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Fig. 1. Parameter fields in ZenGarden.We precompute the time-integrated directional energy arriving at every potential listener in a scene using real spherical

harmonics (SH). Visual rendering is on left with extended sound source marked bright green; right panels show horizontal slices of our encoded 3D parameter

fields. The figure’s two rows show results for two ambient sources (marked in green) with separately encoded propagation effects: rain hitting the ground and

rooftops (top) and rain hitting a rectangular water pool (bottom). Second column shows the total loudness field in dB. Remaining columns show first-order SH

coefficient fields. We encode up to third order.

Ambient sounds arise from a massive superposition of chaotic events dis-

tributed over a large area or volume, such as waves breaking on a beach or

rain hitting the ground. The directionality and loudness of these sounds as

they propagate in complex 3D scenes vary with listener location, providing

cues that distinguish indoors from outdoors and reveal portals and occluders.

We show that ambient sources can be approximated using an ideal notion of

spatio-temporal incoherence and develop a lightweight technique to capture

their global propagation effects. Our approach precomputes a single FDTD
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simulation using a sustained source signal whose phase is randomized over

frequency and source extent. It then extracts a spherical harmonic encoding

of the resulting steady-state distribution of power over direction and posi-

tion in the scene using an efficient flux density formulation. The resulting

parameter fields are smooth and compressible, requiring only a few MB

of memory per extended source. We also present a fast binaural rendering

technique that exploits phase incoherence to reduce filtering cost.
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1 INTRODUCTION
Ambient sounds like wind, rain, or surf provide a dynamic back-

ground, propagating through a 3D scene to complement visuals and

immerse the listener in an environment. As the listener navigates,

loudness changes convey the size and shape of the sound source. For

instance sound attenuates when moving away from the beach but

not whenmoving along it. Variation due to scene occlusion indicates

how open or enclosed the surrounding space is. Directionality from

sound streaming through portals or adjoining chambers reveals

their presence even when behind the listener. The beach sounds

big outside but becomes directionally crisp when heard through an

open door or window. We capture and render these effects for the

first time, within a small runtime budget appropriate for background

sounds in games and virtual reality (VR).

We assume ambient sources superpose many independent, point-

like elementary sound events, such as the impact of each drop in a

rain shower. Modeling these events individually is impractical in

interactive applications which typically support about a hundred

active sounds in total and allocate only a few for the background.

Replacing this complexity by a few point proxies causes unrealistic

wobbles in loudness as the listener moves past the proxies and fails

to reproduce the correct aggregate effects of distance falloff and

shadow softening.

When the listener is unable to distinguish these individual sound

events, we observe that ambient sources can be idealized as in-

coherent in space and time. This idealization fails for individual

conversations heard at a crowded party or for nearby cars on a

street corner, but it suffices as the crowd’s chatter or highway noises

merge at greater distance. Prior work on propagation from extended

sources has instead focused on spatially coherent sources at most

a few meters across, such as free-field radiation from vibrating

shells [James et al. 2006] and scattering/shadowing from discrete

objects in sparse outdoor scenes [Mehra et al. 2013]. Coherent wave

fields are highly oscillatory over space, making these techniques

compute- and memory-intensive. The (time-averaged) power distri-

bution of an incoherent field is smooth, saving CPU and RAM.

Given the source’s spatial power distribution, we precompute a

single 3D wave simulation using the finite-difference time-domain

(FDTD) method. This Eulerian approach naturally accounts for

diffraction and scattering, and it propagates the entire field at once,

making precomputation time insensitive to the source’s spatial ex-

tent. Our first contribution is the notion of an incoherent wave

source and an efficient formulation that generates phase-decorrelated,

bandlimited noise signals, yielding response fields with smooth

power variation, avoiding spatial oscillations from interference.

Simulation output is a pressure field over time and space; it cap-

tures how sound propagates from the source but is too large to store

in raw form and does not make the information needed at runtime

readily available. Our second contribution is a streaming encoder

that efficiently extracts and stores compact perceptual information

for incoherent fields. We compute a 3D grid of low-order spherical

harmonic (SH) coefficients representing the directional distribution

of acoustic power at points regularly sampled throughout the scene.

Our encoder computes the flux density vector at each timestep and

sample point, and incrementally accumulates the SH coefficients.

Prior techniques [Laitinen et al. 2012; Raghuvanshi and Snyder 2018]

also apply flux but on short, coherent signals for which overlapping

arrivals in different directions cannot be discriminated. With a sus-

tained, incoherent source signal, we show for the first time that flux

can tease apart the steady-state spherical power distribution.

