply SRL strategies in the 
learning process. Some other studies indicated that students with different learning styles prefer to use different 
SRL strategies (Shannon, 2008) and stating a relationship between SRL and learning styles may promote 
learning on the part of students (Safari and Hejazi, 2017). It can be considered that in the process of learning 
programming, students with different learning styles may follow or develop different self-regulation strategies. 
Thus, instructors should create authentic learning environments by being familiar with individual students’ 
learning styles.  
 
1.3. Considering SRL with regard to Learning Styles 

It is known that student- centred educational paradigms place a high level of responsibility on learners to control 
and regulate their personal learning processes. It is also crucial to take individual differences into consideration 
in instructional processes (Das, 2015). Emphasizing the responsibility students’ own learning, Paris and 
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Winograd (2001) suggest promoting self-regulatory learning strategies. Being aware of the students’ learning 
styles, teachers could help them to know their learning habits, and help them to apply better learning strategies 
within this responsibility. Since in problem solving in problem solving process acquired by self-regulated 
strategies (Zhang et al,2006), learning style as the characteristic cognitive, affective and psychological behaviors 
may serve as how learners perceive, interact with and respond to the learning environment (Keefe, 1988). Thus, 
within the student-centred paradigm, understanding students’ preferences and the self-regulated learning 
strategies together may facilitate their learning process. In a study focusing on the relationships between SRL 
and learning style, Man-Chih, (2006) documented that since self-regulation provides learners with a role in 
decision-making; it is in an accord with converging learners’ styles. Lavasani et al (2011) also found 
self-regulated learners using metacognitive strategies to get advantage of learning process which is in line with 
the feature of the diverging learners.  Gülbahar (2005) referring to the SRL, argued that any student can adapt 
learning processes, activities and techniques, if he/she is able to understand his/her own learning styles and also 
be aware of his experiences.  
 
1.4. Aim of the Study  
While prior work has investigated many aspects of programming in terms of the role of self-regulation, more 
detailed investigation of the relationship between self-regulated learning and learning styles in the field of 
programming is needed. In order to facilitate learning, instructors should provide an easy way for students to 
discover their own characteristics. Thus, exploring the self-regulatory mechanisms regarding the learning styles 
would reveal the nature of psychological processes essential to the initiation, maintenance, and may be 
termination of learning in programming. So, this paper is hoped to contribute to understanding the relationships 
between learning styles and self-regulated learning strategies in the field of programming in higher education. 

In line with the overall purpose of the study, the following research question was directed: How students’ 
self-regulation strategies differentiate in terms of their learning styles in the context of programming learning 
process? 

2. Method	
A Turkish version of the Felder-Soloman’s learning style inventory (LSI-T) coupled with a semi structured 
interview was applied to answer the research questions. The results from the interviews were then categorized 
and interpreted regarding the students’ learning styles. 
 
2.1. Participants 

The study was carried out in a programming language course at the Computer and Instructional Technologies 
Department of a major university in Turkey. The participants were 57 pre-service computer teachers (29 male, 
28 female) between the ages of 18 and 24. The participants have basic computer literacy skills, and limited prior 
programming knowledge. It was the first time they were receiving an introductory programming course. After, 
determining the learning styles of all students, 8 students (4 male 4 female) from all learning styles were 
interviewed.  
 
2.2. Instrumentation	
2.2.1. LSI-T 
To identify students’ learning styles, the Turkish language version of Felder and Soloman’s Index of Learning 
Styles inventory was administered. Felder-Soloman index is one of the most widely used inventories in teaching 
programming, reflecting the skills required for learning programming. Felder and Soloman (1998) in their 
learning style model categorized learners according to four main characteristics, and classified the learning styles 
as: active-reflective; sensing-intuitive; visual-verbal; and sequential-global.  While active learners prefer 
learning by doing or actively participating in work and prefer social interaction, reflective learners think about 
the task first. It means they prefer thinking quietly about information rather than be interactively engaged in 
learning activities. Intuitive learners would be more comfortable managing their own learning, so they prefer 
finding learning possibilities, discovery, innovation, and abstractions. In contrast, sensing learners deal with facts 
and concepts, example-based, concrete learning (Dille and Mezack 1991). In addition, verbal learners get more 
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out of words than from visual representations and the global learners learn in large jumps by seeking out the “big 
picture” rather than learning in the traditional, sequentially organized college course.  

The Index of Learning Styles (ILS) (Felder and Soloman, 1991) is a 44-question survey based on a learning style 
model.  The validity and reliability of the index have been verified by a number of studies (Felder and Spurlin, 
2005; Litzinger et al., 2007; Zywno, 2003). One reason selecting this inventory is the potential of the inventory 
for determining whether the learner has a strong, moderate, or low preference on the identifiers of the learner 
styles. The index was translated into Turkish and validity and reliability analyses were provided                
(Büyüköztürk, Akgün, Özkahveci and Demirel, 2004). The LSI consists of 44 two-part (‘a’ and ‘b’) items. Each 
item comes with two options, where ‘a’ represents active, sensing, visual, sequential learning styles while ‘b’ 
suggests reflective, intuitive, verbal and global ones. 

The inventory was used in previous programming teaching studies. For instance, Chen and Lin (2011) used the 
inventory to identify learning styles at the beginning of programming instruction. In a similar vein, Norwawi 
Abdusalam and Hibadullah (2009) applied the Felder-Soloman learning styles inventory with master’s students 
prior to the beginning of the course.  
 
2.2.2. Interviews 

Semi-structured interviews were conducted to gather the perceptions about students’ SRL strategies. The 
interview questions were developed on the basis of the strategies referring to the SRL definitions (Pintrich, 
Smith, Garcia and McKeachie, 1991). The strategies were in relation with task value, external target orientation, 
target setting, self-efficacy, self-reflection, repetition, peer learning, time management, and effort regulation. 
When formulating the semi-structured interview questions, various SRL scales focusing on these strategies were 
also reviewed, within the framework of the programming languages course. The selected interview questions are 
presented in Appendix 1. 
 
2.3. Data Analysis	
To find mean scores for each learning styles, instances where option ‘a’ was chosen were coded 1, and the 
instances with option ‘b’ were coded 2. Referring to the original inventory mean scores in the 11 to 16 range 
represent active, sensing, visual and sequential learners. On the other hand, mean scores in the 17 to 22 range 
represent reflective, intuitive, verbal, and global learners (Arslan and Aksu, 2006). 
The data obtained through the interviews, in turn, were analyzed through content analysis. The interviews were 
transcribed into text, followed by thematic analysis based on expressions in common statements to define the 
main themes. First, initial codes were identified by two coders. After examining the responses, the coders 
produced tentative thematic units. Thereafter relationships, similarities and differences between the codes 
assigned by both coders were reviewed and categorized, culminating in the construction of the themes in a 
manner to ensure perfect concurrence among the coders, regarding the final themes. Moreover, direct quotations 
in association with the learning styles were presented with special attention being paid to maintain the meaning. 
 
3. Results	
The results are presented regarding the relationship between the learning styles and the use of self-regulation 
strategies. In this context, a two-dimensional tabular presentation is used in order to express the codes related to 
the strategies reflecting learning styles. Participants are assigned as Sn according to their learning styles. The 
interviewed students’ perceptions about the SRL strategies in the context of the programming course were 
presented in line with their different learning styles. The perceptions about the strategies used in “task value” 
category are shown in Table1. 
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Table 1. Strategies in task value category 

 
Table 1 show that the majority of the students believe that; they will use programming experience in their 
professional life, and they consider programming as the one of the basic competencies of being a computer 
teacher. All students noted that programming logic is related with a number of distinct fields. A participant with 
intuitive style expressed this point by saying “It can be used in a number of fields. We use the logic unwittingly, 
even in our daily lives”. Only the students with active and sensing learning styles deemed the programming 
course as a means to enhance intelligence, whereas those of visual and global styles did not address any 
task-value point with respect to the programming course. 
Students’ views regarding the “external target orientation” are presented in Table 2. 
 
