
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automated Refactoring of Nested-IF Formulae in Spreadsheets
Jie Zhang1,3 , Shi Han2, Dan Hao1, Lu Zhang1, Dongmei Zhang2

1Key Laboratory of High Con�dence Software Technologies (Peking University), MoE, Beijing, China
2Microsoft Research, Beijing, China

3 Department of Computer Science, University College London, London, UK
1{jie.zhang,haodan,zhanglucs}@pku.edu.cn, 2{shihan,dongmeiz}@microsoft.com

ABSTRACT
Spreadsheets are the most popular end-user programming software,
where formulae act like programs and also have smells. One well
recognized smell is the use of nested-IF expressions, which have low
readability and high cognitive cost for users, and are error-prone
during reuse or maintenance. End users usually lack essential
programming language knowledge and skills to tackle or even
realize this problem, yet no automatic approaches are currently
available.

This paper proposes the �rst exploration of the nest-if usage
status against two large-scale spreadsheet corpora containing over
80,000 industry-level spreadsheets. It turns out the use of nested-IF
expressions are surprisingly common among end users. We then
present an approach to tackling this problem through automatic
formula refactoring. The general idea of the automatic approach is
two-fold. First, we detect and remove logic redundancy based on
the AST of a formula. Second, we identify higher-level semantics
that have been represented with fragmented and scattered syn-
tax, and reassemble the syntax using concise built-in functions. A
comprehensive evaluation with over 28 million nested-IF formulae
reveals that the approach is able to relieve the smell of over 90% of
nested-IF formulae.

1 INTRODUCTION
End-user programming referes to the activities that support end
users who are not professional developers to program. Spreadsheets
are the most popular end-user programming tools [1]. One of
the most important enabling factors is that spreadsheets provide
immediate feedback so users can make a change in one place and
immediately see the results [2]. Underneath such an advantage,
formulae play an important role as end-user friendly programs.
However, end-users typically lack essential knowledge and skills of
programming, and are easier to write formulae with bad smells [3].

One of the well-recognized spreadsheet smells are nested-IF ex-
pressions [3, 4]. IF functions1 (i.e., the syntax is IF (condition,
value_i f _true,value_i f _f alse)) are widely used spreadsheet func-
tions. Nested-IF expressions happen when end users write an IF
function inside another IF function. Formulae with nested-IF ex-
pressions are notorious as being complex, unreadable, error-prone,
as well as hard to debug and maintain [3–7]. Although industrial
spreadsheet applications allow end users to nest many IF functions,
they are also trying to help avoid this bad practice. For example,
the documentation of Microsoft Excel IF function [8] lists several
serious disadvantages (e.g., hard to ensure 100% accuracy, di�cult
to maintain, and complex) of using multiple nest-if statements as a
caution to end users.

1 Functions are prede�ned built-in formulae in spreadsheet systems.

This kind of warning from spreadsheet applications, however, is
far from enough. Our investigation against a large-scale real-world
industrial spreadsheet corpora2 reveals that the bad practice of
using nested-IF expressions is suprisingly common among end users:
30.04% of the worksheets containing IF also contain nested-IF . If we
denote the maximum nesting level inside a nested-IF expressions
as if-depth 3, each spreadsheet includes on average 9 formulae
with if-depth over 10, while the observed maximum if-depth is 64
with multiple instances. The surprising abuse of multiple nest-if
statements suggests that end users may lack the consciousness,
essential knowledge, or skills to tackle this problem. Automatic
support is in great demand.

To tackle this problem, we propose an automated approach to
systematically refactoring formulae. The general idea is two-fold.
First, there often exists logic redundancy across di�erent condi-
tion paths within a nested-IF . Reduction of the redundant logic can
remove useless parts and simplify the nested-IF formula. Second,
we realized that in many occasions end users use nested-IF func-
tions to achieve some complex bug speci�c functionality. Thus,
some higher-level semantics are often fragmented into hierarch-
ical combinations of IF conditions in a nested-IF . Reassembling the
fragmented syntax from corresponding IF-subtrees into built-in
functions can shorten the nested-IF formula. To analyze and re-
factor both redundant logic and fragmented syntax, our approach
leverages and works on the AST (Abstract Syntax Tree) structure
as intermediate representation of nested-IF formulae.

The evaluation is conducted on two large spreadsheet corpora,
with over 80,000 real-world spreadsheets and over 28 million nested-
IF formulae. The experimental results lead to the following two key
takeaways. First, our approach is generally applicable - over 90% of
the nested-IF formulae can be refactored. Second, our approach is
e�ective - the nested-IF functions in most formulae are completely
reduced or transformed with a new if-depth of 1.

The main contributions of this paper are shown as follows.
1) The �rst statistical investigation on the current usage of
nested-IF formulae in real-world industry-level spreadsheets.
We present detailed statistics of nested-IF formulae against two
corpora, with over 80,000 real-world spreadsheets. We �nd that
nested-IF formulae are surprisingly commonly used among end
users.
2) The �rst automated approach to identifying and refact-
oring nested-IF formulae. The approach has high coverage in
reducing of smells of nested-IF formulae in spreadsheets.
3) A comprehensive evaluation of the proposed automated
approach. We evaluated the correctness, applicability, and e�ect-
iveness of the approach.

2 We refer spreadsheet as a �le consisting of one or multiple worksheets [11].
3 E.g, I F (I F (L1 >= F $5, L1), I F (L1 <= F $6, L1, “”), “”) has an if-depth of 2.

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ESEC/FSE 2018, 4–9 November, 2018, Florida, United States Jie Zhang1,3 , Shi Han2, Dan Hao1, Lu Zhang1, Dongmei Zhang2

2 COMMON USAGE OF NEST-IF FORMULAE
Nest-if formulae are well known spreadsheet smells, but it remains
unknown how commonly they are adopted among end users. In
this paper, we conduct the �rst exploration about the usage status
of nested-IF formulae.

‘The investigation is based on two large-scale spreadsheet cor-
pora. The �rst corpus is a spreadsheet repository collected by
Microsoft, named MS corpus in this paper, with over 68,000 real-
world spreadsheets (excluding those with technical complications
as obstacles for interaction-free processing, e.g., password protec-
ted, external reference embedded requiring trust con�rmation). The
Second corpus is Enron Spreadsheet Corpus, introduced by Hermans
and Murphy-Hill [11], containing over 15,000 real-world spread-
sheets. It is open-source and widely adopted in research [14–16].

We choose these two corpora because of their very large scale:
the number of spreadsheets (68,075/15,770) is larger than the other
corpora that have been used in previous research (the EUSES Spread-
sheet Corpus [17] with 4,037 spreadsheets and the Hawaii Kooker
Corpus [18] with 74 spreadsheets). In particular, the MS corpus
has high diversity, containing data from various companies across
multiple domains. Such large scale and diversity make them more
representative of the generalized usage status of spreadsheet for-
mulae. The detailed information is listed in Table 1.

