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Abstract. Privacy and anonymity are important desiderata in the use of cryp-
tocurrencies. Monero — a privacy centric cryptocurrency has rapidly gained pop-
ularity due to its unlinkability and untraceablity guarantees. It has a market cap-
italization of USD 290M. In this work, we quantify the efficacy of three attacks
on Monero’s untraceability guarantee, which promises to make it hard to trace
the origin of a received fund, by analyzing its blockchain data. To this end, we
develop three attack routines and evaluate them on the Monero blockchain. Our
results show that in 88% of cases, the origin of the funds can be easily determined
with certainty. Moreover, we have compelling evidence that two of the attack rou-
tines also extend to Monero RingCTs — the second generation Monero that even
hides the transaction amount. We further observe that over 98% of the results
can in fact be obtained by a simple temporal analysis. In light of our findings,
we discuss mitigations to strengthen Monero against these attacks. We shared our
findings with the Monero development team and the general community. This has
resulted into several discussions and proposals for fixes.
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1 Introduction

Since the seminal work by Chaum [3], privacy and anonymity properties have become
important desiderata for any e-cash system. Bitcoin, the most popular decentralized
cryptocurrency fairs poorly in terms of privacy and anonymity as evidenced by sev-
eral analyses in the past [6,13,19,21]. In light of the privacy issues in Bitcoin, a new
cryptocurrency called Monero (XMR) was launched on April 18th 2014. Monero cur-
rently has a market capitalization of USD 290M [12] and has the most momentum of all
the live privacy-enhancing cryptocurrency projects (e.g., Zcash [1,24], Dash [4], Mim-
blewimble [9], etc.), see [2]. The value of Monero in terms of USD increased by 27
times in the year 2016 from its value in 2015, making it a valuable example of privacy-
enhancing cryptocurrencies to study. Its rise to popularity is mainly due to strong pri-
vacy properties (compared to Bitcoin) and design simplicity (compared to Zcash).

Background on Monero. As in any other distributed cryptocurrency (such as Bitcoin),
Monero coins are spent in the form of a transaction, where a sender transfers the coins
to a recipient, both often called the users of the system. Each sender and the recipient
has a public and private key pair. The public key uniquely defines the payment address.
The transaction transfers funds held in the sender’s public key to the recipient’s public
key. A transaction contains a set of inputs and outputs, wherein inputs consume coins



from the sender and outputs transfer them to the recipient, while conserving the total
balance. The transaction is digitally signed by the sender to authorize the transfer. It is
then broadcast to the network that groups several transactions in the form of a block
and validates it. Once accepted, the block gets appended to a public ledger called the
blockchain and in the process a new coin is minted (as a block reward). The consensus
on which blocks to append is determined by a proof-of-work puzzle. Later the recipient
can redeem the funds by creating a new transaction that references the previous output
as an input. The public blockchain also prevents the double spend — i.e., the ability to
spend a coin owned more than once.

An adversary can observe linkages between the addresses involved in transactions
on the public blockchain, as evidenced by previous work on Bitcoin, allowing unin-
tended inference of relationships between pseudonymous users [6,13,19,21]. Monero
aims to address this privacy issue by requiring the currency to ensure the following two
properties (see [22]), paraphrased here:

1. Unlinkability: For any two transactions, it should be impossible to deduce that
they were sent to the same recipient.

2. Untraceability: Given a transaction input, the real output being redeemed in it
should be anonymous among a set of other outputs.
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Fig. 1: A schematic representation of a simplified Monero
non-RingCT transaction. It has two inputs and three outputs.
The first input uses two mix-ins (hence three input keys), while
the second one uses one. The sum of all output amounts must
be equal to the sum of all input amounts. Ring signatures hide
the real input key corresponding to the output being spent.

In order to guarantee unlinkability,
Monero by design introduces the notion
of one-time random addresses (see Fig-
ure 1). The idea is that each sender of
a transaction generates a new one-time
random address for the recipient per out-
put in a way that only the recipient can
spend it using a long-term secret key. If
each address is generated using fresh ran-
domness and is used only once, then it
should be hard for an adversary to link
two addresses. Monero enforces untrace-
ability using a cryptographic primitive
called ring signatures [7,20]. The primi-
tive allows a sender (the signer) to anony-
mously sign the transaction (the mes-
sage) on behalf of a “ring” or group of
other users. As a result, the real out-
put being redeemed remains anonymous
amongst the chosen set of outputs (of the
same amount) belonging to other users.
The extra outputs used to create the ring
signature are referred to as the mix-ins. As each mix-in is an output of a previous trans-
action, it is uniquely identified by the corresponding public key. Throughout this paper,
we interchangeably use the term output and the public key. The guarantee that Monero
aims to achieve through ring signatures is privacy à la anonymity-set size [22]. An input
using m mix-ins has an anonymity-set size of m+ 1.



Since January 2017, Monero has further strengthened its privacy guarantees by in-
corporating ring confidential transactions (RingCTs) [16] that also hide the transaction
amount preventing several inference attacks. RingCTs are currently optional but are
slated to become obligatory starting from September 2017.