Table 2. Strategies in external target orientation category 

A glance at the students’ aims and intentions associated with the programming course indicate that only sensing 
and visual students intended to pass the course. Indeed, the ones with intuitive, verbal, and global styles 
expressed that passing the course is their main aim with the course. The ones with reflective and sequential style 
students added the ability to engage in high-level programming. In addition the active, sensing, and visual style 
students noted the expectation to learning the basics of programming as well. The student with the reflective 
style, in turn, mentioned the importance of writing programs without getting help. 
Strategies expressed with the “target setting learning” are summarized in Table 3. 
 

 Students’ Learning Styles 

 
Strategies 

S1.A
ctive 

S2.R
eflective 

S3.Sensing 

S4.Intuitive 

S5.V
isual 

S6.V
erbal 

S7.Sequential 

S8.G
lobal 

Task Value 

Making practical use of the 
profession 

 √ √ √ √  √  

Providing associations with 
various fields 

√ √ √ √ √ √ √  

Considering it as a means to 
enhance intelligence 

√  √      

Not attaching value     √   √ 

 Students’ Learning Styles 

 
Strategies 

S1.A
ctive 

S2.R
eflective 

S3.Sensing 

S4.Intuitive 

S5.V
isual 

S6.V
erbal 

S7.Sequential 

S8.G
lobal 

External 
Target 

Orientation 

Passing the course √ √ 
 

√ 
 

√ √ √ 
Engaging in high-level 
programming  

√ 
    

√  

Learning the basics √  √  √    
Developing programs with no 
support 

 √   
 

   



International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2  
ISSN 2513-8359 

 19 

 
Table 3. Strategies in Target Setting Category 

 
A substantial number of the students (sensing, intuitive, visual, verbal, global) intend to complete the program 
they are writing, without any bugs. Furthermore, the students with verbal style include getting ahead of the peers 
and developing unique solutions. Those with the active style intend to grasp at least the logic of the program. 
Sequential style student stated that she have no targets. Such targets set by students before venturing with the 
program usually prevent dropping out of the endeavor prematurely. 

Self-efficacy is considered one of the most important category concerning self-regulating learning. In this 
context, the students’ perspectives about the strategies related to self-efficacy are expressed in Table 4. 

 
Table 4. Strategies in self-efficacy category 

 
Some students with global style had a preference for holistic approaches. Moreover, those with reflective and 
verbal styles emphasized confidence in their ability to find distinctive solutions to the problem, while those with 
the active style noted the advantages of applying common solutions. Those with intuitive, visual, and verbal 
styles expressed their ability to write brief and comprehensible programs, while those with the intuitive style 
exclusively referred to the ability to add a visual element. In this sense, S4 expressed that “If the program is 
about a ball, the color of that ball is important for me.” The ones with the visual style, on the other hand, voiced 
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S2.R
eflective 

S3.Sensing 

S4.Intuitive 

S5.V
isual 
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S8.G
lobal 

Target Setting 

Completing the program  
 

√ √ √ √ 
 

√ 
Getting ahead of the peers √ 

    
√ 

 
 

Developing different solutions 
 

 
 

  √   
Comprehending programming 
logic 

√    
 

   

 Setting no target       √  
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S3.Sensing 

S4.Intuitive 
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S6.V
erbal 

S7.Sequential 
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lobal 

Self-Efficacy 

Providing a holistic view for 
the problem 

 
    

 
 

√ 

Employing distinct solutions  √    √   
Employing common solutions √  

 
     

Writing brief and 
easy-to-decipher programs 

   √ √ √   

 Adding a visual perspective    √     
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their confidence in perseverance in the face of problems. The student with the sensing style surprisingly did not 
note any strategy regarding self-efficacy. Students’ views with respect to self-reflection are presented in Table 5. 

 
Table 5. Strategies in Self-Reflection Category 

 
All students noted that they experienced at least one bug when writing programs and those they checked the code 
to correct them. Those with a style other than reflective, on the other hand, expressed that they got help. The one 
with the sensing style expressed that “I often faced with errors. To overcome them, I either have to check the 
bugs or I get help from my friends.” Other students with active, sensing, and global styles addressed that they 
sometimes have difficulty in how to find appropriate programming approaches. To overcome this problem, they 
noted the need to repeat certain structures. Visual and verbal style students on the other hand, referred to the 
inability to take time required for programming, as the leading problem they faced, while the ones with sensing 
or verbal styles expressed that they got bored when writing programs. In addition, the active style student 
expressed that she would get rather avid as she noticed the shortcomings, while the one with the sensing style 
noted her competence about trying different means to solutions. The views voiced with respect to repetition and 
peer learning strategies are expressed in Table 6 and Table 7 respectively. 
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Strategies 

S1.A
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S2.R
eflective 

S3.Sensing 

S4.Intuitive 

S5.V
isual 

S6.V
erbal 

S7.Sequential 

S8.G
lobal 

Self-Reflection 

Reflecting bugs incurred 
in the program 

√ √ √ √ √ √ √ √ 

Forgetting programming 
approaches 

√  √     √ 

Difficulties in directing 
attention 

 √       

Not taking time for 
programming 

    √ √   

Getting bored   √   √   
Checking incorrect codes  √ √   √  √ 
Repeating √  √      
Getting help √  √ √ √ √ √ √ 

Trying different ways   √  √    
 Developing ambition √        
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Table 6. Strategies in repetition category 

When preparing for the exam, half of the students who have distinctive learning styles (active, visual, sequential, 
global) reviewed sample programs and took notes about the scripts. In this context, the student with visual style 
specified that “First of all, I check the sample applications and learn about the common forms. Then I try to 
write the software to understand the overall logic.”  Students with intuitive, visual, and sequential styles 
studied on exercises to get ready for the exams, while the rest prefer writing codes on paper. The student with 
active style said that she developed similar questions and tried to solve them. Those with sensing and visual 
styles memorized the pieces of scripts to prepare for the exams. 

 
Table 7. Strategies in peer-learning category 

 
The students with reflective and visual learning styles addressed that they tried to refrain from getting help; yet 
they often get help from their peers in their efforts to solve the problems they often encounter. In addition, the 
students cooperate with their peers for doing homework as with the reflective style student noted, and during 
exam weeks as active sequential, and global style students mentioned. 
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pieces of code 

 √  √    √ 

Developing solutions on 
paper 

√ √ √   √  √ 

Reviewing sample programs √    √  √ √ 
Trial and error on a computer    √ √  √  
Developing and solving 
similar questions 

√        

 Memorizing   √  √    
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S4.Intuitive 
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S7.Sequential 
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Peer Learning 

Providing solutions for 
errors 

√ √ √ √  √  √ 

Doing homework  √       

Studying for exams √      √ √ 

Required no help  √   √    
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Time-management of self-regulated strategies is generally associated with the classroom activities as well. In 
this context, the perspectives regarding the time-management are presented in Table 8. 
 
Table 8. Strategies in time management category 

 
The students except the one with visual style noted insufficiency of the time devoted to the programming course. 
The ones with visual, verbal, sequential, and global styles, in particular, pointed out the lack of any planning for 
time-management for this course. The ones with reflective and intuitive styles completed the assignments right 
after class, while the ones with active, sensing, and verbal styles had a preference for waiting for the last period. 
Students with reflective, visual, verbal, and global styles addressed that they studied for the programming exams 
only on the last day before the exam. Participant having global learning style objective was only to pass the 
course, and expressed by commenting “I study for the exams on the very last day. It allows me to get a grade of 
45.” Views about “effort regulation” are shown in Table 9. 
 