Table 1: Details of the MS corpus and Enron corpus

Corpus
MS Enron

Average size of spreadsheets 1,211.3 KB 113.4 KB
spreadsheets 68,075 15,770
worksheets 149,170 79,983
spreadsheets with formulae 37,109 9,120
spreadsheets with IF functions 14,425 2,020
IF functions 138,085,568 3,420,790

Based on these two corpora, we investigate the number of nested-
IF formulae with di�erent if-depth. We scan each formula in every
spreadsheet, and checks if it contains the IF function. If so, we then
check the if-depth of the formula. If the if-depth is bigger than 1,
the formula is a nest-if formula. Finally, we count the number of
formulae with di�erent depth ranges.

The results are shown in Table 2. The table indicates a surpris-
ingly heavy usage of nested-IF formulae. For example, for the
MS corpus, over 20% formulae with IF function also contain nested-
IF functions. Over 12% formulae have an if-depth of over 5. Over
75 thousand formulae even have an if-depth of more than 15. In
addition, we found that 30.04% of the worksheets containing IF also
contain nested-IF (not listed in the table). Each spreadsheet includes
on average 9 formulae with if-depth over 10. What’s worse, the
observed maximum if-depth is 64 with multiple instances.

The nested-IF formulae are less common in the Enron corpus than
in the MS corpus, but still over 15% formulae with IF function also
contain nested-IF functions, with over 5,032 formulae containing
nested-IF functions.

The heavy usage of nested-IF formulae indicates that end-users
usually lack the awareness or enough knowledge to avoid the smell.
As a result, the readability, maintainability, and correctness of

Table 2: Usage status of nested-IF formulae

MS corpus Formula Number

formulae with IF function 138,085,568
formulae with nested-IF function 27,689,299
if-depth in range (1,5] 24,250,194
if-depth in range (5,10] 2,815,521
if-depth in range (10,15] 548,129
if-depth in range (15,65] 75,455
Enron Corpus Formula Number

formulae with IF function 3,420,790
formulae with nested-IF function 532,241
if-depth in range (1,5] 527,209
if-depth in range (5,10] 5,032

spreadsheet may be seriously a�ected [8]. Automated approaches
are thereby in great need to help tackle this problem.

3 AUTOMATIC REFACTORING
3.1 Overview
Our approach identi�es optimizable nested-IF expressions and per-
forms refactoring by analyzing the AST structure of each for-
mula to replace basic-level and counter-intuitive syntax with non-
redundant and high-level syntax. The approach contains three
basic steps: target identi�cation, redundancy removal, and syntax
reassembling. In this section, we �rst present a high-level over-
view of the 3-step approach, then introduce the details of the two
key algorithms for redundancy removal and syntax reassembling,
respectively.

Step1: Target identi�cation. First, we need to identify whether
a formula has nested-IF functions. We achieve this by parsing each
formula and generating its AST. AST is a tree representation of the
abstract syntactic structure of source code written in a program-
ming language. In spreadsheet related research, AST is usually
adopted to indicate formula complexity [16]. The larger depth
(height) of the AST, the higher complexity of the formula. The ma-
jor rationale behind using AST is the desirable structural mapping
between AST and nested-IF as follows. An IF function typically
contains three parts: 1) condition, 2) true-branch expression, and 3)
false-branch expression. Therefore, the ASTs of nested-IF expres-
sions are binary trees, with the true- and false-branch expressions
being the two child-nodes of the condition node. Consequently,
with AST, it is easy to locate nested-IF in a formula as well as con-
venient to conduct further analysis based on the tree structure.

Along each path of AST, we record the number of IF functions,
and regard the largest one across all paths as the if-depth of the
formula. A nested-IF is identi�ed in a formula when its if-depth
is greater than 1, and will be passed to the subsequent steps for
refactoring analysis. Otherwise, if the if-depth equals 0 (i.e., no IF in
this formula) or 1 (i.e., no nested-IF in this formula), our algorithm
will bypass the formula directly.

Step2: Redundancy removal. An IF expression can essentially
be mapped to an if-else branching statement in professional pro-
gramming. Once the condition on some node remains deterministic
due to its preceding evaluation at some ancestor node on AST, it will
become a redundant condition and one of its child branches must be
dead code. Such redundant conditions are spreadsheet smells that

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automated Refactoring of Nested-IF Formulae in Spreadsheets ESEC/FSE 2018, 4–9 November, 2018, Florida, United States

require removal, since they introduce unnecessary complications
to the spreadsheet data and make formulae more complex. We
conduct such redundancy removal �rst, because its existence may
also obscure the AST structure from well understood patterns and
thus put negative impact on syntax reassembling. More details of
this step can be found in Section 3.2.

Step3: Syntax reassembling. We have observed that single
and higher-level semantics are often fragmented by end user into
lower-level syntax pieces with nested-IFs. We then manually checked
if there are built-in functions prede�ned in spreadsheets with
higher-level syntax but identical semantics. The goal of this step is
to conduct reverse inference against such a smell, i.e., to recognize
and reassemble such semantic-fragmented AST regions into their
more concise forms via pattern matching and replacement. More
details of this step can be found in Section 3.3.

3.2 Redundancy Removal
In this section, we introduce how we identify and remove redund-
ant conditions in a nested-IF formula (Step 2). The procedure is
presented with the help of an example �ow in Figure 1.

1) Nested-IF expression extraction. First, we extract outmost
nested-IF expressions from each formula. By outmost we mean the
highest hierarchy in a nested branching logic or on an AST. For ex-
ample, for formula SUM(IF (C1,V 1,V 2), IF (C2,V 3, IF (!C2,V 4,V 5)),
IF (C3,V 5, IF (IF (C4,V 6,V 7)))), there are two target nested-IF ex-
pressions: IF (C2,V 3, IF (!C2,V 4,V 5)) and IF (C3,V 5, IF (IF (C4,V 6,
V 7))).

2) Branch collection. Based on the AST of each extracted
nested-IF , we create a dictionary dicConBranch as the key structure
to help detect and remove redundant logic. As shown in Figure 1, for
each entry in the dictionary, its key is the condition of an AST node
such as C1 or C2; the dBranchList value stores a tuple of two AST
sub-trees corresponding to true and false branches respectively. In
addition, each entry also has anBranchList value for the negation of
the key condition such as !C1, and stores the tuple of true and false
branches accordingly. The dictionary is constructed by visiting
each condition node on the AST. When the same condition (or
negation) is hit for multiple times, the AST sub-tree tuples at each
hitting site are appended to the dBranchList (or nBranchList).

3) Redundancy identi�cation and removal. Intuitively, if
any entry stores more than 1 tuple in dBranchList and nBranchList
collectively, it indicates existence of redundant branches on the
AST about the condition at key. We iterate such inspection against
dicConBranch to detect and remove redundancies. Each detected
redundancy site corresponds to one redundant IF expression that
can be replaced with either the true branch (the condition is determ-
inistic as true) or the false branch (the condition is deterministic
as false). Thus, under each situation, we generate the redundant IF
expression according to the condition and its branch list and make
replacement.