Problem statement. In this work, we focus on Monero’s untraceability guarantee. While
Monero does provide strong privacy features in theory, it is not known how well it
does in real usage scenario, our work attempts to fill this gap. In other words, we aim
to study the gap between the desired anonymity-set size (from user’s perspective) and
the effective anonymity-set size (from the attacker’s perspective) in the presence of a
passive adversary. To this end, we develop three attack routines and evaluate them on the
Monero blockchain data. Monero designers and developers are aware of the theoretical
possibility of the attacks [11,17] and have put in place some measures to mitigate the
risks. In light of [11,17], our work has three goals:

1. Quantify through concrete attack strategies both past and existing risks.
2. Demonstrate that the existing measures often fall short in mitigating the risks.
3. Propose better mitigation strategies.

Contributions. We give below our contributions and main findings:

1. One of the most important findings is that over 65% of inputs have an anonymity-
set size of one, thereby making them trivially traceable. Attack I leverages this
finding to show that such inputs in fact lead to a cascade effect, where they affect
the untraceability of other inputs with which they have a non-empty anonymity-set
intersection. Our evaluation shows that the cascade effect renders another 22% of
inputs traceable. The result here is conclusive as Attack I only yields true positives.

2. Attack II exploits the fact that several outputs from a previous transaction are often
merged to aggregate funds when creating a new transaction. Such idioms of use leak
information on the real outputs being redeemed. On non-RingCTs, Attack II has a
true positive rate of 95% when compared to results from Attack I (that provides
“ground truth”). We further observe merging of outputs among 1% of RingCTs.
We believe that Attack II should extrapolate well even to RingCTs, but the ground
truth is not available to scientifically deduce this.

3. Attack III considers an attack based on the temporal analysis of transaction outputs.
It considers the most recent output (in terms of block height) in the anonymity-set
as the real one being redeemed. Attack III has a true positive rate of 98.5% on non-
RingCTs, where the comparison to the Attack I as ground truth is feasible. In light
of the results, we propose a better sampling strategy to choose mix-ins. Our method
takes into account the actual spending habit of users.

2 Monero Network and Usage Statistics

In this section, we discuss the network and usage statistics of Monero. Our goal is to
gain insight into how Monero is used in practice and its ensuing privacy impact. The
results obtained here also determine the efficacy of the traceability attacks (presented
in Section 3). Below, we present the dataset for our statistical analysis. The same dataset
will also be used to evaluate the impact of the attack routines.



2.1 Dataset Collection

We acquired the entire Monero history from the first transaction on April 18th 2014 up
to and including the last transaction on February 6th 2017. The resulting dataset com-
prises of a total of 961,463 non-coinbase transactions1 included in 418,910 blocks. The
first non-coinbase transaction appears in the block with height2 110. Our dataset also
includes 47,428 RingCTs. The first RingCT appears in the block with height 1,220,517
(on January 10th 2017). We include RingCTs so as to have a more representative dataset.
Throughout our analysis, we maintain the raw data in the form of a blockchain and use
Monero daemon (monerod) to access it [15].

In the remainder of the section, we present results of our statistical analysis on the
dataset. Unless otherwise stated, we do not include coinbase transactions. Our analy-
sis focuses on three important aspects: 1) available liquidity — the number of outputs
that have the same amount. A Monero output can only be mixed with other outputs
of the same amount. Hence, a low liquidity implies that it may not always be possible
to find sufficient number of mix-ins for a given amount. As a consequence, a desired
anonymity-set size may not be achieved. 2) the number of mix-ins used. Clearly, the
larger it is the higher is the anonymity; 3) number of input and outputs in a transac-
tion. Roughly speaking larger is the number of inputs and outputs, the higher is the
probability that Attack II would work, hence we measure these.

2.2 Available Liquidity

Since an output can only be mixed with other outputs having the same amount, it is
important to have sufficiently large liquidity for each output amount. In order to ensure
that sufficient liquidity is maintained, Monero incorporates the notion of denominations.
A non-RingCT output amount is A× 10B , where 1 ≤ A ≤ 9 and B ≥ −12 [11].

There are 1,339,733 different output amounts in the dataset, the largest is 500,000
XMR. We also observe that approximately 85% of all outputs have an amount less than
0.01 XMR (≈ 0.13 USD [5]). We refer to them as dust values. This shows that lower
denominations dominate the dataset, and users often transact with small amounts. We
further observe that a total of 1,244,165 (93%) output amounts have a frequency of 1.
This means that when these outputs have to be redeemed, they cannot be mixed with any
other non-RingCT output. The only possible way to create an untraceable transaction
redeeming these outputs is to create a RingCT which hides individual mix-in amounts
cryptographically (each amount is ’0’, denoting unknown). These output amounts sum
to 1,012,231.3 XMR. Moreover, 84.5% of these outputs correspond to dust values.

Another important observation is regarding the number of output amounts that do
not respect the usual denomination format in Monero. We found that 99.98% of these
are not denomination compliant. Moreover, 92.8% of these amounts appear only once in
the dataset. The total monetary value of the outputs that appear only once and are non-
denomination compliant is 12231.27 XMR. The large number of non-denomination

1 Transactions that do not create any new coin. The opposite of coinbase transactions that create new coins.
2 Height is defined as the number of blocks preceding a particular block on the blockchain.



compliant output amounts can be attributed to the fact that denomination was not en-
forced on coinbase transactions in the early years. Moreover, the block reward in Mon-
ero is often not denomination compliant by the way it evolves over time.