Table 9. Strategies in effort regulation category 
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S1.A
ctive 

S2.R
eflective 

S3.Sensing 

S4.Intuitive 
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Time 
Management 

Not spending enough 
time 

√ √ √ √  √ √ √ 

No planning     √ √ √ √ 
Completing assignments 
after the class 

 √  √     

Performing assignments 
late 

√  √   √   

Preparing for the exams 
in last day 

 √   √ √  √ 
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S4.Intuitive 

S5.V
isual 

S6.V
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S7.Sequential 

S8.G
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Effort 
Regulation 

Having a break √ √ √ √ √ √  √ 
Seeking help   √ √  √   
Giving up completely       √  
Getting motivated only 
with the easier parts 

     √   
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Most of the interviewees stated that they usually took a break with programming when they face any challenges 
to resume the efforts later on, while the one with the sequential style expressed that she completely gave up in 
such cases. She pointed out this by saying “I demotivated and give up if I fail to solve a problem.”  Moreover, 
the ones with the sensing, intuitive, and verbal learning styles noted getting help to overcome issues. The verbal 
style student expressed that she would be motivated by handling the easier parts of the program first, which 
would motivate her for the rest of the problem. The leading strategies employed by students who have different 
self-regulating learning strategies for programming course with regard to Felder and Soloman (1994) inventory 
are summarized in Figure 1. The figure was developed on the basis of positive perspectives with respect to a 
substantial portion of indicators concerning a given strategy. Overall, Figure 1 summarizes the perceptions about 
the self-regulation strategies employed by students with different learning styles in the context of learning 
programming. Also examples from active and sequential style students’ artifacts are provided in Appendix2. 

 

Figure 1. Use of self-regulating learning strategies with reference to their learning styles 

Students’ perceptions with regard to self-regulated learning strategies indicate that various learning styles are 
prominent in using some strategies. Yet, the ones with visual and sequential learning styles expressed clues 
about a rather limited set of indicators compared to the expressions of other students, while the ones with active 
and verbal styles voiced concrete statements concerning numerous indicators. Figure 1 reveals that students with 
visual, verbal, and global styles did not express any statements about the task value strategy, while the ones other 
than those with the active, reflective, and sequential strategies expressed that they somewhat provide external 
target orientation strategies. Furthermore, the target setting and self-efficacy strategies stand out as the ones 
where the concrete statements on part of the students were rarest. Students with active, sensing, and verbal 
learning styles expressed positive views about the self-reflection strategy, while students with other learning 
styles voiced positive views was only about a very limited set of items. On the other hand, participants with 
active, visual and global styles perceptions regarding the repetition strategy were explicitly positive. Students 
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with active, reflective, and global strategies expressed clues concerning numerous indicators associated with the 
peer-learning strategy.  
4. Discussion 

Considering prior work, this study is based on the idea that students with various individual characteristics can 
exhibit different self-regulation strategies during learning programming. Felder-Soloman learning styles 
inventory is generally discussed with reference to four dimensions considering the similarities among the styles: 
sensing/ intuitive, visual/ verbal, active/ reflective, sequential/ global. The result of this study indicated that 
peer-learning and external target orientation were prominent strategies in reflective learning style, while the 
sensing style students emphasized task value and self-reflection strategies. In the same vein, Das (2015) found a 
significant relationship between self regulated learning and cognitive styles. Students having different learning 
styles perceived in various extend of self-regulated strategies in this study. Relationships between the 
characteristics of learning styles and t their perceptions about the self-regulated strategies are discussed in the 
following section.  

 
4.1. Sequential / Global 

Students with a sequential learning style learn the knowledge offered, as a sequence of interrelated smaller parts. 
Global learners generally need to associate new knowledge with their preliminary knowledge and experience, 
before getting acquainted with the details of the topic. Sequential learners, on the other hand, can utilize specific 
details without embracing the topic as a whole. But they can have problems in grasping the connections the topic 
has with other fields and disciplines (Felder and Silverman, 1988). In the present study, student with sequential 
learning style expressed an emphasis on task value and external target orientation strategies. Students who 
employ a sequential learning style can associate the knowledge with their pre-existing knowledge. Hence, it is 
only natural that the task value and external target orientation strategies are emphasized by students who have 
sequential learning style, for whom motivation is considered a substantial factor in terms of self-regulating 
learning strategies employed. Student having a global learning style, in her turn, had emphasized the repetition, 
peer-learning and time management strategies. Also, students who have a global learning style can achieve 
lasting learning by associating the new knowledge with their previous experiences. One can find an emphasis on 
the repetition strategy curious for a student with global style. The repetition strategy which is based on 
memorizing and global learning style is all about associating meaning through experience. 
 
4.2. Active/Reflective 

Active learning process entails interactions with the external world, such as discussing, expressing, or testing the 
acquired knowledge. Active learners prefer to be engaged in physical activity, while the reflective ones choose 
contemplation about knowledge offered (Felder and Silverman, 1988). In the study, the student who had active 
learning style was positively perceived task value, external target orientation, self-reflection, repetition, and peer 
learning self-regulating learning strategies. Since active learning style is often about considerations with the 
external world, his emphasis on the external target orientation and peer learning strategies are not surprising, 
through the characteristics of this style. In addition, student who had reflective learning style highlighted the task 
value, external target orientation, and peer learning self-regulating learning strategies. Taking the emphasized 
strategies into consideration, one can refer to a positive relation between the learning style and time 
management, particularly in the light of the results observed with student with  reflective learning style. 
 
4.3. Visual / Verbal 

According to Felder and Silverman (1988), the visual learners prefer to use visual elements such as images, 
diagrams, schemes and presentations for the presentation of knowledge, compared to verbal statements or 
written texts, while the verbal learners prefer verbal statements and written texts. In this study the student who 
had a visual learning style had also found the task value and repetition self-regulating learning strategies 
important. The students with a visual learning style do not need the repetition strategy to the extent the students 
with a verbal style do. In the same vein, the visual learner’s emphasis on the repetition self-regulating learning 
strategy is considered to be surprising. Verbal learning style student emphasized target setting, self-efficacy, 
self-reflection, time management, and effort regulation strategies. Thus, it can be concluded that that time 
management and regulation strategies could be expected, while the repetition strategy was once again a surprise. 
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4.4. Sensing / Intuitive 

Felder and Silverman (1988) in their learning style model defines sensing learning style having a preference for 
the knowledge directed at their senses and the intuitive learners are better with knowledge arising internally, 
from their own ideas. Student who had a sensing learning style in this study had addressed task value, 
self-reflection, and effort regulation self-regulating learning strategies. Students with sensing learning style are 
inclined to receive the knowledge directed towards their senses. In this context, emphasis on the effort regulation 
and task value strategies on part of the student with the sensing learning style may be a function of the 
perception with reference to her learning style. The student who had an intuitive learning style had emphasized 
the task value, self-efficacy, and effort regulation self-regulating learning strategies. The intuitive learners 
welcome the knowledge they can imagine internally in their minds, while the students with the intuitive learning 
style presented with a surprise in the form of the emphasis on effort regulation self-regulating learning strategy. 
Overall, students with the active, reflective, and verbal learning styles presented different self-regulation 
strategies. These students evidently focus more on the self-regulation strategies, compared to the adherents of 
other learning styles. The perceived self-regulation strategies among students who have active, intuitive, and 
sequential learning styles does not lead to substantial differences. In terms of the programming learning process, 
planning is pervasive throughout problem solving, guiding the direction that programmers take. Few participants 
were expected to exhibit planning, given their inexperience. The lack of emphasis on planning with respect to 
time management in particular, on part of students of some learning styles (visual/ verbal, sequential/ global) is 
noteworthy. In the present study, students with a wide range of learning styles were found to exhibit skills such 
as making associations with various fields, passing the course which can be listed among the motivational 
factors. The similar results reached by Das (2015) revealed a significant relationship between self regulated 
learning and cognitive styles of secondary school students. There is also a consistency between the findings of 
this study and prior studies about the relationship between learning styles and self-regulation strategies. For 
instance, the study by Kumar et al. (2005) indicates that programmers who received self-regulated-based 
treatment outperformed those who did not. Safari and Hejazi (2017) examined the relationship between the Kolb 
learning styles –converging, diverging, assimilating, and accommodating– with the participants’ self-regulation 
skills. The results showed a positive relationship between each learning styles and self-regulation skills.  