3.3 Syntax Reassembling
After removing redundancies, if the resultant formula still contains
nested-IF expressions, in this third step we further analyze the
AST to detect and reassemble fragmented semantics into built-in
functions.

We summarize these functions based on our case analysis. First,
we sampled around 100 (0.1%) spreadsheets from the MS corpus.
Second, we manually analyzed the nested-IF expressions one by
one and summarized their semantics. Third, we examined the pre-
de�ned functions in spreadsheets4 to check if some of them own
similar semantics as those we summarized.

We �nally matched seven pre-de�ned functions from our sampled
dataset, as listed in Table 3. As of the composing of this paper, there
might be other function candidates that remain out of our know-
ledge. Nonetheless, our proposed algorithm framework should be
extensible for easy incorporation of new patterns.

Correspondly, we have identi�ed seven categories of patterns
corresponding to seven types of built-in spreadsheet functions. The
basic patterns (with if-depth of 5 in all examples) are illustrated
in Figure 2. Based on speci�c structures of each pattern, their
pattern matching algorithms share the preceding general procedure
and di�er in minor details. Additionally, we �nd another pattern
that does not match any function, but can also be transformed
accordingly to remove nested IF. We call this pattern the “USELESS”
pattern. For example, expression IF (A = B,A,B) actually equals A
or B. We put the checking order of this patter just before the IFS
pattern.

For ease of presentation, we unify the condition redundancy, the
USELESS pattern, and the 7 functions all as “patterns”. More details
of each pattern can be found on our homepage5.

We then conduct iterative pattern-matching and replacement.
For each remaining nested-IF after step 2, we further construct
a threePartList as the key structure to facilitate pattern match-
ing. Each threePartList consists of three lists for condition, true
branch, and false branch, respectively. For example, for expression
IF (C1, IF (C2, IF (C3,V 1,V 2),V 2),V 2), the condition part is [C1,C2,
C3], the true branch part is [IF (C2, IF (C3,V 1,V 2),V 2), IF (C3,V 1,
V 2),V 1], and the false part is [V 2,V 2,V 2].

Subsequently, based on threePartList, we infer the semantic of
the IF expression through pattern matching. If we could �nd
matched patterns, we transform the formula using the correspond-
ing function, and replace the nested-IF expression with the trans-
formed one. Following the order introduced in Table 3, we probe
each pattern in sequence. Once a pattern is matched, the probe
jumps to the next iteration from the �rst pattern again. This iter-
ation terminates with zero pattern match. Note that the patterns
CHOOSE/MATCH /LOOKUP have higher priority than the pattern
IFS during the matching, because they are more comprehensible
and enable more concise expressions. In the future, we may con-
sider to provide all alternative refactoring recommendations for
end users to choose from.

4 EVALUATION
4.1 Research Questions
In this paper, we investigate the following three research questions.
RQ1: Is our refactoring correct? This question aims to check
the correctness of our approach.

4 Most mainstream spreadsheet tools such as Excel and Google Sheets support these
functions.

5 https://github.com/sei-pku/nestif
3

https://github.com/sei-pku/nestif

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ESEC/FSE 2018, 4–9 November, 2018, Florida, United States Jie Zhang1,3 , Shi Han2, Dan Hao1, Lu Zhang1, Dongmei Zhang2

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

C1

V 1
T

!C1

V 2
T

C2

V 3
T

V 4
F

F

F
C1

V 1
T

!C1

V 2
T

C2

V 3
T

V 4
F

F

F

C1

V 1
T

V 2
F

C1

C2

C3

C4

V 1
T

V 2
F

T

V 2
F

T

V 2
F

T

V 2
F

AND
C1

V 1
T

C2

V 1
T

C3

V 1
T

C4

V 1
T

V 2
F

F

F

F

OR
A1 = n1

str 1
T

A1 = n2

str 2
T

A1 = n3

str 3
T

A1 = n4

str 4
T

F ALS E

F

F

F

F

CHOOSE
A1 = str 1

n1
T

A1 = st r 2

n2
T

A1 = st r 3

n3
T

A1 = st r 4

n4
T

F ALS E

F

F

F

F

MATCH
A1 = r 1

r 2
T

A1 = r 3

r 4
T

A1 = r 5

r 6
T

A1 = r 7

r 8
T

F ALS E

F

F

F

F

LOOKUP

A > B

A

T

B

F

MAX
A < B

A

T

B

F

MIN

C1

V 1
T

C2

V 2
T

C3

V 3
T

C4

V 4
T

V 5
F

F

F

F

IFS

Figure 2: Typical AST of function AND,OR,CHOOSE,MATCH,LOOKUP, and IFS. stri represents a string; ni represents a number;
ri represents a reference.

true branches of each condition are all identical; second, the false
branches of each condition are all IF expressions, except for the last
false value (i.e., V 2). Such kind of expressions can be replaced with
IF (OR(conditionlist), true�alue, f alse�alue). For example, the ex-
pression with the second AST in Figure 2 can be replaced with
IF (OR(C1,C2,C3,C4),V 1,V 2).

(3) CHOOSE pattern. An IF expression that matches the
CHOOSE pa�ern should have the following features. First, all
the conditions are number equality evaluations, the correspond-
ing numbers could form a arithmetic progression, which can be
translated into a natural sequences. Second, the false branches of
each condition are all IF expressions, except for the last false value.
�ird, the true branch values are all strings. For example, IF (A1 =
1, str1, IF (A1 = 2, str2, IF (A1 = 3, str3, IF (A1 = 4, str4)))) could
be transformed into CHOOSE(A1, str1, str2, str3, str4); expression
IF (A1 = 2, str1, IF (A1 = 4, str2, IF (A1 = 6, str3, IF (A1 = 8, str4))))
could be transformed into CHOOSE(A1/2, str1, str2, str3, str4).

(4) MATCH pattern. An IF expression that matches the MATCH
pa�ern should have the following features. First, all the condi-
tions are string equality evaluations. Second, the true branch
values are all numbers that could form a arithmetic progression,
which can be translated into a natural sequences. �ird, the false
branches of each condition are all IF expressions, except for the
last false value. For example, expression IF (A1 = str1, 1, IF (A1 =
str2, 2, IF (A1 = str3, 3, IF (A1 = str4, 4)))) could be transformed into
CHOOSE(A1, str1, str2, str3, str4, 0); expression IF (A1 = str1, 2,
IF (A1 = str2, 4, IF (A1 = str3, 6, IF (A1 = str4, 8)))) could be trans-
formed into 2 ⇤CHOOSE(A1, str1, str2, str3, str4, 0).