2.3 Number of Mix-ins

Generally speaking, larger is the number of mix-ins used, the better is the privacy
achieved (due to the larger anonymity-set size). However, using a large number of mix-
ins leads to a linear increase in the transaction size (in terms of bytes) and a larger
transaction size means larger fees. Hence, there is an incentive for users to use low
number of mix-ins at the cost of sacrificing privacy. Since March 23rd 2016, Monero
enforced a network-wide minimum mix-in of 2.

In fact, a total of 115 different number of mix-ins have been used in our dataset,
the minimum and the maximum being 0 and 851 respectively. Table 1 presents the
cumulative frequency of the number of mix-ins used in an input. One may observe that
lower number of mix-ins, i.e., 0, 1, 2, 3 and 4 correspond to roughly 96% of all mix-ins.
Moreover, 65.9% of all inputs have zero mix-ins. Such inputs are traceable by default.
In fact, as we show in Section 3.1, these inputs may render other inputs traceable as
well even if the latter use higher number of mix-ins (through a cascade effect).

Table 1: Cumulative frequency of the number of mix-ins
(only the first 11 are shown). The last column counts the num-
ber of instances where it was possible to choose a higher num-
ber of mix-ins.

#Mix-ins Freq Cumul.
freq. (in %)

Higher #mix-ins
possib. (in %)

0 12148623 65.9 10434988 (85.9)
1 707788 69.7 701252 (99.1)
2 2908304 85.5 2902246 (99.8)
3 1313596 92.6 1313530 (99.9)
4 709686 96.5 709681 (99.9)
5 141800 97.3 141797 (99.9)
6 365720 99.2 365718 (99.9)
7 9616 99.3 9614 (99.9)
8 8593 99.3 8593 (100)
9 5369 99.4 5366 (99.9)
10 76524 99.8 76523 (99.9)

There are two possible explanations
on why smaller mix-ins dominate the
dataset. First, it could be possible that at
the time a user creates a transaction, he
may not find enough suitable outputs to
mix with and hence is forced to choose
a lower number of mix-ins. This may in-
deed happen since a majority of the out-
put amounts are non-denomination com-
pliant. Second, even though enough out-
puts are available at any given time, users
deliberately choose a low number of mix-
ins, for instance, to lower transaction fees.
In order to distinguish the cause, we also
provide in Table 1, the cumulative fre-
quency of the anonymity-set size varying
from 1 to 11 (i.e., number of mix-ins between 0 and 10). The table also presents the per-
centage of cases when it was possible to choose a higher number of mix-ins. In order
to compute these data, we include coinbase transactions. A coinbase transaction output
cannot be used as a mix-in for 60 blocks due to system constraints. We observe that
in the case of inputs with zero mix-ins, 85.9% of them could have been spent using a
higher number of mix-ins. As for the rest, over 99% of the inputs could have been spent
using a higher number of mix-ins. These results clearly show that users deliberately
create a small anonymity-set (by choosing a small number of mix-ins), which could be
to avoid paying a larger transaction fee.

In public communication, it has been mentioned by the Monero developers that
Poloniex [18] (an exchange) used to pay to its clients using zero mix-ins (to save on



transaction fees) and hence must have contributed to the total number of inputs with
zero mix-ins. However, the exact percentage of transactions contributed by Poloniex is
hard to obtain without an explicit disclosure from its part.

Lastly, we also observe that there are 9 different mix-in values (7.8%) that are
unique in the sense that these many mix-ins are used in only one input (across the en-
tire dataset). The corresponding transactions can be attributed to unique users. In other
words, the number of mix-ins used may become an identifying trait of Monero users.

2.4 Number of Inputs and Outputs

The existence of denominations in Monero has a direct impact on the number of inputs
and outputs that a transaction can have. To see this, consider a user Alice paying 11
XMR to another user Bob. Since 11 is not denomination compliant, Alice cannot pay
11 XMR in a single output. She has to create two outputs for 10 XMR and 1 XMR.
Now, when Bob wishes to redeem the funds, he now needs to create a transaction with
two inputs instead of one. Bob’s transaction now merges the two previous outputs.
Output merging in case of Bitcoin is well known to leak information on the owner
of the funds [13]. We show through Attack II (Section 3.2) that Monero suffers from
a similar privacy leakage. In fact, the efficacy of Attack II depends on the number of
inputs and outputs that a transaction can have.

To this end, we present in Figure 2a, the evolution of the number of inputs and
outputs per transaction. We observe that the average number of inputs and outputs per
transaction are 19 and 17 respectively. Smaller number of inputs and outputs at the tail
can be attributed to RingCTs, which made denominations redundant. With RingCTs,
the number of outputs in a transaction can be limited to two: one for the payment to
the recipient, the other for the change. We now focus on the impact of RingCTs on
the number of inputs and outputs. On an average, a RingCT has 3.7 inputs and only
1.2 output. Figure 2b shows the evolution of these values over time. Clearly, with the
advent of RingCTs, the number of outputs per transaction was consistently around 2.
The number of inputs however does not show a stable and consistent pattern. The peaks
in the curve do however tend to lower. It could be due to the existence of denominations
from non-RingCTs. As a result, users were still forced to merge a large number of inputs
to reach a desired transaction amount.