The study has also some limitations. The study was carried out with a limited size of sample selected from those 
who received the Programming Languages course.  With a sample size of 8 it was difficult to generalize the 
power needed to precisely identify relations. Yet, the data gathered allow us to reach to certain conclusions 
regarding the role of students’ work and their individual characteristics in a qualitative manner. The data from 
interviews provided the discussions about the nature of the strategies. 
 
5. Conclusion and Recommendations 

The analysis sought to reveal the association between the learning style and the self-regulated learning in terms 
of learning programming, with reference to the views expressed by students. The results suggest that learning 
styles are somewhat related to self-regulation strategies.  In particular, perceptions of the students with 
active/reflective and sequential/global learning styles with reference to their SRL strategies considerably reflect 
the characteristics of those learning styles.  

On the other hand, students with visual/verbal learning styles did not strongly reflect those characteristics. Some 
of the students in visual/verbal learning styles in turn, surprisingly expressed perceptions which are deemed to be 
in contrast to those expected of their learning styles. Time management was identified as a leading strategy 
among learning styles, while shortcomings regarding target setting and self-efficacy were prominent with almost 
all learning styles. Thus, one can argue that learning styles and perceptions about SRL strategies are somewhat 
related to each other. Nonetheless, some external factors may still affect this relationship. In this sense, in the 
process of teaching programming, it is observed that directing students’ SRL strategies is not an easy task. In 
other words, the reflections of students’ learning styles may not always match with their strategy use in the 
learning process. In such cases, programming instructors may be compelled to find new ways for customizing 
the learning process. 
The present study investigated differentiation of learning styles with reference to qualitative interview data. This 
allowed the association of the characteristics of learning styles, and the perceptions about the basic indicators of 
self-regulation. Despite these and many other limitations affecting to the generalizability of our results, the 
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results may still be considered as a first step in understanding the relationship between learning styles and 
self-regulation in programming. Since SRL strategies offer the potential of facilitating learning programming; 
the results of this study suggest taking note of individual characteristics to inform the application of the strategies 
is noteworthy. We hope that the results provide some insights into the self-regulated learning in a higher 
education programming instruction. 
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Abstract 
Computational Thinking (CT) is pervasive in our daily lives and is useful for problem-solving. Decision-making 
is a crucial part of problem-solving. In the extant literature, problem-solving strategies in educational settings are 
often conveniently attributed to intuition; however, it is well documented that computer programmers might even 
have difficulty describing about their intuitive insights during problem-solving using natural language (such as 
English), and subsequently convert what has been described using words into software code. Hence, a more 
analytical approach using mathematical equations and descriptions of CT is offered in this paper as a potential 
form of rudimentary scaffolding, which might be useful to facilitators and learners of CT-related activities. In the 
present paper, the decision-making processes during an unplugged CT activity are delineated via Grey-based 
mathematical equations, which is useful for informing educators who may wish to explain to their learners about 
the various aspects of CT which are involved in the unplugged activity and simultaneously use these 
mathematical equations as scaffolds between the unplugged activity and computer code programming. This 
theoretical manuscript may serve as a base for learners, should the facilitator ask them to embark on a software 
programming activity that is closely associated to the unplugged CT activity. 
Keywords 
grey-based mathematical equations, decision making, computational thinking, scaffolding for teaching, computer 
software programming, unplugged computational thinking activity 
 
1. Introduction 

In computer programming education, there might be an overemphasis on students' acquisition of the 
syntax of a programming language; often at the expense of development of problem-solving skills (McGill & 
Volet, 1997). Somers (2017) notices that programmers do not work on a problem directly. He quoted Nancy 
Leveson, a professor at the Massachusetts Institute of Technology who has been studying software safety for 35 
years, who explains, "The problem is that software engineers don't understand the problem they're trying to solve, 
and don't care to. The reason is that they're too wrapped up in getting their code to work. The serious problems 
that have happened with software have to do with requirements, not coding errors." Hence, development of 
problem-solving skills should be a high priority for computer programming education. 

Griffin (2016) points out that it is important for computer programmers to develop a mental model of a 
notional machine (du Boulay, O’Shea, & Monk, 1981), which is a rudimentary model that describes the 
instructions of a computer program for problem-solving. Strong interest in how the computer programmer could 
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develop this mental model (by researchers such as Grover, Pea, & Cooper, 2015; Hu, 2011; Selby, 2013; Wing, 
2008), have more precisely explicated this mental model of a notional machine into what is now known as 
Computational Thinking (CT). A generally accepted definition of CT is still developing (Selby, 2013); even the 
very definition of individual constituents of CT such as the concept of abstraction is still evolving (Cetin & 
Dubinsky, 2017). Nevertheless, in the present paper, for the purpose of “operationalising” CT concepts for 
utilisation of mathematical equations in decision-making and problem-solving using a computer programming 
language, we follow the conceptual framework offered by Gouws et al. (2013) who have more concisely 
elucidated CT concepts specifically for the field of education. The constituents of this mental model of CT 
offered by Gouws et al. (2013) include decomposition, algorithmic thinking, abstraction of data and functionality, 
evaluation, and generalisation. Decomposition refers to the process of breaking down a problem into multiple 
steps, in order to solve it. Algorithmic thinking refers to the repetitive execution of patterns of instructions, 
which might involve loops for iteration or recursion. Abstraction of data and functionality refers to the notion of 
representations in data storage and the manipulation of those data in functions. Generalisation refers to the ability 
to create adaptable solutions that are reusable for a wider range of problems. Evaluation is the ability to select 
the best solution for a given problem, as well as to identify and correct errors.  

CT is pervasive (Bundy, 2007); in our daily tasks, CT is particularly useful for problem-solving (Barr, 
Harrison, & Conery, 2011). Indeed, CT is indispensable to problem-solving in the real world, and is also 
considered to be essential in education (Wing, 2008). Efforts have already been made in many studies to 
delineate which aspects of CT might be explicitly learnt by a person who has participated in screen-based 
activities (by researchers such as Grover, 2015; Israel, Pearson, Tapia, Wherfel, & Reese, 2015; Monteiro, 
Salgado, Mota, Sampaio, & de Souza, 2016; Selby & Cynthia, 2015).  

Visualisation of code can also be in the form of physical or kinaesthetic activities (also referred to as 
unplugged activities); not just on screen-based devices. Zagami (2012) posits that the computer programmer 

could understand programming concepts better from visualisation of how code works. Research into non-screen 
based unplugged activities (by researchers such as Bell et al., 2009; Cortina, 2015; Paul Curzon et al., 2014; 
Feaster, Segars, Wahba, & Hallstrom, 2011; Rodriguez, 2015; Taub, Armoni, & Ben-Ari, 2012; Taub, Ben-Ari, 
& Armoni, 2009; Thies & Vahrenhold, 2012; Thies & Vahrenhold, 2013) have demonstrated that they might 
potentially help learners to understand computing concepts kinaesthetically as they solve problems in the real 
world. 

 
Research Problem 
 

In the extant literature, decision-making strategies in problem-solving used by learners in educational 
settings might often just be conveniently assumed by educators to be naturalistic (Zsambok, 2014), or simply 
intuitive (Metcalfe & Wiebe, 1987; Pretz, 2008). However, it is well documented that computer programmers 
might have difficulties in describing about their intuitive insights during problem-solving using natural language 
(such as English), and subsequently convert what has been described using words into software code. In a 
previous study by Kordaki, Miatidis, and Kapsampelis (2008), the students constructed an algorithm intuitively 
in an activity using coins, but most of them had problems describing the procedure which they had used, when 
they tried to express it in natural language (English) and pseudocode. Boticki, Barisic, Martin, and Drljevic 
(2013) also observed that students might have difficulties translating their thoughts into a form that could be 
used in computers.  