Third, we show that incoherence can be exploited for faster bin-

aural rendering at runtime. Existing techniques require expensive

convolution with the HRTF (head related transfer function) to pre-

serve interaural phase differences. But in an ideally incoherent

sound field, phase relationships are difficult to sense and frequency-

dependent interaural loudness differences dominate. These can be

achieved cheaply using standard parametric equalization. We ob-

tain good results with just four frequency bands, by equalizing the

mono-aural representative sound to be propagated using 4-channel

left/right gains computed for the current listener position and head

orientation in the scene.

Overall, ours is the first system to model salient directional prop-

agation effects from arbitrarily large ambient sources in complex

game environments. Precomputation takes about several hours on

a single desktop. Runtime cost per extended source is less than 1MB

of memory and about 100µs per-frame computation on a single

core. Cost is largely insensitive to source size or scene’s geometric

complexity. Our technique integrates transparently with standard

game engines like Unreal Engine 4.

2 PRIOR WORK
Computer graphics. Light transport methods have long supported

extended sources to provide realistic illumination and shadows.

Approaches based on ray sampling [Cook et al. 1984; Hasenfratz

et al. 2004; Ritschel et al. 2012] require many hundreds of rays per

pixel in complex scenes with large sources. Precomputed radiance

transfer (PRT) [Sloan et al. 2002] allows real-time manipulation

of distant environmental lighting. Its use of scene precomputation

is notably similar to ours; just as PRT reduces spatial sampling

requirements by assuming smooth lighting and representing it with

low-order SH, so we apply SH to the coarse directional distribution

of power at an arbitrary listener in the scene.

These approaches ignore diffraction, whose effects are much

more perceptible at audible than visible wavelengths (e.g., visually

occluded sounds often remain audible). By performing wave simu-

lation, our approach accounts for diffraction and wave scattering

from complex geometry. Furthermore, its cost is determined by the

temporal and spatial discretization (see Section 4) and is nearly

independent of the complexity of scene geometry or source size.

Wave-based rendering. [Moravec 1981] proposed a visual render-

ing framework based on wavefront tracking. It sweeps a single,

monochromatic (and thus, coherent) plane wavefront through the

entire scene. Propagation becomes spatial convolution that yields

complex field coefficients on a target plane wavefront, which can

jump any distance analytically in free space but must be stepped

incrementally in the presence of geometry. Diffracted occlusion is

implicitly modeled (via the Kirchoff approximation valid at high

frequencies) but scattering off geometry is ignored. Complex source

distributions would require numerous sweeps from different incom-

ing directions. The paper speculates that interference artifacts in the
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results could be ameliorated by averaging over multiple simulations

with randomized phase.

Geometric acoustics. Geometric acoustic systems rely on ray trac-

ing for sound by invoking a high frequency approximation to the

wave equation, an approach studied extensively in room acous-

tics and computer graphics. Modeling diffraction exacerbates path

sampling requirements compared to CG light tranport [Cao et al.

2016], and a general system that handles arbitrary-order diffraction

and scattering in complex scenes remains beyond the state of the

art; consult the review and discussion in [Savioja and Svensson

2015]. Recent work in CG precomputes edge visibility to accelerate

the diffraction computation for point sources [Schissler et al. 2014]

and some online geometric systems support extended sources but

can consume multiple machines’ worth of computation for simple

scenes of a few thousand polygons [Schröder 2011].

Wave solvers. Finite-Difference Time-Domain (FDTD) simulation

is widely used in acoustics [Hamilton et al. 2017; Kowalczyk and

VanWalstijn 2011] and electromagnetics [Taflove andHagness 2005].

It is relatively easy to implement but subject to non-linear dispersion

that accumulates phase errors as wavefronts propagate. For coherent

signals, fine discretization is required to ensure phase accuracy.

Since we ignore output phase, dispersion is not a major concern but

numerical dissipation, which affects energy propagation, must still

be controlled. Further details are explained in Section 4.

Coherent point sources. Precomputed wave approaches [Raghu-

vanshi and Snyder 2014, 2018; Raghuvanshi et al. 2010] trade run-

time CPU for RAM needed to store the output field. High-order

diffraction and scattering are modeled naturally. Geometry of any

complexity is uniformly handled by voxelizing onto the simulation

grid; aliasing is eliminated by ensuring source signals are appro-

priately bandlimited. Our general approach is similar but treats

extended incoherent rather than coherent point sources.