To summarize the statistical analysis of this section, we observed that over 65% of
inputs use zero mix-ins and that the average number of inputs/outputs per transaction
is large for non-RingCTs but considerably small for RingCTs. Attack I and Attack II
discussed in the following section leverage these findings.

3 Traceability Attacks and Evaluation

In this section, we present three attack strategies on existing Monero transactions. The
attacks only assume access to the entire public blockchain. The transactions on the
public blockchain are accessible to anyone and hence it justifies our model. We do not
assume any active adversary that actively participates in the protocol to undermine the
privacy of users. Albeit weak, we show this passive adversary can trace 88% of inputs.



0 12 24 36 48 60 72 84 96 108 120 132 144

0

20

40

60

80

100

RingCT

Weeks

A
vg

.n
um

be
rp

er
tr

an
sa

ct
io

n
Inputs

Outputs

(a)

0 5 10 15 20 25 30

2

4

6

8

10

12

Day

A
ve

ra
ge

nu
m

be
rp

er
tr

an
sa

ct
io

n Inputs
Outputs

(b)

Fig. 2: (a): Average number of inputs and outputs in a transaction. The x-axis represents the number of weeks after the
launch of Monero. (b): Average number of inputs and outputs in a RingCT. The x-axis represents the number of days after
the launch of RingCTs.

3.1 Attack I: Leveraging Zero Mix-ins

Attack I exploits the presence of inputs spent using zero mix-ins (over 65% in our
dataset). Consider the case, where, a user Alice creates a transaction Tx-a with an input
that she spends without using any mix-in. Alice’s input key can clearly be identified
as spent. Now, consider a later transaction Tx-b created by another user Bob who uses
Alice’s input key as a mix-in for his input. If the number of mix-ins used by Bob is one.
Then, any adversary can identify the real input key being spent in Bob’s transaction
and his input becomes traceable too. More generally, if the number of mix-ins used by
Bob is m > 1, then the effective anonymity-set size now becomes m (instead of the
desired size of m+ 1). A closer look reveals that use of zero mix-in leads to a cascade
effect where the traceability of an input affects the traceability of another input in a later
transaction. Figure 3 schematically presents this cascade effect triggered by Tx-a that
uses no mix-in. The cascade effect may not always make an input fully traceable, if for
instance, the effective anonymity-set size reduces to a value greater than one.

Tx-a Tx-b Tx-c Tx-d
...

#mix-in = 0 #mix-in = 1 #mix-in = 2 . . . #mix-in = m

Fig. 3: Attack I: Cascade effect due to zero mix-ins. Each transaction has only one input (left of the transaction) and one
output (on the right). The number of mix-ins used increases from left to right. Dashed lines represent the input keys identified
as a mix-in. Lines in bold are the real input keys being spent.



Our attack routine due to memory restrictions, runs a number of iterations denoted
by η. In each iteration, the algorithm makes a pass over the entire blockchain data and
finds a set of traceable inputs. In the next iteration, it uses the set of previously found
traceable inputs to obtain new set of traceable inputs.

Results. The impact of Attack I on the traceability of inputs is shown in Figure 4
and Figure 5. The success of Attack I is due to the fact that 65.9% of inputs do not use
any mix-ins and are trivially traceable. This cascades to traceability of another 22% of
the inputs, leading to a total of 87.9% of traceable inputs.
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Fig. 4: Results on Attack I: The percentage of traceable inputs
as a function of the number of mix-ins.

In Figure 4, we present the percent-
age of traceable inputs for number of
mix-ins less than or equal to 10. These
together cover 99.8% of all inputs in our
dataset. We present histograms for three
values of η (1, 3 and 5). With η = 5,
we observe that the set of traceable in-
puts almost reaches a fixed point. Just af-
ter the first iteration (η = 1), the num-
ber of traceable inputs using one mix-
in reaches as high as 81%. For η = 5,
this percentage of traceable inputs using
one mix-in becomes 87%. The plot also
shows the cascade effect as inputs using
a high number of mix-ins such as 10 also have a considerable percentage of traceable
inputs (27% for η = 5).

Figure 5a shows how deep (in terms of number of mix-ins) does the cascade effect
propagate. It presents the cumulative percentage of traceable inputs as a function of
the number of mix-ins. Clearly, as the number of mix-ins increases, the cascade effect
deteriorates and roughly 88% of all inputs become traceable. It is interesting to note
that the cascade effect leads to one traceable input that uses 153 mix-ins. This is the
largest number of mix-ins that gets affected by the cascade effect.

Figure 5b shows how long (in terms of days) does the cascade effect propagate. It
presents the evolution of the percentage of traceable inputs over time grouped by week.
Since, the initial transactions did not use any mix-in, a large majority (over 95%) of the
inputs were traceable. The maximum percentage of traceable inputs per week is 98.9%
(in the 10th week). In fact, the percentage dropped to roughly 62% in the 105th week
when the network-wide minimum mix-in of 2 could come into effect. Since then, the
percentage of traceable inputs has seen a consistent decline. For the last week, only 8%
of all inputs were found to be traceable. Attack I did not find results on RingCTs.