Decision making is that thinking which results in the choice among alternative courses of action; 



International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2  
ISSN 2513-8359 

 31 

problem solving is that thinking which results in the solution of problems (Taylor, 2013, p. 48). Further, Taylor 
(2013) also points out that the processes in decision-making are also important to problem-solving (p. 48). In the 
extant literature, besides the seminal work into computational models of decision-making done by Busemeyer 
and Johnson (2004), far too little attention has been paid to decision-making in problem-solving skills for 
computer programming education, and in particular for CT. 
 Wing (2008) proffers that CT is a form of analytical thinking which shares with mathematical thinking, 
engineering thinking, and scientific thinking in similar ways in which we might approach the understanding and 
modelling of real world phenomena, in order to solve problems. She points out that many sciences and 
engineering disciplines also rely on simulations of mathematical models of physical processes found in nature. 
Mathematical modelling has also been utilised in the field of education by educators, students, and researchers 
(Stillman, Blum, & Biembengut, 2015). In education, mathematical modelling has been employed as a strategy 
for building up systems of knowledge (D’Ambrosio, 2015), for students who do not solve problems 
independently to share and refine mathematical models through dual modelling teaching (Kawakami, Saeki, & 
Matsuzaki, 2015), for exploring interconnections between real-world and application tasks (Ng & Stillman, 
2015), and as visualisation tactics for solving real-world tasks (Brown, 2015).  
	

The authors of the present paper do concede that using mathematical equations to model a phenomena 
and subsequently converting those mathematical equations into computer programming code is nothing new; in 
fact, it is a part of Computational Science (Humphreys, 2004). In computational science, computational models 
are usually presented as mathematical models because they can be analysed and even run as simulations using 
computers to better understand the characteristics of the phenomenon being studied. For example, computational 
fluid dynamics (Chung, 2010) refers to the computational modelling of fluid dynamics. Computational finance 
(Ugur, 2008) refers to the computational modelling of financial-related systems. Computational biology 
(Waterman, 1995) refers to the computational modelling of biological-related systems. In the same token, 
computational thinking (Wing, 2006) could be construed as the computational modelling of thinking. Laudable 
efforts have been made by computational thinking researchers (such as Lu & Fletcher, 2009; Weintrop et al., 
2016) to illustrate key concepts in computational thinking which involved the use of mathematical equations; 
however, these studies seem to be solely focused on which aspects of computational thinking were involved 
when a person encounters a mathematical formula or algorithm. Currently, there is a dearth of computational 
models about the “thinking” part of computational thinking in the extant literature. The present paper purports to 
explore this “thinking” part of computational thinking via the decision-making portions of problem-solving; first 
from the perspective of a human learner playing with the programmable toy mouse in an unplugged 
computational thinking activity, and subsequently from the perspective of a computer programmer who is 
programming the software version of a self-navigating mouse that can autonomously reach its objectives. 

Since CT purports to enable humans to analyse problems, and to communicate the corresponding 
solutions using computational terms that are ultimately meant for computers to comprehend and execute, it 
follows that mathematical modelling might be well suited for understanding the decision-making processes 
involved during an unplugged CT activity. The mathematical model can also be utilised as a valuable resource 
should the facilitator choose to ask the learners to implement a software programme to describe the 
decision-making strategies that might be involved. 

In the present paper, the decision-making processes during an unplugged activity, which utilises a 
programmable toy mouse as a simple example, are depicted via mathematical equations, to elucidate which 
aspects of CT might be involved in decision-making during problem solving. The analytical approach of using 
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mathematical equations and descriptions of CT is offered in this paper as a potential form of rudimentary 
scaffolding between CT concepts and software programming, which might be useful to facilitators and learners 
of CT-related activities. 

The rest of this paper is organised as follows: in the next section, the basic building blocks for the 
mathematical modelling of decision-making during the unplugged CT activity will be presented. Using the 
conjectures from these mathematical equations, the aspects of CT involved, together with some examples of 
Python programming code that correspond to the mathematical equations, will be presented in the discussion 
section. In the present paper’s hypothetical scenario, the programmer needs to implement parts of the Python 
code to create a software-based self-navigating mouse that can avoid obstacles and autonomously move towards 
its goals. Finally, the direction of future research will be presented in the conclusion section. 
 
2. Mathematical modelling of decision-making in unplugged ct activity 

In the context of this research, a simple case of an unplugged CT activity which involves a 
programmable toy mouse (see Figure 1) will be used. In this unplugged CT activity, the learner operating the 
programmable mouse must evaluate the possible consequences when trying to achieve the pre-determined 
objectives. Since computational modelling usually involves the use of mathematical models, it follows that using 
mathematical models to depict decision-making in problem-solving might allow us to clearly see the aspects of 
computational thinking involved. A grey-based approach (Deng, 1989; Liu & Lin, 2010; Liu, Yang, & Forrest, 
2016) of mathematical modelling is utilised in this paper, because it excels in modelling phenomena in situations 
where there might be uncertainty, scarcity of quantitative data, or incomplete information; situations which 
learners often find themselves in during problem-solving exercises. Further, although the entire maze could be 
easily observed by a human, a software-based self-navigating mouse that the programmer is trying to create – 
having sensors only on its front, left, right, and rear – can only detect whether there is any object in its immediate 
vicinity. It does not have a “bird’s eye view” of the entire maze. Also, the programmer might need to implement 
the features to enable the software-based mouse to "decide" whether an object is an obstacle or a goal it is trying 
to reach. It might also need to learn from its previous attempts and “predict” the next step that it needs to take. 
Accordingly, we use the conceptual notion of “black” to indicate completely unknown information, “white” to 
indicate completely known information, and “grey” to indicate partially known and partially unknown 
information (Liu & Lin, 2010, p. 15). Grey-based mathematical equations are used because they could 
potentially be used to address issues of uncertainty that might be countered when a programmer is trying to 
implement the self-navigating features of the software-based mouse in computer code. 

 
Figure 1: Unplugged activity which uses a programmable toy mouse 
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The basic building blocks for modelling decision-making during problem-solving, which is adapted 

from the Grey Models of Decision Making, first developed by Liu & Lin (2010, p. 197) into the context of the 
programmable toy mouse in this unplugged CT activity, is presented as follows: 

Let the four key elements of decision-making be events, countermeasures, effects, and objectives. Let 
the totality of all events which might be encountered by the programmable toy mouse in the unplugged activity 
be denoted as  

E = {e1, e2, … en}      (1) 
where ei represents the ith event within the set of events, where i = 1, 2, 3, …, n, such that the event e1 precedes 
e2 and e2 precedes e3 and so forth.  