(5) LOOKUP pattern. An IF expression that matches the LOOKUP
(VLOOKUP or HLOOKUP) pa�ern should have the following fea-
tures. First, all the conditions are reference value equality evalu-
ations. �e references are cell neighbours vertically/horizontally.
Second, all the true branches are references that referred to other
cells. �e references are cell neighbours vertically/horizontally, and
have the same columns/rows as the references in the conditions.
�ird, the false branches of each condition are all IF expressions,

except for the last false value. For example, as shown in Table 3, ex-
pression IF (A1 = C1,D1, IF (A1 = C2,D2, IF (A1 = C3,D3, IF (A1 =
C4,D4)))) can be transformed intoVLOOKUP (A1,C1 : D4, 2, FALSE).

�e above pa�erns suit the circumstance that the values looked
up can be found directly in other cells. For those cannot be found
directly, in this paper, we propose to create new tables in the ex-
cel to make ease for the look up function. Consequently, as long
as the conditions are evaluating the value of a certain cell (do-
ing look up based on this cell), we can perform transformation
with the LOOKUP function. For example, for expression IF (A1 =
V 1,V 2, IF (A1 = V 3,V 4, IF (A1 = V 5,V 6, IF (A1 = V 7,V 8)))), we
create a table ranged (E1 : F4), where E1 = V 1, F1 = V 2, E2 = V 3,
F2 = V 4,E3 = V 5, F3 = V 6,E4 = V 7, F4 = V 8. In this way, the
expression can be transformed into VLOOKUP (A1,E1 : F4, 2).

(6) MAX/Min pattern. An IF expression that matches the
MAX or MIN pa�ern should have the following features. �e
condition should do the comparison of two parts, e.g., A < B,
A <= B, A > B, A >= B. �e true branch and the false branch
should be these two parts respectively. For example, expressions
IF (A < B,A,B), IF (A <= B,A,B), IF (B > A,A,B), IF (B >= A,A,B)
can all be transformed into MIN (A,B); expressions IF (A > B,A,B),
IF (A >= B,A,B), IF (B < A,A,B), IF (B <= A,A,B) can all be trans-
formed into MAX (A,B).

(7) IFS pattern. �e past pa�ern is the IFS pa�ern, which is the
most �exible one. As long as the false branches of each condition
are all IF expressions (except for the last one), the expression can
be transformed with the IFS function, as shown in Table 3.

Except for the above pa�erns that match the existing spread-
sheet functions, we found another pa�ern that does not match
any function, but can also be transformed accordingly to remove
nested IF. We all this pa�ern the “USELESS” pa�ern. For example,
expression IF (A = B,A,B) actually equals to A or B. We put the
checking order of this pa�er before the IFS pa�ern.

4 RESEARCH QUESTIONS
In this paper, we would like to investigate the following four re-
search questions.

5

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

C1

V 1
T

!C1

V 2
T

C2

V 3
T

V 4
F

F

F
C1

V 1
T

!C1

V 2
T

C2

V 3
T

V 4
F

F

F

C1

V 1
T

V 2
F

C1

C2

C3

C4

V 1
T

V 2
F

T

V 2
F

T

V 2
F

T

V 2
F

AND
C1

V 1
T

C2

V 1
T

C3

V 1
T

C4

V 1
T

V 2
F

F

F

F

OR
A1 = n1

str 1
T

A1 = n2

str 2
T

A1 = n3

str 3
T

A1 = n4

str 4
T

F ALS E

F

F

F

F

CHOOSE
A1 = str 1

n1
T

A1 = str 2

n2
T

A1 = str 3

n3
T

A1 = str 4

n4
T

F ALS E

F

F

F

F

MATCH
A1 = r 1

r 2
T

A1 = r 3

r 4
T

A1 = r 5

r 6
T

A1 = r 7

r 8
T

F ALS E

F

F

F

F

LOOKUP

A > B

A

T

B

F

MAX
A < B

A

T

B

F

MIN

C1

V 1
T

C2

V 2
T

C3

V 3
T

C4

V 4
T

V 5
F

F

F

F

IFS

Figure 2: Typical AST of function AND,OR,CHOOSE,MATCH,LOOKUP, and IFS. stri represents a string; ni represents a number;
ri represents a reference.

true branches of each condition are all identical; second, the false
branches of each condition are all IF expressions, except for the last
false value (i.e., V 2). Such kind of expressions can be replaced with
IF (OR(conditionlist), true�alue, f alse�alue). For example, the ex-
pression with the second AST in Figure 2 can be replaced with
IF (OR(C1,C2,C3,C4),V 1,V 2).

(3) CHOOSE pattern. An IF expression that matches the
CHOOSE pa�ern should have the following features. First, all
the conditions are number equality evaluations, the correspond-
ing numbers could form a arithmetic progression, which can be
translated into a natural sequences. Second, the false branches of
each condition are all IF expressions, except for the last false value.
�ird, the true branch values are all strings. For example, IF (A1 =
1, str1, IF (A1 = 2, str2, IF (A1 = 3, str3, IF (A1 = 4, str4)))) could
be transformed into CHOOSE(A1, str1, str2, str3, str4); expression
IF (A1 = 2, str1, IF (A1 = 4, str2, IF (A1 = 6, str3, IF (A1 = 8, str4))))
could be transformed into CHOOSE(A1/2, str1, str2, str3, str4).

(4) MATCH pattern. An IF expression that matches the MATCH
pa�ern should have the following features. First, all the condi-
tions are string equality evaluations. Second, the true branch
values are all numbers that could form a arithmetic progression,
which can be translated into a natural sequences. �ird, the false
branches of each condition are all IF expressions, except for the
last false value. For example, expression IF (A1 = str1, 1, IF (A1 =
str2, 2, IF (A1 = str3, 3, IF (A1 = str4, 4)))) could be transformed into
CHOOSE(A1, str1, str2, str3, str4, 0); expression IF (A1 = str1, 2,
IF (A1 = str2, 4, IF (A1 = str3, 6, IF (A1 = str4, 8)))) could be trans-
formed into 2 ⇤CHOOSE(A1, str1, str2, str3, str4, 0).

(5) LOOKUP pattern. An IF expression that matches the LOOKUP
(VLOOKUP or HLOOKUP) pa�ern should have the following fea-
tures. First, all the conditions are reference value equality evalu-
ations. �e references are cell neighbours vertically/horizontally.
Second, all the true branches are references that referred to other
cells. �e references are cell neighbours vertically/horizontally, and
have the same columns/rows as the references in the conditions.
�ird, the false branches of each condition are all IF expressions,

except for the last false value. For example, as shown in Table 3, ex-
pression IF (A1 = C1,D1, IF (A1 = C2,D2, IF (A1 = C3,D3, IF (A1 =
C4,D4)))) can be transformed intoVLOOKUP (A1,C1 : D4, 2, FALSE).

