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ABSTRACT

In this work, we present a new network architecture called X-SQL for the problem
of parsing natural language to SQL program. X-SQL proposes to reinforce the
contextual output from BERT-style pre-training model into the structural schema
representation, and learn a new schema representation for downstream tasks. We
evaluated X-SQL on the WikiSQL dataset. Experimental results show that X-SQL
achieves new state-of-the-art results on WikiSQL, with substantial improvement
on all metrics over both dev and test set.

1 INTRODUCTION

The task of semantic parsing is to map natural language to a logical form representing its mean-
ing. It has been studied extensively by the natural language processing community, with appli-
cations ranging from question answering (Zettlemoyer & Collins, 2005; Wong & Mooney, 2007;
Zettlemoyer & Collins, 2007) to robot navigation (Chen & Mooney, 2011; Tellex et al., 2011). The
choice of target meaning representation is highly application dependent. For problems related to
structured data such as database or knowledge graph, both λ-calculus (Kwiatkowski et al., 2011)
and SQL are popular picks.

In this work, we focus on the semantic parsing task of translating natural language queries into
executable SQL programs (NL2SQL). We experiment with WikiSQL, a dataset introduced by
Zhong et al. (2017). It is the first large-scale dataset with annotated pairs of natural language query
and its corresponding SQL form. WikiSQL is highly diverse in its questions, table schemas and
table contents, making it an attractive dataset for neural network modeling.

Early work on WikiSQL models it as a sequence generation problem, and leverages neural sequence-
to-sequence models with attention and copy mechanisms (Sutskever et al., 2014; Bahdanau et al.,
2015; Vinyals et al., 2015). Despite that there is no guarantee of generating syntactically-valid
outputs, reasonably good results can already be achieved (Dong & Lapata, 2016; Zhong et al.,
2017). Since then, various approaches have been proposed to incorporate the syntax of the SQL
programming language into neural network models. Xu et al. (2017) and Yu et al. (2018) cap-
ture the syntax via dependency between different prediction modules. Dong & Lapata (2018) and
Finegan-Dollak et al. (2018) use a slot filling approach where syntax is enforced with a predefined
set of sketches. Wang et al. (2017) and Shi et al. (2018) take a sequence-to-action approach, and
encode syntax in feasible actions. The work of Wang et al. (2018b) observes that partially gener-
ated SQL queries can already be executed, and tries to ensure syntactic correctness at various stages
during decoding.

Despite the great success of applying the neural network to NL2SQL problem, the advantage of
the neural network modeling is often constrained by the availability of the large-scale high-quality
training data. Although WikiSQL is the largest public dataset so far, its size is still far away from the
sufficiency to capture various natural language variation. Fortunately, recent advance of pretraining
technique using large-scale external data has been showing appealing results in related tasks. Work
such as Devlin et al. (2018), Radford et al. (2018) and Liu et al. (2019) have demonstrated the value
of transfer learning from external data source in various natural language understanding tasks with
significant improvement. In view of this trend, Hwang et al. (2019) replaced the glove encoding
layer in Xu et al. (2017) with pre-trained BERT model (Devlin et al., 2018) and established the new
state-of-the-art on WikiSQL. In X-SQL, we adapt the similar pre-training technique but leverage a
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recent work called MT-DNN. Besides the unlabeled data utilized by BERT, MT-DNN combines it
with labeled data via multi-task learning. This makes the WikiSQL task benefit from related labeled
dataset captured in MT-DNN.

However, previous works use the output of pre-training models either to capture the sequential infor-
mation (Xu et al., 2017; Hwang et al., 2019) or to predict the final output directly with a subsequent
single layer network (Devlin et al., 2018; Liu et al., 2019). Moreover, this does not effectively cap-
ture the structure property in the semantic parsing problem such as NL2SQL. In contrast to this
simple approach, we propose an additional layer to reinforce the contextual information from pre-
training models to the highly structural schema information, such as each column in the table, and
then build a new contextualized schema representation. Then, all downstream tasks are built on top
of this new structural schema representation. We treat this as the first attempt to reinforce the BERT-
style contextual information into a problem-dependent structure, and then build a new representation
to better characterize its structural information for downstream tasks.