Coherent extended sources. The equivalent source method approx-

imates a known wave field using a linear combination of elementary

multipole solutions to the wave equation. It has been used for mod-

eling free-field radiation [James et al. 2006] and environmental prop-

agation [Mehra et al. 2013] for coherent extended sound sources a

few meters across, like vibrating shells. Coherent wave fields are

highly oscillatory over space, requiring numerous multipoles to fit

well and making such techniques heavyweight, especially at high

frequencies. Recent developments focus on controlling the CPU cost

of summing multipole contributions [Chadwick et al. 2009] and on

reducing memory [Li et al. 2015]. For incoherent sources, chaotic

phase can be ignored while time-averaged power varies smoothly,

admitting a more compact approximation.

Sound texture synthesis. Sound textures arise from a collection of

spectrally similar events which overlap in time. [McDermott et al.

2013; McDermott and Simoncelli 2011] study perceptually important

statistics from real recordings, synthesizing new sound textures and

assessing their recognizability. This work is applicable to generate

better representative sounds (see Section 3) in our system. Our work

instead focuses on propagation effects in virtual environments.

Binaural rendering. [Schissler et al. 2016] directionally renders

large extended sources in the free field, ignoring the effect of scene

geometry which is our focus. The technique accelerates in part by

assuming arrivals from different directions are perfectly in phase.

This is hard to arrange for real extended sources. We make the op-

posite and physically-motivated idealization that phases of arrivals

in different directions are completely decorrelated, letting us ignore

phase entirely and consider only the HRTF’s magnitude spectrum.

Like our method, [Raghuvanshi and Snyder 2018] captures direc-

tional effects but for point sources. It encodes directionality sep-

arately for the direct sound (via loudness and a direction vector)

and for early reflections (via six simple basis functions around the

coordinate axes). We represent directional power averaged over all

time, in terms of the simple but general SH basis. Both that method

and ours perform directional analysis using flux which is known

to merge directions when wavefronts arrive nearly simultaneously.

For an incoherent source, one expects multiple wavefronts to arrive

chaotically all the time, confusing flux. We demonstrate for the first

time that it works well in our incoherent regime. We also reduce

runtime rendering cost by avoiding costly convolutions required to

render phase information.

3 SYSTEM OVERVIEW
The designer tags surfaces or volumes in a 3D scene as the extended

source. Our goal is to play back in real time a (usually pre-recorded)

representative sound as if it were emanating from that source and

propagating through that scene. Loudness and directionality cues

should change in a smooth and natural way as the listener moves.

Our system works in two stages. In the precomputation stage,

we voxelize a 3D domain containing the extended source and scene

geometry and introduce sustained, volumetric noise. This noise sig-

nal is entirely synthetic and used to predict sound transport effects,

with no relationship to the representative sound played at run-time.

A wave simulation then propagates this noise throughout the scene.

Parameter fields are encoded representing the time-averaged power

distribution as a (5D) function of position and direction at the lis-

tener, where directionality is represented using low-order (n=4) SH.
These fields then modify the representative sound clip at playback

time given the listener’s changing position and orientation.

The emitted power distribution, shape, and location of the ex-

tended source is baked in with respect to the static scene and can’t

be changed at runtime. Any input clip can be used at runtime to

represent the source sound; it should be suitably “ambient” with

loudness and spectral content not changing too abruptly.

4 PRECOMPUTED SIMULATION
We use the finite difference time domain (FDTD) numerical method

[Taflove and Hagness 2005] to simulate wave propagation. It models

air pressure change over time by solving the wave equation

1

c2
∂2p

∂t2
(x , t) − ∇2p(x , t) = s(x , t) (1)

where x is 3D spatial location, t is time, c=340 m/s is the speed of

sound, and p is acoustic pressure to be solved for. The (input) forcing

term s(x , t) represents the source perturbation to be propagated and

will be detailed in Section 5.
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FDTD is simple to implement. Its major disadvantages are numer-

ical dispersion, causing different frequencies to incorrectly travel at

different speeds, and numerical dissipation, causing high frequen-

cies to be attenuated. As discussed later in Section 6, the acoustic

parameters we’re interested in depend on the response signal’s time-

averaged power and neglect its phase, making them insensitive to

dispersion. Dissipation thus forms the main limit on the highest

frequency we can simulate for a given grid spacing.

Simulation cost is proportional to the product of scene volume,

spatial resolution, temporal resolution, and duration. Output quality

depends on resolution, which determines the field’s spatial detail,

and the number of frequency bins resolvable in the band where the

source propagates without artifacts, which determines the amount

of randomness we can inject. We fix the spatial grid spacing (∆x)
and number of frequency bins (∆N ) to achieve the required quality,

and determine the other parameters as follows.