We found several instances where Attack I could not identify a traceable input,
but it did nevertheless succeeded in reducing the effective anonymity-set size. Figure 6
presents these findings. For the sake of completeness, it also includes the results pre-
sented in Figure 4. We observe that for η = 5, roughly 24% of inputs that use 10
mix-ins have an effective anonymity-set size of two. This shows how close Attack I
can be in identifying the real input. Moreover, the plot shows that as the number of
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Fig. 5: Results on traceability using Attack I. (a): The cumulative percentage of traceable inputs as a function of the number
of mix-ins. (b): The evolution of the percentage of traceable inputs over time. In the x-axis, we have the number of weeks
after the launch of Monero.

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
of

in
pu

ts

1 2 3 4 5 6 7 8 9 10 11Effect. anonym. set size:

η:
#mix-ins:

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

Fig. 6: Results on effective anonymity-set size using Attack I. In x-axis, we have the number of mix-ins from 0 to 10. For
each of these mix-ins we plot three stacked bars corresponding to η = 1, 3, 5. Each stacked bar for a fixed η represents the
percentage of inputs that have an effective anonymity-set size between 1 to 11. For instance, for inputs using only 2 mix-ins,
and for η = 5, the percentage of inputs with effective anonymity-set size of 1 is 59%, the percentage of inputs with effective
anonymity-set size of 2 is 21% and the percentage of inputs with effective anonymity-set size of 3 is 20%.

mix-in increases, the percentage of inputs on which Attack I does not work at all tends
to decrease. In fact, for inputs using 10 mix-ins, Attack I does not affect the effective
anonymity-set size for only 0.9% of all such inputs.

3.2 Attack II: Leveraging Output Merging

Consider a scenario where a user creates a transaction Tx-a having one input and two
outputs O1, O2. (Cf. Figure 7). Without loss of generality, let us assume that only 1



mix-in is used. At a later time, another user creates a transaction Tx-b with two inputs
I1, I2 and one output. Let us suppose that both the inputs use one mix-in each. The first
input I1 uses one of the outputs O1 of Tx-a as an input key. Similarly, the second input
I2 uses the other output O2 of Tx-a as an input key. Attack II then identifies O1 and O2

as the real input keys being spent in Tx-b.

Tx-a Tx-b

I1

I2

O1

O2

Fig. 7: Attack II. Tx-a is a transaction with one input that uses one mix-in. It has two outputs O1 and O2. Tx-b is another
transaction that has two inputs I1 and I2. Each input again has one mix-in. Both I1 and I2 include outputs of Tx-a.
According to Attack II, the input keysO1 andO2 represented using the dashed line are the real keys being spent in Tx-b.

Attack II functions under the assumption that while creating a transaction, it is un-
likely to choose several mix-ins that are outputs of a single previous transaction. Hence,
if a transaction includes keys (possibly across several inputs) that are outputs of a single
previous transaction, then they are likely to be the real ones being spent. Intuitively, this
is true for non-RingCTs, where, due to denominations, several outputs in a transaction
may belong to the same recipient. As a result, those outputs will get merged to aggre-
gate funds in a later transaction. Since, mix-ins are randomly chosen, the probability
that Attack II gives incorrect result should be small. For RingCTs, denominations are
redundant and hence output merging should be less prevalent.

Due to the randomness involved in choosing mix-ins, results obtained from Attack II
however cannot always be conclusive and may admit false positives. In this sense, At-
tack II is weaker than Attack I as the latter does not admit any false positives. As our
evaluation later shows, Attack II has a true positive rate of 87.3% on non-RingCTs.

In order to simplify the discussion of Attack II, we refer to transactions of type Tx-a
(as in Figure 7) as a source transaction, while, those of type Tx-b as a destination trans-
action. Hence, a destination transaction uses two or more outputs of a source transaction
across its inputs. A minimum number of two or more outputs is needed so as to capture
the merging of outputs. Attack II may encounter the following scenarios:

– S1: It may not find any destination for a given source.
– S2: It may find several destinations for a given source.
– S3: It may find one (or more) destination for a given source, where the same source

output appears in more than one destination input.
– S4: It may find one (or more) destination for a given source, where more than one

source outputs appear in a single destination input.

S1 means that Attack II failed to yield any result on the given source instance. While,
S2 means that the attack has false positives at the transaction level, hence it is hard



to ascertain the real destination for a given source. S3 presents the worst case for the
attack. It means that the attack has false positives even at the input level. Hence, it is
hard to even ascertain the input where the source output was indeed spent. Lastly, S4
yields a set of candidate keys, one of which is probably being spent in the input.

In the following, we conduct experiments to estimate how well Attack II performs.
We first measure how frequently the above scenarios occur and then estimate the false
positive rate by relying on the results obtained from Attack I as a comparison point.
Note that because Attack I yields results only on non-RingCTs, this comparison is lim-
ited to non-RingCTs, but the inference extends to RingCTs as well.

Results. Attack II found results on 410,237 different source transactions, which is
roughly 43% of all transactions in our dataset. These source transactions also include
636 RingCTs, which is 1% of all RingCTs in the dataset. The low fraction of RingCTs is
due to the fact that the average number of inputs and outputs per RingCT is only 3.7 and
1.2 respectively. Recall that Attack II exploits the use of outputs of source transactions
in a destination transaction. Hence, a low number of inputs and outputs directly affects
the applicability of the attack. Even though, Attack II affects only 1% of RingCTs, it is
a serious concern for the Monero developers as exchanges and mining pools are now
actively merging RingCT outputs (See Section 5 for their feedback).