�e above pa�erns suit the circumstance that the values looked
up can be found directly in other cells. For those cannot be found
directly, in this paper, we propose to create new tables in the ex-
cel to make ease for the look up function. Consequently, as long
as the conditions are evaluating the value of a certain cell (do-
ing look up based on this cell), we can perform transformation
with the LOOKUP function. For example, for expression IF (A1 =
V 1,V 2, IF (A1 = V 3,V 4, IF (A1 = V 5,V 6, IF (A1 = V 7,V 8)))), we
create a table ranged (E1 : F4), where E1 = V 1, F1 = V 2, E2 = V 3,
F2 = V 4,E3 = V 5, F3 = V 6,E4 = V 7, F4 = V 8. In this way, the
expression can be transformed into VLOOKUP (A1,E1 : F4, 2).

(6) MAX/Min pattern. An IF expression that matches the
MAX or MIN pa�ern should have the following features. �e
condition should do the comparison of two parts, e.g., A < B,
A <= B, A > B, A >= B. �e true branch and the false branch
should be these two parts respectively. For example, expressions
IF (A < B,A,B), IF (A <= B,A,B), IF (B > A,A,B), IF (B >= A,A,B)
can all be transformed into MIN (A,B); expressions IF (A > B,A,B),
IF (A >= B,A,B), IF (B < A,A,B), IF (B <= A,A,B) can all be trans-
formed into MAX (A,B).

(7) IFS pattern. �e past pa�ern is the IFS pa�ern, which is the
most �exible one. As long as the false branches of each condition
are all IF expressions (except for the last one), the expression can
be transformed with the IFS function, as shown in Table 3.

Except for the above pa�erns that match the existing spread-
sheet functions, we found another pa�ern that does not match
any function, but can also be transformed accordingly to remove
nested IF. We all this pa�ern the “USELESS” pa�ern. For example,
expression IF (A = B,A,B) actually equals to A or B. We put the
checking order of this pa�er before the IFS pa�ern.

4 RESEARCH QUESTIONS
In this paper, we would like to investigate the following four re-
search questions.

5

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

C1

V 1
T

!C1

V 2
T

C2

V 3
T

V 4
F

F

F
C1

V 1
T

!C1

V 2
T

C2

V 3
T

V 4
F

F

F

C1

V 1
T

V 2
F

C1

C2

C3

C4

V 1
T

V 2
F

T

V 2
F

T

V 2
F

T

V 2
F

AND
C1

V 1
T

C2

V 1
T

C3

V 1
T

C4

V 1
T

V 2
F

F

F

F

OR
A1 = n1

str 1
T

A1 = n2

str 2
T

A1 = n3

str 3
T

A1 = n4

str 4
T

F ALS E

F

F

F

F

CHOOSE
A1 = str 1

n1
T

A1 = str 2

n2
T

A1 = str 3

n3
T

A1 = str 4

n4
T

F ALS E

F

F

F

F

MATCH
A1 = r 1

r 2
T

A1 = r 3

r 4
T

A1 = r 5

r 6
T

A1 = r 7

r 8
T

F ALS E

F

F

F

F

LOOKUP

A > B

A

T

B

F

MAX
A < B

A

T

B

F

MIN

C1

V 1
T

C2

V 2
T

C3

V 3
T

C4

V 4
T

V 5
F

F

F

F

IFS

Figure 2: Typical AST of function AND,OR,CHOOSE,MATCH,LOOKUP, and IFS. stri represents a string; ni represents a number;
ri represents a reference.

true branches of each condition are all identical; second, the false
branches of each condition are all IF expressions, except for the last
false value (i.e., V 2). Such kind of expressions can be replaced with
IF (OR(conditionlist), true�alue, f alse�alue). For example, the ex-
pression with the second AST in Figure 2 can be replaced with
IF (OR(C1,C2,C3,C4),V 1,V 2).

(3) CHOOSE pattern. An IF expression that matches the
CHOOSE pa�ern should have the following features. First, all
the conditions are number equality evaluations, the correspond-
ing numbers could form a arithmetic progression, which can be
translated into a natural sequences. Second, the false branches of
each condition are all IF expressions, except for the last false value.
�ird, the true branch values are all strings. For example, IF (A1 =
1, str1, IF (A1 = 2, str2, IF (A1 = 3, str3, IF (A1 = 4, str4)))) could
be transformed into CHOOSE(A1, str1, str2, str3, str4); expression
IF (A1 = 2, str1, IF (A1 = 4, str2, IF (A1 = 6, str3, IF (A1 = 8, str4))))
could be transformed into CHOOSE(A1/2, str1, str2, str3, str4).

(4) MATCH pattern. An IF expression that matches the MATCH
pa�ern should have the following features. First, all the condi-
tions are string equality evaluations. Second, the true branch
values are all numbers that could form a arithmetic progression,
which can be translated into a natural sequences. �ird, the false
branches of each condition are all IF expressions, except for the
last false value. For example, expression IF (A1 = str1, 1, IF (A1 =
str2, 2, IF (A1 = str3, 3, IF (A1 = str4, 4)))) could be transformed into
CHOOSE(A1, str1, str2, str3, str4, 0); expression IF (A1 = str1, 2,
IF (A1 = str2, 4, IF (A1 = str3, 6, IF (A1 = str4, 8)))) could be trans-
formed into 2 ⇤CHOOSE(A1, str1, str2, str3, str4, 0).

(5) LOOKUP pattern. An IF expression that matches the LOOKUP
(VLOOKUP or HLOOKUP) pa�ern should have the following fea-
tures. First, all the conditions are reference value equality evalu-
ations. �e references are cell neighbours vertically/horizontally.
Second, all the true branches are references that referred to other
cells. �e references are cell neighbours vertically/horizontally, and
have the same columns/rows as the references in the conditions.
�ird, the false branches of each condition are all IF expressions,

except for the last false value. For example, as shown in Table 3, ex-
pression IF (A1 = C1,D1, IF (A1 = C2,D2, IF (A1 = C3,D3, IF (A1 =
C4,D4)))) can be transformed intoVLOOKUP (A1,C1 : D4, 2, FALSE).

�e above pa�erns suit the circumstance that the values looked
up can be found directly in other cells. For those cannot be found
directly, in this paper, we propose to create new tables in the ex-
cel to make ease for the look up function. Consequently, as long
as the conditions are evaluating the value of a certain cell (do-
ing look up based on this cell), we can perform transformation
with the LOOKUP function. For example, for expression IF (A1 =
V 1,V 2, IF (A1 = V 3,V 4, IF (A1 = V 5,V 6, IF (A1 = V 7,V 8)))), we
create a table ranged (E1 : F4), where E1 = V 1, F1 = V 2, E2 = V 3,
F2 = V 4,E3 = V 5, F3 = V 6,E4 = V 7, F4 = V 8. In this way, the
expression can be transformed into VLOOKUP (A1,E1 : F4, 2).