A countermeasure (Oxford Living Dictionaries, 2017) is an actionable process or choice that could be 
taken (or conversely, not taken) to mitigate the effects of an event. The term “countermeasure” is used instead of 
“action” because of the implication that it could be taken or not taken after considerations during the 
decision-making process. The totality of all countermeasures is defined as the set of countermeasures, denoted as  

C = {c1, c2, … , cm}      (2) 
and cj represents the jth countermeasure within the set of countermeasures, where j = 1, 2, … m. Actions taken 
by the programmable mouse (see Figure 2) can be considered as countermeasures, with the action “forward” 
denoted as c1, “rotate left” denoted as c2, “rotate right” denoted as c3, and “reverse” denoted as c4. Thus, the set 
of countermeasures for the programmable toy mouse is denoted as  

C = { c1, c2, c3, c4 }     (3) 
 

 
 
Figure 2: Buttons on the programmable toy mouse 
 
 
The set of decision schemes S = E × C can be represented by the Cartesian product  

E x C = { (ei, cj) | ei ∈ E, cj ∈ C }      (4) 
of the set of events E, and the set of countermeasures C, where each pair of decision scheme sij = (ei, cj), for any 
ei ∈ E, cj ∈ C. Hence, a set of decision schemes for the programmable toy mouse, which represents the totality 
of all the various combinations of moves it can make, is denoted as 

S = E × C = Sij = (ei, cj) = { S11 , S12 , … , S14, S21, … , S24 , S31, … , S34 , …}  (5) 
 
A set of decision schemes not only can be used to represent the totality of the various ways the 

programmable toy mouse can move that an individual learner has considered, if there is only one learner. 
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Especially noteworthy is, it can also be used to represent the totality of the various ways of solving the problem 
that a group of learners has discussed about together, if there is more than one learner involved, such in this 
instance, where many learners are involved in the decision-making process to discuss how best to move the 
programmable toy mouse. 

In this unplugged activity, the facilitator can first explain to the learners that at each step, the 
programmer must decide whether to make the mouse move forward, or to rotate left or right, or to move in 
reverse. In our mathematical model, however, each “step” that the mouse takes can be technically considered to 
be an event. For example (see Figure 3), each step shall be technically referred to as an event in the 
computational model, and in each step, there is a corresponding countermeasure, which can be Forward, or 
Rotate Left, or Rotate Right. 

For example, at event e1, the programmable toy mouse might not be blocked by any obstacle in front, 
behind, or on its sides, so the programmer can choose to deploy countermeasure c1 to move the mouse one 
square forward. At event e2, the programmable mouse might encounter an event where the goal (the cheese) is 
located to its left, so the programmer needs to deploy the countermeasure c2 to rotate left, and so forth.  

 
Figure 3: Example of a path utilised by a learner for the programmable toy mouse 
 
Effect values of decision schemes 

To encourage the learners to participate in this unplugged activity, the facilitator might like to consider 
explaining to them that there will be a competition where each team is required to discuss about the best steps for 
the mouse to take, before using the mouse. The rules of the competition can be presented to them in a slide (see 
sample slide in Figure 4). 

 

Figure 4: Rules of the competition for the teams of learners participating in the unplugged CT activity 
Effect value of decision scheme 
Let a set of decision schemes be denoted as  

S = { Sij  = (ei, cj) | ei ∈ E, cj ∈ C }     (6) 
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Further, let 𝑢!"
(!) represent the effect value of the set of decision scheme Sij with respect to the objective k, where 

R represents the set of all real numbers. If we suppose that 𝑢!"
(!): 𝑆⟼ 𝑅, that is, the effect value  𝑢!"

(!) can be 

mapped from the set of decision schemes to a set of real numbers with respect to the objective k, it follows that a 

particular decision scheme 𝑠!" can also be mapped to an effect value, which can be denoted as 𝑠!" ⟼ 𝑢!"
(!). For 

example, in the context of the points award system of the competition in this unplugged CT activity (see Figure 
4), the learners in each team are encouraged to discuss among themselves to propose a solution (a particular 
decision scheme which is selected from a set of decision schemes) for their team and try it on the programmable 
toy mouse. Hence, the effect values of the teams’ decision schemes can be directly manifested in the real values 
of the points that they score (or lose). 
 
Equivalent countermeasures 
 If two different actions (also referred to as countermeasures) of the programmable toy mouse can contribute 
to achieving the same objective, we can denote it as follows: if the countermeasures 𝑐! and 𝑐! are equivalent 
with respect to objective k, it can be denoted as 𝑐!  ≅ 𝑐! . Hence, the set with equivalence class of 
countermeasure 𝑐! to the event 𝑒!  with respect to objective k can be denoted as 
    𝐶!

(!) = { c | c ∈ C, c ≅ 𝑐! }     (7) 
 

Suppose the two effect values 𝑢!"
(!) and 𝑢!!

(!)are equivalent, then this effect equivalence can be denoted 

as 𝑢!"
(!) = 𝑢!!

(!). For example (see Figure 5), the effect value in Decision Scheme A can be considered to be 

equivalent to the effect value in Decision Scheme B, because the mouse takes the same number of 
countermeasures to reach the cheese. 

 
Figure 5: Example of equivalent effect values 
 
Superiority of a countermeasure 
 If a countermeasure is considered to be better than another countermeasure for the programmable toy 

mouse, it can be denoted as follows: if the effect value 𝑢!"
(!) is greater than the effect value 𝑢!!

(!), it can be 

denoted as 𝑢!"
(!) > 𝑢!!

(!). If the countermeasure 𝑐! is superior to 𝑐! in response to event 𝑒! with respect to 
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objective k, it can be denoted as 𝑐! ≻ 𝑐!. Hence, it follows that the superior set of countermeasures 𝑐! to the 

event 𝑒!  with respect to objective k can be denoted as 
    𝐶!!

(!) = { c | c ∈ C, c ≻ 𝑐! }    (8) 
 
 
Superiority of a decision scheme 
 After discussion amongst the learners in their respective teams, if a set of emergent decision scheme is 

considered to be superior by the team members, it can be expressed as follows: if the effect value 𝑢!"
(!) must be 

greater than the effect value 𝑢!!
(!) to achieve the objective, it can be denoted as 𝑢!"

(!) > 𝑢!!
(!). If the decision 

scheme 𝑠!" is superior to 𝑠!! with respect to objective k, it can be denoted as 𝑠!" ≻ 𝑠!! and hence the set of 
superior decision scheme can be denoted as 

    𝑆!!
(!) = { s | s ∈ S, s ≻ 𝑠!! }     (9) 

For example (see Figure 6), if decision scheme A is contributed by Learner A, decision scheme B is 
contributed by Learner B, and decision scheme C is contributed by Learner C, and suppose in the group 
discussion, the three learners come to a decision that decision scheme A is superior because the programmable 
toy mouse would be able to reach the cheese if this is chosen, we can say that decision scheme A is superior 
compared to decision schemes B and C. 

 

Figure 6: Example of a superior decision scheme 
 
Threshold values of decision effects 
 In the competition within this unplugged activity, the teams of learners are motivated to discuss and present 
their perceived solution quickly, so that they can score higher points; however, if their solution of the algorithm 

is incorrect, they might be penalised too, so this can be expressed as follows: let 𝑑!
(!) be the upper threshold 

value (the points that the team can score if its solution is correct), and 𝑑!
(!) be the lower threshold value (the 

points that the team can score if its solution is incorrect) of the decision scheme 𝑠!" with respect to the single 

objective k, and r be the value between the range of 𝑑!
(!) and  𝑑!

(!). It follows then that the one-dimensional 
grey target for objective k can be denoted as 

    𝑆! =  𝑟  𝑑!
(!) ≤ 𝑟 ≤  𝑑!

! }    (10) 
 
and a satisfactory effect value with respective to objective k can be denoted as 

    𝑢!"
(!)∈ [𝑑!

(!),𝑑!
(!)]      (11) 
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Decision-making with multiple objectives 

Suppose 𝑢!"
(!) represents the effect value of decision scheme 𝑠!" with respect to a single objective k. If 

𝑠!" is a feasible decision scheme which can contribute to achieving the objective k, it can be denoted as 𝑠!"∈𝑆!. 
This applies to situations which involve a single objective.  
 For grey targets of decision-making with multiple objectives, if there are two objectives for instance (see 

Figure 7), we can assume that 𝑑!
(!) and 𝑑!

(!) to be the lower and upper threshold values of the decision effects 
of objective 1, where 𝑟(!) represents the value between the range of 𝑑!

(!) and  𝑑!
(!). We can also assume 

𝑑!
(!)and 𝑑!