In Figure 8a, we present the results obtained on 409,601 non-RingCT sources.
Around 60% of all source transactions have only 1 matching destination. The maxi-
mum number of destinations found for a source was 146. However, the percentage of
source drops exponentially as the number of destinations increases. Similarly, Figure 8b
presents the results obtained on 636 RingCT sources. We observe that a source has at
most 3 destinations and a majority of the source transactions (95.1%) have only one
destination. The small number of destinations in case of RingCT sources is due to the
low number of inputs in RingCTs.

We estimate the accuracy of Attack II by comparing its results with those obtained
by Attack I (that yields “ground truth”). Since Attack I does not yield any result on
RingCTs, we cannot determine the corresponding accuracy. However, if it performs
well on non-RingCTs, then we may extrapolate this result over RingCTs and expect
similar accuracy. In order to compare the two attacks, we use the following terms:

– True positive (TP): An input creates a true positive if: a) Attack II identifies a
unique key as the one being spent in the input and, b) the key is the same as the one
identified by Attack I. The two attacks are hence in agreement with the conclusion.

– False positive (FP): An input creates a false positive if all the keys identified as
being spent by Attack II were actually found to be spent in a different input by
Attack I. In other words, none of the probable keys identified by Attack II was
actually the real key being spent in the input. Hence, the two attacks disagree on
the real key being spent.

– Unknown positive (UP): An input creates an unknown positive if at least one of
the keys identified by Attack II could not be identified as being spent in any input
(of any transaction) by Attack I. The uncertainty comes from Attack I as it does not
give ground truth for all inputs.
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Fig. 8: (a): Result of employing Attack II on non-RingCTs. The x-axis presents all the observed number of destination
transactions for a given source transaction. In y-axis, we show the number of source transactions that admit a given number
of destination transactions. The number is given as a fraction of 409,601 non-RingCT source transactions. (b): Result of
employing Attack II on RingCTs. The x-axis presents all the observed number of destination transactions for a given source
transaction. In y-axis, we show the number of source transactions that admit a given number of destination transactions. The
number is given as a fraction of 636 RingCT source transactions. (c): Overall observed percentage of TP, FP and UP.

Now that the terms TP, FP and UP are established, we are ready to present the results
on the accuracy of Attack II. The overall accuracy of Attack II computed over all non-
RingCT inputs for which it returns a result is given in Figure 8c. The result shows that
Attack II has an overall true positive rate of 87%, while the false positive rate is as
low as 0.78%, while the result is inconclusive for around 12% of inputs. The high true
positive rate on non-RingCTs clearly demonstrates that it should do equally well even
on RingCTs. However, due to the lack of ground truth it is impossible to verify this.

A breakdown of TP, FP and UP as a function of number of mix-ins is given in Fig-
ure 9. The plot shows that as the number of mix-in increases, the percentage of TP
decreases, while the percentage of UP increases. Moreover, irrespective of the number
of mix-ins used, the number of FP remains very close to 0. All of this is due to the fact
that the result of Attack I deteriorates as the number of mix-ins increases and hence it
becomes hard to verify the result of Attack II due to a lack of ground truth.

Table 2: TP: True Positive and FP: False Positive.
Breakdown of traceable inputs obtained using At-
tack I. In the first row, we show the total number of
traceable inputs that employ uniform distribution and
the variant of triangular distribution (hence *). The
second and third row show the true and false positive
rate observed on Attack III.

Uniform dist. Triangular dist.*
(until April 4, 2015) (since April 5, 2015)

#Inputs 9885810 6174801

TP 99.5% 96%
FP 0.5% 4%
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Fig. 9: Observed percentage of TP, FP and UP as a function of
number of mix-ins. The result corresponds to non-RingCTs.

Remark 1. Attack II can also be used to break the unlinkability guarantee of Monero.
To see this, refer to Figure 7: If O1 and O2 have been determined to be the real input
keys being spent in I1 and I2, then, they must belong to the same Monero user, hence



breaking unlinkability. Since, the focus of this work is on traceability, we do not develop
this any further and leave it as a future work.

3.3 Attack III: Temporal Analysis

The third attack leverages the fact that an output does not remain unspent for an infinite
time. In general, its probability of being spent should increase with time (eventually
becoming 1). Indeed, an output that has been on the blockchain for 100,000 blocks
is much more likely to have already been spent than an output that has been on the
blockchain for only 100 blocks. In light of this, the Attack III strategy is defined in the
following manner: Given a set of input keys used to create a ring signature, the real key
being spent is the one with the highest block height, where it previously appeared as an
output. The strategy applies on both non-RingCTs and RingCTs.

Results. We employed Attack III on our dataset and compared its results with the ones
obtained from Attack I (η = 5). Globally, we observed that Attack III has a true positive
rate of 98.1%. This clearly shows that Attack III is very accurate and very often the most
recent output is the real one being spent.