Meanwhile, we observed the challenge in the WikiSQL problem mainly lies in the where clause
prediction, in which we need to predict a column set in the where clause, including zero column
when there is no where clause in the SQL. Previous works often frame this problem as multiple
binary classification problems, with each for a column. However, such approach can not effectively
account for the relationship between columns, since their prediction are optimized independently.
Furthermore, the outputs from multiple binary classifications are not comparable, since they are
basically from different independent models. To tackle this issue, X-SQL proposes a list-wise global
ranking approach using the KL divergence (Kullback, 1987) as its new objective. To cope with the
situation that there is no where clause in some SQL, we intentionally introduce an Empty column
into the encoder and consider it as a candidate in the global ranking prediction. This marriage
between the Empty column and the global ranking objective brings us a novel approach to better
solve the column set prediction in all NL2SQL problems.

We apply X-SQL into the WikiSQL dataset and compare it with recent state-of-the-art models in the
WikiSQL leaderboard. X-SQL obtains new state-of-the-art results on all the metrics over both dev
and test sets. The improvement over previous state-of-the-art SQLova is about absolute 2%, pushing
the new execution accuracy to 91.8%. Based on the analysis in Hwang et al. (2019), even our score
without execution guided (Wang et al., 2018a) has already surpassed human performance. All of
these clearly demonstrate the exceptional performance of X-SQL on the WikiSQL dataset.

2 NEURAL ARCHITECTURE

Figure 1 shows the overall architecture consisting of three layers: encoder, context reinforcing layer
and output layer.

2.1 ENCODER

For encoder, we use a model similar to the one in Devlin et al. (2018) with the following changes:

• A special empty column is introduced, with token [EMPTY] being appended to every table
schema. Its usage will become clear in Section 2.4.

• Segment embeddings for question and schema segment are extended to type embeddings,
where we learn embeddings for four different types: question, categorial column, numerical
column and the special empty column.

• Instead of initializing with BERT-Large, we initialize our encoder with MT-
DNN (Liu et al., 2019), which has the same architecture as BERT, but trained on multiple
GLUE tasks (Wang et al., 2018a). MT-DNN has been shown to be a better representation
for down-streaming NLP tasks.

Note, we replace [CLS] with [CXT] in Figure 1 to emphasize that context information is being
captured there, rather than a representation for down-streaming tasks.

In addition to these three, our encoder differs from SQLova with NL2SQL layer (Hwang et al.,
2019) in an important way: while they run bi-LSTM/column attention on top of encoder, consequent
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Figure 1: Our neural network model architecture.

layers in our architecture consist of simple yet powerful computations, which we believe is largely
attributed to a better alignment of BERT for the problem.

2.2 CONTEXT REINFORCING LAYER

Let h[CXT], hq1 , · · · , hqn , h[SEP], hC11
, · · · , h[SEP], hC21

, · · ·h[SEP], h[EMPTY], h[SEP] denote the
output from the encoder, each of dimension d. Note, each column name may contain multiple
tokens, with hCij

being the output for the j-th token of column i. Our context reinforcing layer tries
to learn a new representation rCi

for each column by strengthening the original encoder output with
the global context information captured in h[CXT].

Denoting the number of tokens in column i as ni, context reinforcing layer first summarizes each
column by computing

hCi
=

ni
∑

t=1

αithCit
(1)

where αit := SOFTMAX(sit). The alignment model sit tells how well t-th token of column i
matches the global context, and is defined as

sit = f
(

Uh[CTX], V hCit

)

. (2)

Both U, V ∈ R
m×d, and we use simple dot product for f .

The final representation rCi
is obtained by simply adding h[CTX] and hCi

from Equation 1. Although
computation in Equation 1 already encourages context by weighting different tokens according to
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the match, adding h[CTX] gives the schema representation a better alignment with the particular
natural language question being asked.

Context reinforcing layer is not the only place that introduces global context to schema. For example,
there is already some degree of context being captured in the encoder. We believe its influence in
this manner is not strong enough, therefore should be reinforced as a separate step.