(6) MAX/Min pattern. An IF expression that matches the
MAX or MIN pa�ern should have the following features. �e
condition should do the comparison of two parts, e.g., A < B,
A <= B, A > B, A >= B. �e true branch and the false branch
should be these two parts respectively. For example, expressions
IF (A < B,A,B), IF (A <= B,A,B), IF (B > A,A,B), IF (B >= A,A,B)
can all be transformed into MIN (A,B); expressions IF (A > B,A,B),
IF (A >= B,A,B), IF (B < A,A,B), IF (B <= A,A,B) can all be trans-
formed into MAX (A,B).

(7) IFS pattern. �e past pa�ern is the IFS pa�ern, which is the
most �exible one. As long as the false branches of each condition
are all IF expressions (except for the last one), the expression can
be transformed with the IFS function, as shown in Table 3.

Except for the above pa�erns that match the existing spread-
sheet functions, we found another pa�ern that does not match
any function, but can also be transformed accordingly to remove
nested IF. We all this pa�ern the “USELESS” pa�ern. For example,
expression IF (A = B,A,B) actually equals to A or B. We put the
checking order of this pa�er before the IFS pa�ern.

4 RESEARCH QUESTIONS
In this paper, we would like to investigate the following four re-
search questions.

5

Key dBranchList nBranchList

C1 [V2,IF(!C1,V2,IF(C2,V3,V4))] [V2,IF(C2,V3,V4)]

C2 [V3,V4] Null

SUM(IF(C1, V1,
IF(!C1,V2,IF(C2,V3,V4))),V5)
=>
IF(C1, V1, IF(!C1,V2,IF(C2,V3,V4)))

SUM(IF(C1, V1, V2), V5)

Figure 1: The process of redundancy removal.

C1

C2

C3

C4

V 1
T

V 2
F

T

V 2
F

T

V 2
F

T

V 2
F

AND
C1

V 1
T

C2

V 1
T

C3

V 1
T

C4

V 1
T

V 2
F

F

F

F

OR
A1 = n1

str 1
T

A1 = n2

str 2
T

A1 = n3

str 3
T

A1 = n4

str 4
T

FALSE

F

F

F

F

CHOOSE
A1 = str 1

n1
T

A1 = str 2

n2
T

A1 = str 3

n3
T

A1 = str 4

n4
T

FALSE

F

F

F

F

MATCH
A1 = r 1

r 2
T

A1 = r 3

r 4
T

A1 = r 5

r 6
T

A1 = r 7

r 8
T

FALSE

F

F

F

F

LOOKUP

A > B

A

T

B

F

MAX
A < B

A

T

B

F

MIN

C1

V 1
T

C2

V 2
T

C3

V 3
T

C4

V 4
T

V 5
F

F

F

F

IFS

Figure 2: Typical AST of function AND,OR,CHOOSE,MATCH,LOOKUP, MAX,MIN, and IFS. stri represents a string; ni repres-
ents a number; ri represents a reference (0 < i < 5).

Table 3: The alternative functions we identi�ed
Name Explanation Transformation Examples

AND Returns TRUE if all of the arguments evaluate to TRUE. I F (C1, I F (C2, I F (C3, V 1, V 2), V 2), V 2)→ I F (AND(C1, C2, C3), V 1, V 2)
OR Returns TRUE if any argument evaluates to TRUE. I F (C1, V 1, I F (C2, V 1, I F (C3, V 1, V 2)))→ I F (OR(C1, C2, C3), V 1, V 2)
CHOOSE Returns a value from a list using a given position or index. I F (A1 = 1, str1, I F (A1 = 2, str2, I F (A1 = 3, str3)))→

CHOOSE(A1, str1, str2, str3)
MATCH Returns a number representing a position in an array. I F (A1 = str1, 1, I F (A1 = str2, 2, I F (A1 = str3, 3)))→

MATCH (A1, {str1, str2, str3}, 0)
LOOKUP Perform a vertical/horizontal lookup (corresponding to

function VLOOKUP and HLOOKUP) by searching for a
value in the �rst column/row of a table and returning the
value in the same row/column in the index position.

I F (A1 = C1, D1, I F (A1 = C2, D2, I F (A1 = C3, D3, I F (A1 = C4, D4))))→
V LOOKU P (A1, C1 : D4, 2, FALSE)

MAX/MIN Return the largest/smallest value. I F (A > B, A, B)→MAX (A, B); I F (A < B, A, B)→MIN (A, B)
IFS Run multiple tests and return a value corresponding to the

�rst TRUE result.
I F (C1, V 1, I F (C2, V 2, I F (C3, V 3, I F (C4, V 4)))) →
I F S (C1, V 1, C2, V 2, C3, V 3, C4, V 4)

RQ2: What is the general performance of our approach in
terms of refactor coverage? This question aims to check how
many nested-IF formulae our approach could handle.
RQ3: What is the general performance of our approach in
terms of refactor e�ectiveness? This question aims to check
how much if-depth our approach could decrease.

All the experiments are conducted on the two spreadsheet cor-
pora, the MS corpus and the Enron corpus, introduced in Section 2.
Note that inside one spreadsheet many formulae may be created by
dragging one formula down or to the right to repeat its calculation.
As in previous work [11, 14, 15], we remove these formulae by
clustering the formulae based on their R1C1 notation6. We then
pick one formula from each cluster to form the new formula set.
We call this new set the “Unique Set” and the original set the “Total
Set”. The experimental results are presented on these two types of
formula sets for each corpus respectively.

Next, we present the experimental setup as well as the results to
answer each of the research questions.

6 The R1C1 notation will stay the same even if the formula is dragged down or right.

4.2 RQ1: Correctness
To answer the �rst research question, we conduct manual inspec-
tion and formula replacement to check the correctness of formula
refactoring.

For manual inspection, considering that there are over 28 million
formulae and it is impossible to check all the refactoring one by one,
we randomly select 2000 formula pairs < Fo , Fr > (Fo represents
the original formula, Fr represents the refactored formula) as the
check targets. The �rst three authors then check each pair and
record their judgements.

For formula value comparison, we scan all Excel �les and replace
the original nested-IF formulae with the refactored ones. For each
formula pair < Fo , Fr >, we get a responding value pair < Vo ,Vr >.
We thus record whether Vo equals to Vr . To automatically achieve
the above process, we use ClosedXML, which is a powerful .NET
library enabling users to create and modify Excel �les.

The checking results indicate a 100% correctness of our approach.
This result reveals the reliability of the refactoring results. We
achieve highly correct refactoring because of the strict matching
of the nested-IF patterns. For those nested-IF formulae which does

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Automated Refactoring of Nested-IF Formulae in Spreadsheets ESEC/FSE 2018, 4–9 November, 2018, Florida, United States

Table 4: Results of refactor coverage.

Corpus Formula Set Original Refactored Coverage

MS Total 27,689,299 27,645,688 99.84%
Unique 19,260,407 19,243,407 99.91%

Enron Total 533,023 515,958 96.80%
Unique 231,978 215,694 92.98%

not match our patterns, we skip them and regard them as those
uncovered by our approach.