In theory, Attack III can be prevented by mixing with only those outputs that are
yet to be redeemed. This would however require the ability to distinguish a spent output
from an unspent one. Monero’s main aim is to make this hard using a ring signature. In
order to circumvent this problem, Monero developers have decided since April 5th 2015
to sample mix-ins from a variant of triangular distribution [23]. The distribution gives
higher probability to newer outputs than to ones that are old and hence can potentially
mitigate the attack. Prior to April 5th 2015, mix-ins were sampled from a uniform distri-
bution, i.e., each output had the same probability of being a mix-in for any input at any
given time. We evaluate how well the current sampling strategy mitigates Attack III.
The results are shown in Table 2. While, using the current sampling strategy does help
in reducing the number of true positives, the gain over uniform distribution is however
marginal, i.e., only 3.5%. Our results clearly show that the existing sampling strategy
drastically fails in mitigating Attack III — that is, user spending patterns do not follow
the expected (variant of) triangular distribution.

4 Mitigation Strategies and Recommendations

As argued in the Monero Research Lab (MRL) report MRL-004 [11], without a non-
interactive zero-knowledge (NIZK) approach, traceability is inevitable. Moreover, it is
argued that since NIZK based techniques are computationally intensive, privacy issues
should be addressed without employing those techniques. Under these constraints, we
propose a mitigation strategy for Attack III that performs better than the variant of the
triangular distribution currently employed in Monero. We also propose recommenda-
tions to reduce the potential risks associated with Attack I and Attack II.



4.1 Recommendations for Attack I & Attack II

Since Attack I could not find any traceable input on RingCTs, we recommend the Mon-
ero development team to make RingCTs obligatory as soon as possible. As long as
RingCTs are optional, the possibility of a user creating a non-RingCT cannot be ruled
out. Hence, the cascade effect may continue to propagate.

One may argue that enforcing RingCTs must be subject to its acceptance by the
community. To this end, we present in Figure 10, the fraction of RingCTs after its
launch. In the fourth day after the launch, the percentage of RingCTs rose as high as
70%. But, in the following two weeks, it remained less than 62%. Looking at the last few
days, it appears that RingCTs got well accepted by the Monero users. Indeed, the last
day saw a record value of 98%. This is an encouraging result showing the acceptance
of RingCTs and hence consolidates our argument that it can be made obligatory.
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Fig. 10: The percentage of RingCTs among all transactions
submitted in a day. The plot only shows data for the days after
the launch of RingCT on January 10th 2017.

As for Attack II, it is hard to prevent
it completely at the protocol level due to
the one-time output addresses. One way
to reduce output merging is to warn users
when they attempt to do so. Warning can
be displayed either when a user creates 2
or more outputs paying the same recip-
ient or when he merges 2 or more out-
puts from the same transaction. This wal-
let level solution is certainly not the ideal
fix. As a modified version of Attack II
can subvert this mitigation measure. To
see this, imagine a more general version
of Attack II that also considers merging
of outputs stemming from different trans-
actions within the same block. We reiterate that information leakage is very hard (if not
impossible) to be absolutely prevented without a NIZK based approach.

4.2 Mitigating Threat from Attack III

As we have seen the current sampling strategy for mix-ins fails drastically in prevent-
ing temporal analysis. There are two possible strategies towards mitigating the ensuing
risks: (a) mimic users’ spending behavior or, (b) force mix-ins to be picked according
to some “unknown” distribution. Solution (b) can be achieved by employing primitives
such as ORAM [8] that will provide cryptographic guarantees on the impossibility to
learn information from a passive analysis of the blockchain. However, their applicabil-
ity to distributed cryptocurrencies seems to require either a trusted party [10] or NIZK
proof. We consider them to be important future work. Here, we will focus on (a).

We use the results of Attack I to extract information on when an output (in terms of
block height) is created and when it gets spent. We then compute the difference of the
two block heights. Since a coinbase output is locked for 60 blocks, its block difference
can only be greater than or equal to 60. There is no such restriction on non-coinbase
outputs though. Results from Attack I also include a considerable fraction of coinbase



outputs (28.9%). This further motivates studying them independently of non-coinbase
outputs.

Table 3: Percentage of outputs that remain unspent with a given
block interval. The percentage on coinbase is given over coinbase
outputs only. Similarly for non-coinbase.

Percentage of outputs
Block difference Coinbase Non-coinbase Overall
[0, 10] 0% 0.2% 0.17%
]10, 100] 11.1% 8.4% 9.2%
]100, 1000] 42.6% 22.6% 28.4%
> 1000 46.3 68.8% 62.2%

We first observe that users’ spend-
ing habits can be roughly grouped into
four distinct categories characterized
by the difference in the block heights
(Cf. Table 3). As we see, the percent-
age of outputs that are spent within the
first 1000 blocks is larger among coin-
base outputs than among non-coinbase
outputs. As a general conclusion, coin-
base outputs have a larger probability of being spent quickly once unlocked.

The actual frequency distribution on the entire population is shown in Figure 11a.
The curve clearly shows three distinct clusters identified by the block differences: [0, 10],
]10, 100] and > 100. Figure 11b presents a breakdown according to coinbase and non-
coinbase. We observe that both the curves have a long tail starting from a difference of
1000 blocks.
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Fig. 11: Spending habit of Monero users. In x-axis, we have the difference between the block height where the output was
created and the block height where the output was spent. It measures the duration for which the output remained unspent.
In y-axis, we plot the fraction of outputs that share the same difference. Only 1 out of every 100 data points are shown. (a):
Combined result on the entire dataset including both coinbase and non-coinbase outputs. (b): Separate results.