With specified grid spacing ∆x , the time step is

∆t =
C ∆x

c
, (2)

where the Courant number C = 1/
√
3 is the maximum ensuring

CFL stability, and the Nyquist frequency is

fn =
1

2∆t
. (3)

A simulation with duration T requires Nt time steps

Nt =
T

∆t
. (4)

The simulated pressure response at any grid point thus yields a

corresponding number of “bins” or frequency samples in its minimal

discrete Fourier transform given by

N = ⌊Nt /2⌋ + 1. (5)

We use standard leap-frog integration, in which dissipation is

greatest along axial directions [Kowalczyk and Van Walstijn 2011;

Schneider and Wagner 1999]. Dissipation can thus be controlled

by ensuring our source signal’s content is no higher than the axial

cutoff frequency [Schneider andWagner 1999].We denote this cutoff

fd (fd < fn ), defined as

fd =
1

π ∆t
sin

−1(C). (6)

Low frequencies in the source signal should also be removed: a

non-zero DC component generates a non-zero particle velocity (i.e.

wind) in the direction away from the source. We therefore limit

the power spectral density (PSD) content of the source signal to

[fmin, fmax] ⊂ (0, fd ] and denote its bandwidth ∆f = fmax − fmin.

The number of frequency bins included in this band is then

∆N = N
∆f

fn
. (7)

We’ll see in the next section that the bigger ∆N , the more the sim-

ulation approaches ideal incoherence. The duration of the source

signal is TS = N /fn = ∆N /∆f . Extra time steps are added after the

emitted source signal ends to let it finish propagating through the

scene. The padded time duration is TD = D/c where D denotes the

length of the diagonal of the cuboid simulation domain, yielding

the total simulated time T = TS +TD .

Fig. 2. Total loudness (dB) due to coherent vs. incoherent extended source.

We set ∆x = 0.255m, yielding the sampling rate 1/∆t = 2309Hz

and dissipation cutoff fd = 452Hz.We set the source PSD’s non-zero

band as [fmin, fmax] = [62.5, 400]Hz and the number of frequency

bins included in it as ∆N = 1000. This yields Nt ≈ 9200 in our

experiments. Our simulation is computed on a cuboid domain with

perfectly matched layer (PML) [Rickard et al. 2003] absorber to

suppress spurious reflections from the domain boundary.

5 INCOHERENT SIGNAL SYNTHESIS
A key component of our system is signal generation for an extended,

spatio-temporally incoherent source, representing s(x , t) in (1). Fig-

ure 2 shows the problems that arise from a coherent source. The

scene in this experiment is a two-story beach house facing a much

longer ocean surf source. When all points covered by the source

emit a phase-locked Gaussian derivative pulse, an overly bright

band of constructive interference forms near the source (right of

image) and fringes (spatial oscillations) in the occluded area behind

the house. Inside the house, note the increased spatial variation

and overall attenuation compared to the incoherent case. Our new

incoherent source yields a smoother and more physically motivated

total loudness field.

Coherence is the tendency of wave field observations at different

times and places to be correlated. We design our source to exhibit

complete spatial incoherence and as little temporal coherence as pos-

sible while satisfying the frequency content constraints discussed

in the previous section.

Spatial incoherence. A source much smaller than the sound wave-

length can be treated as a point. When it is bigger, the signal it emits

must be decorrelated over its extent as well as over time. To ensure

spatial incoherence, we simply generate independent signals in each

FDTD grid cell covered by the source. This approach is simple and

achieves spatial incoherence up to the grid resolution; the smaller

the voxels, the more closely the result approximates perfect spatial

incoherence.

Temporal incoherence. A sequence of independent, zero-mean ran-

dom samples is fully incoherent but isn’t bandlimited and so incurs

numerical dissipation. To reason about bandlimiting the signal ap-

propriately for simulation, we consider the discrete Fourier domain,

where this ideal white noise exhibits constant amplitude and inde-

pendently random phase at each frequency bin. The signal we desire

has the same random phase and constant amplitude but only across
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Fig. 3. Convergence with increasing ∆N . From left to right: ∆N = 63, 250, 1000, 4000, visualizing total loudness in dB scale.

Fig. 4. Online incoherent synthesis. Top plot is the desired magnitude re-

sponse of the source signal; bottom is its PSD when actually generated via

on-the-fly IIR filtering of white noise.

the ∆N frequency bins in the available band [fmin, fmax]. A longer

simulation increases ∆N and thus incoherence. Figure 3 shows how

the simulation converges to a smooth result as ∆N increases.

Online synthesis. The most straightforward way to generate the

source signal is via Fourier synthesis: for each voxel, construct

the discrete signal in Fourier space by setting the magnitude of

each frequency bin to the PSD target at that frequency, and its

phase as a random number, then take the inverse Fourier transform.