4.3 RQ2: Coverage
For the original total set of nested-IF formulae Ototal and original
unique set Ounique , we conduct automatic refactoring following
the refactoring procedure introduced in Section 3. Correspondingly,
we get the refactored set Rtotal (out ofOtotal) and Runique (out of
Ounique). The refactor coverage can then be calculated as #Rtotal

#Ototal
∗

100% and #Runique
#Ounique

∗ 100% (# represents the number).
Table 4 presents the results of refactor coverage. Column “Ori-

ginal” lists the number of original nested-IF formulae; Column “Re-
factored” lists the number of nested-IF formulae that our approach
could refactor; Column “Coverage” represents the proportion of
refactored formula. From this table, our approach is able to handle
most of the nested-IF formulae for both corpora, with a refactor
coverage of over 90% on both the Total set and the Unique set.

There are around 33,000 nested-IF formulae that cannot be auto-
matically refactored. We manually checked a sample of them
and realized that our approach could not deal with two types of
nested-IF formulae. In the �rst type, the condition part of the
outmost IF expression contains another IF expression and does
not match our patterns even if being treated as a whole, such as
IF (AND(IFsubexpression1, IFsubexpression2) = TRUE,value1,
value2). In the second type, although the inner IF expression
lies in the branches of the outer expression, it is wrapped with
other non-IF functions, and thus the AST is quite complex, such as
IF (Condition, SUM(IFsubexpression1, IFsubexpression2),value).

The refactor coverage of Enron corpus is slightly lower than the
MS corpus. This is because Enron corpus has larger proportion of
formulae with the tough patterns we mentioned above.

4.4 RQ3: E�ectiveness
We present the depth reduce performance of our approach from
two aspects: the relative if-depth reduction (the depth reduction
rate) and the �nal if-depth of formulae after our refactoring.

4.4.1 Relative Depth Reduce. We present the results of relat-
ive depth reduction during the refactoring: DepReduceratio =
DepReducenum/DepOriдinal , the ratio of reduced depth against
the original depth. For ease of presentation, we divideDepReduceratio
into four ranges: (0%, 25%] 7, (25%, 50%], (50%, 75%], and (75%, 100%].
Due to space limit, we only present the disctribution of each range
for the MS corpus, as shown in Figure 3.

From the �gure, di�erent DepReduceratio have di�erent distri-
butions. Most refactoring falls into Range (25%, 50%] and Range

7 0% < DepReducerat io <= 25%

(0%,25%]
0%

(25%,50%]
37%

(50%,75%]
9%

(75%,100%]
54%

MS: Total
(0%,25%]

0%

(25%,50%]
41%

(50%,75%]
10%

(75%,100%]
49%

MS: Unique

Figure 3: Distribution of refactoring with di�erent depth
reduction ratios.

Table 5: Number of formulae with di�erent new depth

Corpus New Depth Total Unique

MS
0 13,906,460 (50.30%) 8,723,082 (45.33%)
1 13,717,158 (49.62%) 10,498,258 (54.56%)
2 22,070 (0.08%) 22,067 (0.11%)

Enron 0 224,915 (43.59%) 72,852 (33.78%)
1 291,043 (56.41%) 142,842 (66.22%)

(50%, 75%] on both corpora, while no refactoring falls into Range
(0%, 25%].

To conclude, from the two charts, in our approach most refact-
orings could reduce by more than a half of the if-depth, indicating
that our approach is e�ective.

4.4.2 Depth A�er Refactoring. Except for the relative depth re-
duction results, we check whether the refactored formulae still
have large if-depth by investigating the new if-depth depr of each
refactored formula Fr . The results are shown in Table 5.

From the table, most of the refactoring yields a new if-depth of
0 or 18. This observation indicates that our approach is able to
completely remove the nested-IF functions for most formulae.

Two reasons contribute to this performance in reducing if-depth.
First, some of our patterns, if matched perfectly, could remove the
nested-IF expressions completely, such as the CHOOSE pattern
and the MATCH pattern. Some other patterns may most probably
keep just one if expression. For example, when we use the AND
pattern to deal with formula IF (A1, IF (A2, IF (A3,V 1,V 2),V 2),V 2),
the refactored one IF (AND(A1,A2,A3),V 1,V 2) has an if-depth of
1. Second, our approach repeats the process of refactoring until
no nested-IF expressions could be handled. This repeat ensures the
thoroughgoing refactoring.

5 RELATED WORK
The research work most related to ours includes smell detection and
refactoring in spreadsheets. The former is related to the motivation
of this paper: why nested-IF formulae are bad smells. The latter is
related to the approach of this paper: how to refactor spreadsheets
to reduce smells. We next introduce these two aspects one by one.

5.1 Smell Detection
Same as code smells [19], spreadsheets smells refer to some char-
acteristics that may cause problems. Smells have di�erent levels:

8 if-depth of 0 and 1 are equally e�ective in relieving nested IF smells, because either of
them avoid the smell completely.

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ESEC/FSE 2018, 4–9 November, 2018, Florida, United States Jie Zhang1,3 , Shi Han2, Dan Hao1, Lu Zhang1, Dongmei Zhang2

formula-level, cell level, and structural level. We mainly introduce
the formula-level ones.

Abreu et.al. [5] combines 15 smells to indicate potential faults.
They treat conditional complexity as one of the key smells. The
results indicate that this smell only can detect 6 spreadsheet faults.

Hermans et.al. [4] regard conditional complexity as one of the
�ve smells, because even in traditional professional programming,
conditional complexity is a threat to code readability. However,
according to their results derived from EUSES, on average each
spreadsheet only has 3 formulae containing at least one condition,
while from our corpus, we �nd that on average each spreadsheet
has 1,193 formulae containing conditions; from the corpus of Enron,
the number is 217. The reason for this huge di�erence may be that
EUSES contains a lot of toy spreadsheets created by users who
rarely use spreadsheet formulae.

Hermans et.al. [4] also mention that end users already know the
bad e�ects of conditional complexity. Our survey results con�rm
this statement: around half of the participants think that formulae
with high conditional complexity are more complex and error-
prone; 70.55% think that they are harder to understand.

Another work of Hermans et.al. [6] present an overview of soft-
ware engineering approaches applied to spreadsheets. They claim
that most spreadsheets contain formulae with multiple IF condi-
tions, which is an obvious spreadsheet smell.