In order to mitigate the risks of temporal analysis, we propose replacing the existing
sampling method to choose mix-ins. In fact, a better sampling strategy would consist
in sampling from the distribution identified by the probability density functions of Fig-
ure 11b. The sampling distribution should moreover depend on whether the output being
spent is coinbase or non-coinbase. We estimate the probability density function (PDF)
using descdist() function of the R statistical tool. For each of the dataset, the un-
derlying heuristic based on the Cullen and Frey graph suggests that the PDF is closest to
the gamma distribution (Γ (α, β)) with different parameters α and β. For coinbase out-



puts, the estimated parameters are α = 0.24, β = 7.97× 10−6, while for non coinbase
outputs, the estimated parameters are α = 0.27, β = 5.15× 10−6.

Hence, we hereby recommend Monero developers to employ the corresponding
PDFs. However, it should be noted that choosing any static distribution renders the
system insensitive to social and economic factors that may influence users’ spending
behavior.

5 Responsible Disclosure and Feedback

As a part of responsible disclosure, we shared our findings both with the Monero devel-
opment team and the general community. We received varied feedback through diverse
channels including but not limited to e-mail, Twitter and Reddit. Monero development
team found our result on Attack II insightful:

“We hadn’t had it [Attack II] accompanied by a model before, i.e., we’ve been
approaching the problem more generally. It’s NOT trivially solvable. Because
most users will receive additional outputs and need to combine them; the com-
bination betrays a small amount of correlation data.”

Our findings on Attack II further resulted into the creation of a Github issue on
Monero’s project repository. The issue was initially termed as a bad user behavior,
where, a user merges several outputs together falsely believing it to bring more privacy.
The proposed fix was to develop a wallet-based warning system to dissuade users from
doing so. The limitations of this mitigation strategy, in particular, the possibility of
eventual modifications of the wallet software were also discussed. Later, the issue was
identified as non-trivial to solve as output merging is apparently done deliberately by
pools and exchanges who want to break up their outputs so payments can be made with
locking less change.

Our work has also led to discussions on several Reddit threads accumulating over 50
comments from the Monero community including the development team. Our results on
Attack III has also catalyzed the ongoing work on developing better mitigation strate-
gies. Several mitigation measures have been discussed: 1) Sampling mix-ins using our
proposed approach of taking into account actual spending behavior, 2) Sampling mix-
ins using Zipf distribution, 3) Developing a dynamic sampling procedure, 4) Wallet-
specific sampling procedure, etc. The ensuing limitations have also been discussed at
length. For instance, a dynamic sampling procedure being costly; wallet-specific sam-
pling leading to potential fingerprinting, etc.

6 Related Work

Our work is motivated by two prior unpublished works on the privacy analysis of Mon-
ero: MRL-001 [17] and MRL-004 [11]. Both of these have been authored by Monero
researchers and developers. The two prior works report on the theoretical possibility of
mounting the attacks studied in this paper. However, the impact of the attacks in real
usage scenario was unknown. Our work fills this gap by quantifying the existing and



the past threat on the blockchain data. It provides a data backed analysis that shows
1) The risks of using no mix-in in practice, 2) How often the risks may arise? 3) How
far the cascade effect can propagate? and 4) How the impact has evolved over time?
For instance, our work quantifies the severity of cascade effect: it propagates up to 153
mix-ins over a span of three years.

Since the prior works were theoretical and were not backed by real usage behavior,
the developers decided on employing a triangular distribution to sample the mix-ins
expecting it to mitigate Attack III. Our work shows that a triangular distribution fails
drastically in mitigating the attack. This further highlights the difference between the
prior work and the new results put forth by our work. Moreover, our work studies the
spending habit of users and empirically provides the desired probability distribution
function. Our results can be used to improve the current sampling method.

Finally, we are aware of a concurrent work with similar results [14]. The work stud-
ies Attack I and Attack III and a countermeasure of Attack III based on real spending
behavior. Our work is different from [14] in three contributions: 1) Attack II is not stud-
ied in [14] 2) Mitigation for Attack III does not consider coinbase and non-coinbase
outputs separately. This may result in a bias as coinbase and non-coinbase outputs have
different spending behavior 3) Our network and usage statistics reveal new potential
privacy issues in Monero (unknown in [14]) that 7.8% of users are unique in the way
they choose their anonymity-set size.

7 Conclusion

This work performs a passive blockchain analysis of Monero and evaluates the effi-
cacy of several attacks on its untraceability guarantees. These attacks are effective as
around 88% of inputs are rendered traceable. We also found some traceability results
on RingCTs and finally discuss a better strategy (than the one currently employed) to
mitigate temporal analysis. Our results hereby reaffirm the weaknesses of anonymity-
set size as a privacy metric when implemented in practice. As a future work, we aim
to study traceability under active attacks on Monero, where the adversary can take part
in the protocol to undermine users’ privacy. We are further investigating the use of
cryptographic primitives such as zero knowledge proofs and ORAM to strengthen the
traceability guarantees beyond the current solutions.
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