This method precisely controls the spectrum, but must store the

full temporal signal at every source voxel. For large sources, this

overwhelms storage for the FDTD state itself, which only updates

pressure using the field at current and prior time step.

To reduce memory, we synthesize the source signal by filtering

zero-mean white noise on-the-fly during simulation. The resulting

source signal is s(t ,x) = w(t ,x) ∗h(t) where ∗ denotes time-domain

convolution. Note that the filter h(t) is independent of position; we
assume elementary sources share the same spectral content.

We implement h as an order-nh IIR filter, which accesses samples

from the most recent nh timesteps. The memory required is pro-

portional to the product of the number of source grid cells and the

filter order nh , independent of the simulation’s duration. Figure 4

compares PSDs between the target and the actual stochastic signal.

Filter details. For a similar rolloff factor in the transition between

pass-band and stop-band, an IIR filter requires lower order com-

pared to an FIR filter. It incurs more phase distortion, but this is not

troublesome because the signal’s phase is randomized.

We apply a band-pass Chebyshev type-II filter [Smith 2008]. The

pass band is set as [62.5, 0.36C fn ] in Hertz, and the stop bands as

[0, 20] and [0.675C fn , fn ]. This guarantees the pass-band is con-

tained in the non-dissipative frequency range. The ripple (ratio

between the largest and smallest magnitudes of filter’s frequency

response) allowed in the pass band is 6dB and the attenuation factor

of the stop bands is 40dB. We use filter order nh = 16. Memory

demanded by online source synthesis is below one megabyte even

for an extended source comprising tens of thousands of voxels.

6 ENCODER
At each simulation voxel, our encoder computes flux at the next

simulation time step and accumulates its low-order SH power dis-

tribution. The resulting parameters fields are then spatially down-

sampled and compressed as in [Raghuvanshi and Snyder 2014].

Acoustic flux density. Flux density (or simply, flux) represents in-

stantaneous power transport in the fluid over a differential oriented

area, analogous to irradiance in optics. It estimates the direction of

a wavefront passing x at time t , via

f (x , t) = p(x , t)v(x , t), v(x , t) = − 1

ρ0

∫ t

−∞
∇p(x ,τ )dτ (8)

where v is the particle velocity and ρ0 is the mean air density

(1.225kg/m
3
). We use central differences to compute spatial deriva-

tives for ∇p, and the midpoint rule for numerical time integration,

as in [Raghuvanshi and Snyder 2018].

We recover the time-averaged directional power distribution at

any spatial point x (suppressed below) as follows. At every time
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Fig. 5. Directional analysis example. Left column: overall directionality. Right four columns: recorded directional RMS power distribution

√
E(Θ) for the two

marked locations. (1a)/(1b) show the ±X hemispheres of the directional power distribution at location 1. (1c)/(1d) show the corresponding SH reconstruction.

(We visualize

√
E(Θ) instead of E(Θ) to emphasize low-power spots.) (2a)-(2d) show the same analysis for location 2.

step t, take the instantaneous flux to form the unit vector
ˆf (t) ≡

f (t)/∥ f (t)∥ and associate the instantaneous power p2(t) to that

single direction, followed by time-averaging, yielding

E(Θ) = 1

T

∫ T

0

p2(t)δ (Θ − ˆf (t))dt (9)

where Θ represents a direction and δ (Θ) is the Dirac delta function
in direction space.

SH projection. We encode directional power distribution as a

smooth spherical function by projecting to order-n SH via

El,m =
1

T

∫ T

0

p2(t)Yl,m ( ˆf (t))dt . (10)

where Yl,m are the n2 real SH basis functions [Sloan 2013]. We

use n = 4. We note that the integral in (10) can be evaluated pro-

gressively without storing history for p(t) and f (t). Our streaming

encoder accumulates into the n2 SH coefficients {El,m } at each time

step. A smooth reconstruction of input power distribution is then

given by

E(Θ) ≈
n−1∑
l=0

m=l∑
m=−l

El,m Yl,m (Θ). (11)

Windowing. To avoid directional ringing [Sloan et al. 2002], we

filter the {El,m } through the Kaiser window [Oppenheim 1999]

K(l) =
I0
(
β
√
1 − (l/n)2

)
I0(β)

. (12)

This is an efficient approximation of the theoretical window (DPSS)

maximizing main lobe energy. Here, I0 is the zeroth-order modi-

fied Bessel function of the first kind and β is a positive parameter

adjusting the shape of the window. We set β = 5.

The final SH coefficient becomes

E ′l,m = K(l)El,m . (13)

We assume windowing and drop the prime in the following.