5.2 Formula Refactoring
Badame and Dig [12] are the �rst to propose refactoring in the
spreadsheet domain. A tool – ReeBook – is presented, with which
seven refactoring patterns are presented. These seven patterns
target at di�erent smells. For example, pattern MAKE CELL CON-
STANT aims to make formulae less error prone and more readable
by adding the $ symbol. However, their approach is disperse and
can handle only simple formulae. For example, one of their refact-
oring patterns is called “REPLACE AWKWARD FORMULA”, which
only focus on the SUM function (e.g., replace B5 +C5 +D5 +E5 with
SUM(B5 : E5)). They evaluate their approach on EUSES corpus
and �nd that their refactoring can be applied to many formulae.
However, they only present the number of formulae that are “po-
tential candidates” for each pattern, while not presenting the actual
number of successfully refactored formulae. Thus, the refactor
coverage and e�ectiveness are unknown.

Hermans et.al. [4] de�ned di�erent refactoring according to their
smells. The results indicate that their refactoring approach is able
to relieve the smells of 87% formulae. However, their approach does
not support automated refactoring.

Later on, Hermans and Dig [13] combine the two approaches
above and present BumbleBee, which is a refactoring tool allowing a
formula to be refactored based on the de�ned transformation rules.
Several patterns such as MAXMIN and OR are also mentioned
in the paper. However, the formula can be refactored only when
the transformation rule is de�ned, while according to our survey,
only 20.99% of participants may have the knowledge of de�ning
transformation rules. The work of Hoepelman [20] expand this
work and introduces more refactoring support.

To sum up, currently several works aim to tackle the challenges
brought by spreadsheet smells, while no automatic and high-coverage

refactoring approach is available. We propose to systematically
tackling the nested-IF formulae refactoring problem, which is able to
handle most of the formulae with high depth-reduce e�ectiveness.

6 CONCLUSION
We proposed an investigation into the usage status of nested-IF for-
mulae and found that nested-IF formulae are surprisingly heavily
used among end users. Accordingly, we presented a spreadsheet for-
mula refactoring approach to automatically relieving the smells of
nested-IF functions. Evaluation on two very large real world spread-
sheet corpora indicates that the refactor e�ectiveness is impressive:
most of the nested-IF formulae can be refactored.

In the future, we plan to make our approach a spreadsheet plug-
in. When an end user �nishes writing a formula with nested-IF
functions, the plug-in may identify whether the formula can be
refactored. If so, it alerts that these nested IFs are bad smells, and
provides refactor suggestions.

REFERENCES
[1] wiki. End user development. https://en.wikipedia.org/wiki/End-user_

development, 2015.
[2] Margaret M Burnett and Christopher Sca�di. 10. end-user development.
[3] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Detecting and re-

factoring code smells in spreadsheet formulas. Empirical Software Engineering,
20(2):549–575, 2015.

[4] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Detecting and re-
factoring code smells in spreadsheet formulas. Empirical Software Engineering,
20(2):549–575, Apr 2015.

[5] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, and J. Saraiva. Smelling
faults in spreadsheets. In Proc. ICSME, pages 111–120, Sept 2014.

[6] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan, and D. Hoepelman.
Spreadsheets are code: An overview of software engineering approaches applied
to spreadsheets. In Proc. SANER, volume 5, pages 56–65, March 2016.

[7] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. When and why your code
starts to smell bad. In Proc. ICSE, pages 403–414. IEEE Press, 2015.

[8] o�ce. IF function – nested formulas and avoiding pitfalls
. https://support.o�ce.com/en-us/article/IF-function-%e2%80%
93-nested-formulas-and-avoiding-pitfalls-0b22�44-f149-44ba-aeb5-4ef99da241c8?
ui=en-US&rs=en-US&ad=US, 2015.

[9] reddit. Is it a good or bad practice reducing nested if statements.
https://www.reddit.com/r/csharp/comments/33puzj/is_it_a_good_or_bad_
practice_reducing_nested_if/, 2015.

[10] reddit. Never use nested IFs again. https://www.reddit.com/r/excel/comments/
2slys1/never_use_nested_ifs_again/, 2015.

[11] Felienne Hermans and Emerson Murphy-Hill. Enron’s spreadsheets and related
emails: A dataset and analysis. In Proc. ICSE, pages 7–16. IEEE Press, 2015.

[12] Sandro Badame and Danny Dig. Refactoring meets spreadsheet formulas. In
Proc. ICSM, pages 399–409. IEEE, 2012.

[13] Felienne Hermans and Danny Dig. Bumblebee: a refactoring environment for
spreadsheet formulas. In Proc. ICSE, pages 747–750. ACM, 2014.

[14] T. Schmitz and D. Jannach. Finding errors in the enron spreadsheet corpus. In
Proc. VL/HCC, pages 157–161, 2016.

[15] Bas Jansen. Enron versus euses: A comparison of two spreadsheet corpora. arXiv
preprint arXiv:1503.04055, 2015.

[16] Thomas Reschenhofer, Bernhard Waltl, Klym Shumaiev, and Florian Matthes. A
conceptual model for measuring the complexity of spreadsheets. arXiv preprint
arXiv:1704.01147, 2017.

[17] Marc Fisher and Gregg Rothermel. The euses spreadsheet corpus: a shared
resource for supporting experimentation with spreadsheet dependability mech-
anisms. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 1–5.
ACM, 2005.

[18] Salvatore Aurigemma and Raymond R Panko. The detection of human spread-
sheet errors by humans versus inspection (auditing) software. arXiv preprint
arXiv:1009.2785, 2010.

[19] Martin Fowler and Kent Beck. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[20] DJ Hoepelman. Tool-assisted spreadsheet refactoring and parsing spreadsheet
formulas. 2015.

6

https://en.wikipedia.org/wiki/End-user_development
https://en.wikipedia.org/wiki/End-user_development
https://support.office.com/en-us/article/IF-function-%e2%80%93-nested-formulas-and-avoiding-pitfalls-0b22ff44-f149-44ba-aeb5-4ef99da241c8?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/IF-function-%e2%80%93-nested-formulas-and-avoiding-pitfalls-0b22ff44-f149-44ba-aeb5-4ef99da241c8?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/IF-function-%e2%80%93-nested-formulas-and-avoiding-pitfalls-0b22ff44-f149-44ba-aeb5-4ef99da241c8?ui=en-US&rs=en-US&ad=US
https://www.reddit.com/r/csharp/comments/33puzj/is_it_a_good_or_bad_practice_reducing_nested_if/
https://www.reddit.com/r/csharp/comments/33puzj/is_it_a_good_or_bad_practice_reducing_nested_if/
https://www.reddit.com/r/excel/comments/2slys1/never_use_nested_ifs_again/
https://www.reddit.com/r/excel/comments/2slys1/never_use_nested_ifs_again/

	Abstract
	1 Introduction
	2 Common Usage of Nest-If Formulae
	3 Automatic Refactoring
	3.1 Overview
	3.2 Redundancy Removal
	3.3 Syntax Reassembling

	4 Evaluation
	4.1 Research Questions
	4.2 RQ1: Correctness
	4.3 RQ2: Coverage
	4.4 RQ3: Effectiveness

	5 Related Work
	5.1 Smell Detection
	5.2 Formula Refactoring

	6 Conclusion
	References