(!) to be the lower and upper threshold values of the decision effects of objective 2 , where 𝑟(!) 
represents the value between the range of 𝑑!

(!)  and  𝑑!
(!) . Hence, the grey target of two-dimensional 

decision-making can be denoted as 

   𝑆! =  𝑟(!), 𝑟(!)  𝑑!
(!) ≤ 𝑟 ! ≤  𝑑!

! ,𝑑!
(!) ≤ 𝑟 ! ≤  𝑑!

! }  (12) 
 

 
Figure 7: Multiple objectives of the programmable toy mouse 

If this effect vector of 𝑠!" satisfies the effect value 𝑢!" such that 𝑢!" = {𝑢!"
! , 𝑢!"

! } ∈ 𝑆!, then 𝑠!" 

can be considered to be a superior decision scheme with respect to objectives 1 and 2. It also follows that 𝑐! can 

be considered to be a superior countermeasure for event 𝑒! with respect to objectives 1 and 2. 

  Suppose 𝑑!
(!) , 𝑑!

(!) , 𝑑!
(!) , 𝑑!

(!) , … where 𝑑!
(!)  and 𝑑!

(!)  represent the lower and upper threshold 
values of decision effects with respect to objectives 1, 2, … , s. A grey-target with a s-dimensional 
decision-making scheme can be denoted in Euclidean space as 

 𝑆! =  𝑟(!), 𝑟(!),… , 𝑟(!)  𝑑!
(!) ≤ 𝑟 ! ≤  𝑑!

! ,𝑑!
! ≤ 𝑟 ! ≤  𝑑!

! ,… ,𝑑!
! ≤ 𝑟 ! ≤  𝑑!

! }  (13) 
 

Hence, if 𝑠!" is a superior decision scheme, where 𝑢!"
!  represents the effect value of the decision 

scheme 𝑠!" with respect to the objective k, and k = 1, 2, …, s, then effect vector can be denoted as 

 𝑢!" = {𝑢!"
! , 𝑢!"

! ,… , 𝑢!"
! } ∈ 𝑆!     (14) 

 
These grey-targets of decision-making represent the locus of superior effects. In reality, however, it 
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might be almost impossible to achieve absolute optimization of an outcome. Nevertheless, in analysis we 
endeavour to strive for the quasi-optimal outcome, where the decision scheme and its corresponding 
countermeasures are quasi-optimal; which is to say, they are the best choices among the available decision 
schemes and their corresponding countermeasures. As a cautionary note, however, the quasi-optimal solution 
presented by a team of learners might not always be the correct solution; in fact, it could even be incorrect. 
 
Time Series: Memories of Sets of Decision Schemes 

So far, the discussion has focused only on static decision schemes with a fixed moment in time. 
Grey-based decision-making can also focus on changes of the decision effect over time (Liu et al., 2016). Let us 
suppose that in a hypothetical scenario, the facilitator might wish to consider asking the learners to develop a 
software-based self-navigating mouse that can perform autonomous problem-solving in a series of different 
maze challenges, not just in one maze challenge. Instead of static decision schemes, the concept of time can now 
be included; as time advances forward, the changing decision effects can also be considered.  

Memory plays an important role in problem solving (Reber & Kotovsky, 1997). In the software-based 
self-navigating mouse’s multiple attempts at problem-solving, which involves the notion of time, it  has to 
“remember” the consequential effects of its previous attempts, before another attempt is made to solve a similar 
problem in the future. As such, the facilitator might also consider asking the learners to implement a rudimentary 
type of memory into the software-based self-navigating mouse, so that it can “remember” its previous moves in 
the form of a time series. Suppose a set of events is represented by E = { e1, e2, e3, …, en }, a set of 
countermeasures is represented as C = { c1, c2, …, cm }, and the set of decision schemes is represented by S = { sij 

= (ei, cj) | ei ∈ E, cj ∈ C }, then it follows that the time series of decision effect of the decision scheme 𝑠!" with 
respect to the objective k can be denoted as 

    𝑢!!
!  = (𝑢!"

! 1 , 𝑢!"
!  (2), … , 𝑢!"

! (ℎ))   (15) 

This section has described some mathematical equations that might be used to depict the 
decision-making processes that might be involved in the programmable toy mouse in the unplugged CT activity. 
The next section will present some of the CT concepts and their corresponding Python programming code that 
might be useful as scaffolds for the teacher in the facilitation of a discussion with the students about CT concepts 
in decision-making and problem-solving, and how to implement them using computer programming code. 

 
 
3. Discussion 
 So far, these grey-based mathematical equations have tried to depict the decision-making processes that 
might be involved in the unplugged CT activity to educe (meaning: to draw out) the problem-solving abilities of 
the learners. Sometimes, after an unplugged CT activity has been conducted, the facilitator might wish to 
continue with a code writing activity for the learners, if they already have experience in software programming. 
For example, the facilitator might consider asking the learners to write code to implement the mouse in software, 
in such a way so that it has autonomous decision-making abilities. Besides text syntax-based programming 
languages such as Python, C++, and Java, software programmes can also be developed using mathematical 
equations. Currently, a software which utilises symbolic computing and can accept mathematical symbols as part 
of its programming syntax to create simulations is Mathematica (Wolfram Research Incorporated, 2017). Should 
the facilitator choose to explicitly explain the CT concepts involved in the unplugged CT activity to the learners, 
so that by analogous association, they can programme decision-making capabilities in the software-based 
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autonomous self-navigating mouse, the following information might be useful for the programmers, regardless 
of the choice of programming language to be used. In the current section, some suggested snippets of computer 
programming will be offered as illustrations to show how the afore-mentioned mathematical equations of 
decision-making can be used as scaffolds by the teacher for possible discussions of computer programming with 
the students. The Python programming language is used in the present paper, because it has become quite 
popular for learning programming in schools. It had also gained traction as a programming language for 
development work in machine learning, deep learning, and artificial intelligence. In the present paper, the Python 
code snippets are not intended to be complete solutions; they merely serve as scaffolds for the teacher to discuss 
about programming concepts and CT concepts with the students. This section purports to make explicit the CT 
concepts for implementing decision-making capabilities in the software-based self-navigating mouse. 
Computational Thinking in Decision-making: Abstraction 

The CT concept of abstraction of data can be applied to the events (see Table 1) which can be 
represented as lists or arrays in the software-based self-navigating autonomous mouse. For the purpose of 
keeping this example simple, the number of events is assumed to be 5. It is also assumed that in this game, the 
self-navigating mouse is not allowed to reverse. The values inside each event are assumed to be some data 
“sensed” by the software version of the self-navigating mouse, perhaps via machine-vision or via proximity 
sensors. Let us assume that this software-based self-navigating mouse has three sensors, one on its front, one on 
its left side, and one on its right side. In each event that the mouse encounters, the event ei can be represented as 
an array with 3 values, each from its front, left, and right sensor respectively. For example, if there is a cheese in 
front of the mouse, its value would be: 2, if there is an obstacle on its left, its value would be: -1, if there is no 
object on its right, its value would be: 0. Hence, it can be represented as an array in Python code e1  = [2, -1, 0]. 
Therefore, if it encounters 5 events, it can be represented in Python code as follows: 

 Table 1: Mathematical equation of an array of events and its corresponding Python code 
From Equation 1: A set of events 
 
          E = {e1, e2, … e5}  

Example of corresponding Python code 
 

 

 
The CT concept of abstraction of data can be applied to the events (see Table 2) by representing them as 

an immutable tuple or alternatively as an array in the software-based self-navigating autonomous mouse. For the 
purpose of keeping this example simple, the number of events is assumed to be 4, where actions taken by the 
self-navigating autonomous mouse can be considered to be countermeasures, with the action “forward” denoted 
as c1, “rotate left” denoted as c2, “rotate right” denoted as c3 and “reverse” denoted as c4. For ease of 
computation by the software-based self-navigating autonomous mouse, the value of c1 is 1, the value of c2 is 2, 
the value of c3 is 3, and the value of c4 is 4. 