While context reinforcing layer and column attention introduced in Xu et al. (2017) share a similar
goal of better aligning natural language question and table schema, they differ significantly in both
technical solution and the role played in the entire architecture. Column attention changes hqi by
signifying which query words are most relevant to each column. It does this for every column in
the table, and is tied closely with output layer rather than as a separate module. Context reinforcing
layer, on the other hand, believes BERT style encoder already performs well on natural language
side, and tries to come up with a better representation for schema. It uses only context information
captured in [CTX] to update the schema part. As a result, the modeling of each sub-task in our
output layer has been greatly simplified, as opposed to SQLNet.

2.3 OUTPUT LAYER

The output layer composes the SQL program from both encoder outputs h[CXT], hq1 , · · · , hqn and
outputs of context reinforcing layer rC1

, · · · , r[EMPTY]. Like Xu et al. (2017) and Hwang et al.
(2019), the task is decomposed into 6 sub-tasks, each predicting a part of the final SQL program,
with task dependency shown in Figure 1. Unlike their models, X-SQL enjoys a much simplified
structure thanks to context reinforcing layer.

Task S-COL predicts the column for the SELECT clause and task S-AGG predicts the aggregator
for the column. The probability of column Ci being chosen for the SELECT statement is modeled
as

pS-COL(Ci) = SOFTMAX
(

W S-COLrCi

)

with W S-COL ∈ R
1×d, and the probability of aggregator is conditioned on the selected column and

computed as

pS-AGG(Aj |Ci) = SOFTMAX
(

W S-AGG[j, :]rCi

)

where W S-AGG ∈ R
6×d with 6 being the number of aggregators. Note, S-COL and S-AGG depend

on rCi
only, as opposed to both query and schema in previous work.

The remaining 4 tasks W-NUM, W-COL, W-OP and W-VAL together determine WHERE part.
Task W-NUM finds the number of where clauses using WW-NUMh[CTX], and is modeled as a classi-
fication over four possible labels each representing 1 to 4 where clauses in the final SQL. It doesn’t
predict the empty where clause case, but instead delegates it to W-COL through the Kullback-
Leibler divergence explained in Section 2.4. Task W-COL outputs a distribution over columns
using

pW-COL(Ci) = SOFTMAX
(

WW-COLrCi

)

(3)

and based on the number from W-NUM, top scoring columns are selected for the where clauses.
Task W-OP is modeled similar as S-AGG, i.e. pW-OP(Oj |Ci) = SOFTMAX

(

WW-OP[j, :]rCi

)

to
choose the most likely operator for the given where column. Predicting value for where clause (task
W-VAL) is formulated as predicting a span of text from query, which simply becomes predicting the
beginning and the end position of the span using

pW-VAL
start (qj |Ci) = SOFTMAX g

(

U starthqj + V startrCi

)

and

pW-VAL
end (qj |Ci) = SOFTMAX g

(

U endhqj + V endrCi

)

.

where g(x) = Wx + b. The parameters WW-NUM, WW-COL, WW-OP are in R
4×d, R1×d and

R
3×d respectively, with number of possible operators being 3. Parameters U start, V start, U end, V end ∈

R
m×d and different g functions are learned for predicting start and end.
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2.4 TRAINING AND INFERENCE

During training, we optimize the objective which is a summation over individual sub-task losses.
We use cross entropy loss for task S-COL, S-AGG, W-NUM, W-OP and W-VAL. The loss
for W-COL is defined as the Kullback-Leibler (KL) divergence between D(Q||PW-COL), where
PW-COL is modeled by Equation 3. Distribution Q from ground truth is computed as follows:

• If there is no where clause, Q[EMPTY] receives probability mass 1 for special column
[EMPTY],

• For n ≥ 1 where clauses, each where column receives probability mass of 1

n
.

Inference is relatively straightforward except for the W-COL. If the highest scoring column is the
special column [EMPTY], we ignore the output from W-NUM and return empty where clause.
Otherwise, we choose top n non-[EMPTY] columns as indicated by W-NUM and W-COL.

3 EXPERIMENTS

We use the default train/dev/test split of the WikiSQL dataset. Both logical form accuracy (the exact
match of SQL queries) and execution accuracy (ratio of predicted SQL queries that lead to correct
answer) are reported. The logical form accuracy is the metric we optimize during training.