Normalization. The DC component, E0,0, corresponds to total

power received at the listener. A scale factor is applied to all coef-

ficients {El,m }, such that the maximum loudness (see below) over

the iso-surface 1m away from the source is normalized to 0dB.

Example. Figure 5 visualizes RMS power distribution

√
E(Θ) and

its SH reconstruction at two listener locations in BeachHouse. A

simple metric for overall directionality used in the figure’s left col-

umn is the ratio between the L2 norm of the linear SH coefficients

and the DC component. The figure also shows the power distri-

bution for two listener positions. Location 1 lies inside the small

reverberant room and is more directionally diffuse compared with

location 2 near the portal facing the extended source. Our com-

pact SH representation is able to capture such strong anisotropy

introduced by portals and corners.

Compression. Aswith other energetic acoustic parameters [Raghu-

vanshi and Snyder 2014], our encoded SH coefficients {El,m (x)}
form a spatially smooth field. We apply a similar pipeline of spatial

smoothing, quantization and compression.

We encode the DC component in logarithmic space via total loud-

ness L = 10 log
10
E0,0, and the higher-order SH coefficients l > 0 in

linear space relative to DC via El,m/E0,0. Representing total loud-
ness in decibels accords with human perception; encoding relative
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SH coefficients retains directional information even in highly oc-

cluded cases. L is clamped within the range [−60, 6]dB. The rest of
the coefficients are bounded by the ratio of the max value of the

SH basis function to DC (i.e. by |Yl,m (0, 0)/Y0,0 |) for non-negative
spherical functions; [−2, 2] encompasses the range of values we’ve

encountered for windowed functions with n = 4.

The parameters are then spatially down-sampled using simple

averaging over a 1m×1m×1m cube centered at x . Only parameters in

voxels unoccupied by scene geometry and visible to x are included.

Parameters are quantized using the quantum 1dB for L, which is

the just-noticeable-difference for loudness [ISO3382 2009], and 0.04

for the others. Finally, the parameter fields are compressed along

each x scanline (as with PNG images) and (lossless) LZW applied to

the running difference. This pipeline attains a compression factor

of over a million with respect to the raw parameter fields, yielding

an output of about a megabyte per ambient source in a scene. The

wave simulation data, whose size is on the order of terabytes, does

not need to be stored by our streaming encoder but is processed at

each time-step and discarded.

7 RUNTIME
Runtime decoding is similar to [Raghuvanshi and Snyder 2014].

Each of the n2 decoded parameters is trilinearly interpolated over

the visible voxels of the surrounding cube’s 8 vertices to the cur-

rent listener position, yielding the propagated directional power

distribution E(Θ).

Spatialization. The human auditory system relies on interaural

phase (IPD) and loudness difference (ILD) cues for localizing sounds

in direction space. The HRTF (head-related transfer function) cap-

tures the mutual phase shift and shadowing introduced by the hu-

man head and shoulders at the two ears, for incoming coherent

wavefronts over various directions. For each direction, it tabulates

the complex transfer function for both ears at a dense (~200) set of

frequency bins. Binaural rendering is performed by taking a source’s

mono-aural emitted signal and convolving it with the HRTF via com-

plex multiplies at each frequency bin. This is computationally costly,

but necessary for point sources as they radiate spatially coherent

wavefronts with a salient IPD.

For chaotic and extended sources, we observe that phases of the

arriving field in different directions tend to bemutually uncorrelated,

making IPD cues less detectable. We thus render only the frequency-

dependent head shadowing effect (ILD) given the runtime listener

head pose and the incoming spherical power distribution, E(Θ).
In the frequency domain, denote the (complex-valued) HRTF as

H (Θ, f ) where Θ is sound arrival direction and f is frequency. We

set the gain of the sound signal at frequency f as

д(f ) =

√∫
Ω
E
(
R−1(Θ)

) H (Θ, f )
2 dΘ, (14)

where Ω is the direction space, E is the reconstructed directional

power distribution from (11), and R transforms directions from the

head to the world coordinate system.

We divide the audible frequency range into nH sub-bands. For

the i-th band [f i
0
, f i

1
], the respective gain is

дi =

√∫
Ω
E
(
R−1(Θ)

)
H i (Θ)dΘ, (15)

where H i (Θ) is the average HRTF power over the sub-band

H i (Θ) = 1

f i
1
− f i

0

∫ f i
1

f i
0

H (Θ, f )
2 d f . (16)

Representing H i
using the same low-order SH approximation

used for the propagated power distribution E, the spherical integral
in (15) becomes a simple dot product of a pair of length n2 vectors,
followed by a square root. Finally, the resulting nH scalar gains

are applied to the representative clip, which is separated into nH
sub-bands using online equalization filters. Our implementation

uses the built-in equalizer from the XAPOFX library.