Table 2: Mathematical equation of an array of countermeasures and its corresponding Python code 
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From Equation 3:  
A set of 4 countermeasures 
 

C = { c1, c2, c3, c4 }  
 

Example of corresponding Python code 
 

 

 
Besides representing data as variables in lists or arrays, data can also be presented in the form of a 

Cartesian structure in Euclidean space during the decision-making process (see Equation 5) in the 
software-based self-navigating autonomous mouse. This Cartesian structure can be easily created using Python; 
it involves the usage of vertically stackable arrays to create a multi-dimensional matrix (see Table 3). 
Multi-dimensional matrices are also referred to as tensors, which could be used to store data of different 
data-types “sensed” by the software-based self-navigating autonomous mouse from its sensors. In real-world 
practical applications, tensors – which are useful for storing massive amounts of digital data from pixels of 
images, audio data, spatial data, and so forth – are the cornerstone of data structures in artificial intelligence 
programming-related software such as TensorFlow, Theano, and Keras. 

Table 3: Mathematical equation of a multi-dimensional matrix and its corresponding Python code 
From Equation 5:  
An E by C dimension Cartesian 
structure formed from the equation 
which represents Events and 
Countermeasures. 
 
E × C = Sij   
= { S11 , S12 , … , S14, S21, … , S24 , 
S31, … , S34 , …} 
 

Example of corresponding Python code 
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Computational Thinking in Decision-making: Evaluation 
The CT concept of evaluation could potentially be applied in this manner: let us suppose that the 

software-based self-navigating mouse has autonomous decision-making capabilities to select the best 
quasi-optimum solution using the decision-making process to determine the superiority of a countermeasure (see 
Equation 8). The following is a simple contrived example of using Python code to calculate the magnitude of an 
array of possible countermeasures, so that a “superior” countermeasure can be determined: 

Table 4: Python code to calculate the magnitude of an array to determine which direction the 
self-navigating mouse should take 

From Equation 8:  
Superiority of a Countermeasure 
 

𝐶!!
(!) = { c | c ∈ C, c ≻ 𝑐! } 

Example of corresponding Python code to calculate and 
compare the magnitudes of three arrays of events data 
collected by the self-navigating mouse’s sensors on its 
front, left, and right, to determine which is the superior 
way to be taken by the self-navigating mouse; that is, the 
superior countermeasure (direction) that would allow that 
higher value to be manifested. 
 

 
 
The CT concept of evaluation can also be applied by the software programmer to determine the 

superiority of a decision scheme (see Equation 9). Usually, in a self-navigating autonomous machine, the 
evaluation is not determined by the human programmer, but by the machine itself using algorithms that are 
useful for machine vision, image pattern recognition, path finding, and so forth. In practical terms, the 
programmer might simply need to “feed” the data (most probably contained in the data structure of a matrix) to 
the machine learning or deep learning algorithm. Comparison of numerous multi-dimensional matrices (multiple 
decision schemes) can then be performed by the machine learning or deep learning algorithm inside the 
self-navigating autonomous mouse to determine the “superiority” of a decision scheme (one single matrix) in a 
set of decision schemes (numerous matrices).  
Computational Thinking in Decision-making: Decomposition 

The CT concept of decomposition could be applied in decision-making with multiple objectives (see 
Equation 12) in the software-based self-navigating mouse. For instance, if there are two objectives, and if the 
self-navigating mouse is required to reach the Action symbol, as well as the cheese symbol on the board, it 



International Journal of Computer Science Education in Schools, April 2018, Vol. 2, No. 2  
ISSN 2513-8359 

 42 

would be required to break down the steps to be taken to achieve those two objectives.  
Computational Thinking in Decision-making: Algorithmic Thinking 

In addition to the CT concept of decomposition in decision-making for multiple objectives, the CT 
concept of algorithmic thinking, in conjunction with the concept of utilising the threshold values of decision 
effects (see Equation 13) could be applied to the software-based self-navigating mouse so that it can “think” 
about using similar methods for reaching multiple objectives, even though the objectives may look different. For 
example, the same method that the software-based self-navigating autonomous mouse can use to reach the 
Action symbol, that is, by comparing countermeasures to determine which one is superior (for instance, one path 
which uses fewer steps), can also be applied to reach the cheese. In terms of practical application, the software 
programmer might wish to consider using a Time Series (see Equation 15) so that the events, countermeasures, 
decision schemes, and decision effects considered and taken (or considered but not taken) by the software-based 
self-navigating mouse can be “stored” for analysis to determine which next step to take (forward, left, or right). 

Table 5: Python code to utilise a Time Series and make a one-step prediction 
From Equation 15:  
Data stored in a Time Series 
 

𝑢!"
!  = ( 𝑢!"

! 1 , 𝑢!"
!  (2), … , 

𝑢!"
! (ℎ)) 

Example of corresponding Python code which utilises the concept of Time 
Series to apply the CT concept of generalisation to analyse the pattern in 
the data, and subsequently make a one-step prediction  
 

 

 
Computational Thinking in Decision-making: Generalisation 

Finally, the CT concept of generalisation in decision-making might be implemented in the 
software-based self-navigating mouse in a manner that can combine the sets of events, countermeasures, 
decision schemes, and objective effects into a decision-making algorithm, so that they can be utilised in problem 
solving, for example, to autonomously predict the best route to take in new mazes. Practically, one of the ways 
might be for the programmer to consider implementing a LSTM (Long Short-Term Memory) recurrent neural 
network, which is a cornerstone of Machine Learning/Deep Learning for predicting new sequences (and in this 
context: paths) based on older data. The programmer may wish to consider implementing code to develop 
persistence (a form of memory) and perform analysis on the data from events, countermeasures, decision 
schemes, and decision effects, so that the self-navigating mouse can develop its own algorithmic thinking. More 
information about coding LSTM recurrent neural networks in Python can be perused at Brownlee's (2016) 
website. 
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4. Conclusion and future research 
Grey-based mathematical equations have been utilised in the present paper to depict what might be 

involved in decision making during an unplugged CT activity. Mathematical modelling of decision-making 
might contribute to addressing a gap in the extant literature of CT research that has insofar not been studied 
much. An analytical approach using mathematical equations and descriptions of CT has been offered in this 
paper as a potential form of rudimentary scaffolding, which might be useful to facilitators and learners of 
CT-related activities. The mathematical equations of the decision-making processes posited in this theoretical 
manuscript may serve as a base for programmers, regardless of the programming language they prefer, should 
the facilitator wish to ask the learners to embark on a software programming activity that is closely associated to 
the unplugged CT activity. 

Indeed, teachers/instructors might not need the mathematical equations in the present paper to teach an 
activity such as navigating in the maze. They might, however, find them to be useful as scaffoldings if software 
programming by the learners is involved after the conclusion of the unplugged CT activity. The hypothesis is 
that, if the teachers are exposed to a math model, they can be made aware of what the decision options are, and 
how to interpret the actions and results provided by students. Further, they might be more aware of the 
ramifications of the unplugged activity through its representation as a mathematical model. We hope future 
research can explore this hypothesis. Better still, if some instructors can create the model or fragments of the 
model, they can become even more conversant of the content knowledge to be taught and can build on the model 
to do the programming of the algorithm. 

The existence of the problem-solving conceptual framework that has come to be referred to as 
computational thinking cannot be in doubt; however, what that structure is, might be another matter that is 
worthy of further research and exploration. As researchers seek to understand more about the various aspects of 
computing education, the utilisation of mathematical modelling might play a significant role in CT by, for 
example, describing it in more formal terms via mathematical equations to uncover aspects of CT that might be 
useful for programmers; should the need arise to implement them systematically in software code. 
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