Our X-SQL implementation is built on top of MT-DNN, which extends BERT implementation in
PyTorch. We initilaize encoder with MT-DNN and then continue to learn all the parameters in
Section 2. Specifically, we set batch size as 32, and use Adam optimizer (Kingma & Ba, 2014) with
β1 = 0.9 and β2 = 0.999. The global learning rate is 2e− 5 except we use a learning rate warm-up
schedule for the first 1000 steps. Dropout rate is set to be 0.2 for all attention and fully connected
layers. We train 10 epochs and use the dev set to pick the best model based on its logical form
accuracy.

Table 1: Main Results

Model
Dev Test

Acclf Accex Acclf Accex

Seq2SQL (Zhong et al., 2017) 49.5 60.8 48.3 59.4
SQLNet (Xu et al., 2017) 63.2 69.8 61.3 68.0
Coarse2Fine (Dong & Lapata, 2018) 72.5 79.0 71.7 78.5
IncSQL (Shi et al., 2018) 49.9 84.0 49.9 83.7
SQLova (Hwang et al., 2019) 81.6 87.2 80.7 86.2
X-SQL 83.8 89.5 83.3 88.7

IncSQL + EG 51.3 87.2 51.1 87.1
SQLova + EG 84.2 90.2 83.6 89.6
X-SQL + EG 86.2 92.3 86.0 91.8

Table 1 includes results both with and without execution guidance applied during infer-
ence (Wang et al., 2017). We compare our results with the most recent work in WikiSQL leader-
board, including the previous state-of-the-art SQLova model. X-SQL is shown to be consistently
and significantly better across all metrics and achieves the new state-of-the-art on both dev and test
set. Without EG, X-SQL delivers an absolute 2.6% (83.3 vs. 80.7) improvement in logical form ac-
curacy and 2.5% improvement in execution accuracy on test set. Even with EG, X-SQ is still 2.4%
(86.0 vs. 83.6) better in logical form accuracy, and 2.2% (91.8 vs. 89.6) better in execution accuracy.
It is worth noting that X-SQL+EG is the first model that surpasses the 90% accuracy on test set. On
the other hand, for dev set human performance is estimated to be 88.2% according to Hwang et al.
(2019) based on random sampling. X-SQL is the first model better than human performance without
the help of execution guidance.

Table 2 reports the accuracy for each sub task, which demonstrates consistent improvement. In
particular, task W-COL shows an absolute 1.1% gain without EG and 1.7% with EG. We attribute
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this to our new approach of formalizing the where column prediction problem as a list-wise ranking
problem using KL divergenceAnother significant improvement is the W-VAL task, with an absolute
1.2% gain without EG and 2.0% with EG. This can be partially attributed to the column set prediction
(i.e. W-COL) improvement, since the value generation depends highly on the predicted column set
for the where clause.

Table 2: Sub-module Results. Models marked with ∗ are obtained by running SQLova code at
https://github.com/naver/sqlova.

Model S-COL S-AGG W-NUM W-COL W-OP W-VAL

Dev

SQLova 97.3 90.5 98.7 94.7 97.5 95.9
X-SQL 97.5 90.9 99.0 96.1 98.0 97.0
SQLova + EG∗ 97.3 90.7 97.7 96.0 96.4 96.6
X-SQL + EG 97.5 90.9 99.0 97.7 98.0 98.4

Test

SQLova 96.8 90.6 98.5 94.3 97.3 95.4
X-SQL 97.2 91.1 98.6 95.4 97.6 96.6
SQLova + EG∗ 96.5 90.4 97.0 95.5 95.8 95.9
X-SQL + EG 97.2 91.1 98.6 97.2 97.5 97.9

4 CONCLUSION

We propose a new model called X-SQL and demonstrate its exceptional performance on the Wik-
iSQL task. The novelty of X-SQL mainly lies in two aspects. First, X-SQL reinforces the contextual
information on the column schema to build a new column-wise representation for downstream tasks.
Second, to tackle the optional column set prediction problem in NL2SQ, X-SQL models it as a list-
wise ranking problem with the introduction of the [EMPTY] column. All of these help X-SQL to
obtain a new state-of-the-art performance in WikiSQL across all metrics.

How to better combine the pretrained representation with the syntactic structure of a general seman-
tic parsing problem would be a future problem to be explored. Meanwhile, we plan to apply X-SQL
to other NL2SQL datasets to study its generalization capability.
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