We use nH = 4 sub-bands having center frequencies fc at 125,

600, 2400, and 9600Hz, with two-octave bandwidth, [fc/2, 2 fc ]. The
SH projection of the HRTF is done as a precomputation (see below)

and does not change at runtime.

SH rotation. We currently support azimuthal rotation of the lis-

tener; general rotation is a simple extension [Kautz et al. 2002]. If

the listener’s head is at azimuthal angle θ , the block-diagonal SH
rotation matrix is

M(θ ) = diag{M0(θ ); M1(θ ); ... ;Mn−1(θ )}, (17)

whereMk (θ ) is the (2k + 1) × (2k + 1) matrix

(Mk )i j (θ ) =


cos((k + 1 − i)θ ), if i = j,

sin((i − k − 1)θ ), if i + j = 2k + 2,

0, otherwise,

(18)

for i, j = 1, 2, ..., 2k+1. This matrix transforms the SH vector E from

the world to the head coordinate frame, where it is dotted with each

of the nH HRTF vectors to yield the gains.

HRTF projection. We use the public domain CIPIC database [Al-

gazi et al. 2001]. After converting HRIR measurements to frequency

domainHRTFsH (Θ, f ) via the discrete Fourier transform,we project

the average HRTF power in each sub-band to SH via least-squares

optimal projection [Sloan et al. 2003]. Note that measurements in

the database have sampling gaps around the poles.

Figure 6 shows our representation based on average HRTF power

distribution H i (Θ) and its corresponding SH reconstruction.

8 RESULTS
Precomputed simulation and streaming encoding are performed on

a single desktop with Intel i7 CPU @ 3.70GHz and 32G RAM. The

technique is integrated with Unreal Engine 4™. Precomputation

data for our scenes is summarized in Table 1. Bake times vary pro-

portionally to scene volume and only very weakly with the number

of source voxels (compare the two sources in ZenGarden). We note

somemanual domain adjustment was performed for the two sources

in Titanpass so their two domain sizes are not identical.
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Fig. 6. HRTF directional power representation. We used subject #3 from the CIPIC database. First (left channel) and third (right channel) rows show average

spectral power over each sub-band; second and fourth rows show the corresponding least-squares reconstruction using low-order SH. All fields are visualized

in dB. The horizontal and vertical axes represent elevation (-45 to 235 degrees) and azimuthal angle (-80 to 80 degrees) using the interaural coordinate

system [Algazi et al. 2001]. As expected, low-order SH reconstructs a smooth approximation of the measured data.

Runtime memory cost is around 1 MB per extended source and

decoding cost about 100 microseconds per frame. HRTF-based ren-

dering is also lightweight (transformation of the SH vector E from

world to head space plus the dot product between the length-n2

HRTF vector and the rotated SH vector E in each of the nH sub-

bands), making our framework immediately practical.

We demonstrate four scenes in the supplementary video: Beach-

House, Outpost23, TitanPass and ZenGarden. BeachHouse in-

cludes a single source in the form of a long cuboid representing the

beach; the single source in Outpost23 comprises three large indus-

trial fans. Two separate sources are included in TitanPass (waterfall

and stream) and ZenGarden (rain falling into a water pool and

rain falling everywhere else), allowing two different representative

signals in each scene. The rain source is generated by tracing drops

vertically from the ceiling of the simulation domain and placing an

incoherent point where it first intersects scene geometry.

Figures 1 and 7 show parameter fields for ZenGarden and Beach-

House, respectively. They are smooth indoors and outdoors in

scenes with complex portals and occluders. High-frequency spatial

oscillation due to interference is avoided. Overall, our system is well

spatialized, providing smooth loudness and directional cues from

environmental propagation.

BeachHouse. This simple scene demonstrates shadowing and

guiding of sound around the building and through its doors and

windows. Inside the house, directionality indicates positions of the

nearby portals. Outside, the ocean gets louder. Loudness variation

is smooth and stays steady as the listener moves along the beach.

Next to and behind the building, shadowing substantially reduces

loudness while increased directionality can be heard at the sides

and back corners of the building.

Outpost23. Loudness varies smoothly even when walking di-

rectly in front of the fans. Our directional rendering clearly points

the way towards these sources as the listener navigates.

TitanPass. The waterfall is a big, loud source that dominates

nearby. Directionality is clearly audible in the cavern by the falls.

Descending past the lower falls, the burbling stream becomes the

main sound. It is highly directional as heard from the bank and gets

louder and more surrounding (isotropic) in the enclosed channel.

ZenGarden. A softer rainfall sound from a large area source

covering the ground and rooftops permeates the scene, joined by

splashing sounds of rain falling into the fish pond. Directionality

towards the pool is clearly rendered while the background rainfall

remains audible. Moving along the walkway next to the pool, rain

sounds are shadowed smoothly by pillars supporting the roof.

Incoherent vs. coherent comparison. The video also compares the

coherent point source technique of [Raghuvanshi and Snyder 2014]

with our incoherent extended source method in the BeachHouse
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Fig. 7. Parameter fields in BeachHouse. Top row: total loudness field L in dB. Bottom rows: higher-order (l > 0) SH coefficients relative to DC, El,m/E0,0,
before windowing. Total loudness field L captures the spatial variation of ambient sound loudness and the high-order (l > 0) SH coefficients El,m/E0,0 encode
the directional power. All encoded parameter fields are spatially smooth.

scene. We placed nine point sources evenly along the coast where

each emits a (coherent) Gaussian derivative pulse simultaneously

in a single precomputed simulation. Because the nine sources are

precomputed, runtime cost is similar to our technique; the cost

would be significantly higher than ours if the sources were inde-

pendently controlled at runtime. Several artifacts can be observed

with this alternative. Moving along the ocean source, loudness wob-

bles unnaturally due to interference among the point sources. The

shadow behind the house is also unrealistically sharp. Good results

for large sources require numerous point sources (thousands in our

experiments) with uncorrelated phase.

9 CONCLUSION
Assuming ideal incoherence of an ambient source over both time

and spatial extent, we make it practical to render its propagated

effects through a complex 3D scene. Unlike geometric methods in

acoustics and CG, our method computes an Eulerian PDE simula-

tion. Wave effects like diffraction are included and cost remains

insensitive to scene complexity and source size. We show how the

incoherent source signal can be evaluated efficiently and propose a

streaming encoder to capture the time-averaged directional power

distribution of the propagated response in terms of low-order spheri-

cal harmonics for each listener position. The resulting 3D parameter

fields are smooth and compressible, needing just a few megabytes

per source. Our system inexpensively generates convincing ambient

effects that give salient information about the scene.

Many limitations remain to be addressed in futurework. Frequency-

dependent propagation effects are a straightforward extensionwhich

require extracting the relevant power in frequency bands from the

response at each listener position and then performing the same

analysis we propose for each band. More challenging extensions

break our assumption of ideal incoherence, to capture near-field

effects when sound events are individually audible, or add parame-

ters that depend on the transient response for partially incoherent

sources (e.g. delay/directionality for outdoor echoes).

Our directional rendering method can be improved. Its rationale

is that with incoherent ambient sources, phases at the two ears are

uncorrelated and only frequency-dependent shadowing effects are

noticeable. We thus apply the same representative signal equalized

at the two ears according to the listener’s head shadowing effects,

with matching phase. Decorrelating these phases [Valimaki et al.

2012] is more natural and would probably increase the feeling of

envelopment.

Finally, Eulerian simulation could be applied to conventional light

rendering to exploit its computational independence on scene com-

plexity and source size. Since we don’t expect it will be competitive

to simulate big scenes at visible light wavelengths, such simula-

tion will need to mitigate diffraction effects at longer wavelengths
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Table 1. Precomputation data

scene/(source) # scene voxels # source voxels

scene surface

area (m
2
)

time steps

dimensions

(m)

bake RAM

(GB)

bake time

(h)

encoded

(MB)

BeachHouse 2.5 × 10
6

17.0 × 10
3

0.5 × 10
3

9.2 × 10
3

45 × 80 × 8 2.2 2.0 0.68

Outpost23 1.4 × 10
6

3.6 × 10
3

32.8 × 10
3

9.1 × 10
3

40 × 40 × 10 1.4 15.0 2.1

TitanPass

(waterfall)

2.0 × 10
6

1.7 × 10
3

9.7 × 10
3

9.2 × 10
3

20 × 60 × 21 2.0 6.9 1.0

TitanPass

(stream)

3.5 × 10
6

1.9 × 10
3

9.3 × 10
3

9.2 × 10
3

20 × 80 × 28 3.0 12.3 1.6

ZenGarden

(rain-ground)

2.4 × 10
6

46 × 10
3

14 × 10
3

9.1 × 10
3

50 × 70 × 8 2.4 14.1 1.6

ZenGarden

(rain-water)

2.4 × 10
6

4.0 × 10
3

14 × 10
3

9.1 × 10
3

50 × 70 × 8 2.4 13.8 1.6

and augment the wave simulation with BRDF/scattering models for

more coarsely discretized geometry.
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