
Synthesis and Machine Learning for Heterogeneous
Extraction

Arun Iyer

Microsoft Research, Bangalore, India

ariy@microsoft.com

Manohar Jonnalagedda
∗

Inpher, Lausanne, Switzerland

manohar.jonnalagedda@gmail.com

Suresh Parthasarathy

Microsoft Research, Bangalore, India

supartha@microsoft.com

Arjun Radhakrishna

Microsoft, Bellevue

arradha@microsoft.com

Sriram Rajamani

Microsoft Research, Bangalore, India

sriram@microsoft.com

Abstract
We present a way to combine techniques from the program

synthesis andmachine learning communities to extract struc-

tured information from heterogeneous data. Such problems

arise in several situations such as extracting attributes from

web pages, machine-generated emails, or from data obtained

from multiple sources. Our goal is to extract a set of struc-

tured attributes from such data.

We use machine learning models (“ML models”) such as

conditional random fields to get an initial labeling of poten-

tial attribute values. However, such models are typically not

interpretable, and the noise produced by such models is hard

to manage or debug. We use (noisy) labels produced by such

ML models as inputs to program synthesis, and generate

interpretable programs that cover the input space. We also

employ type specifications (called “field constraints”) to cer-

tify well-formedness of extracted values. Using synthesized

programs and field constraints, we re-train the ML models

with improved confidence on the labels. We then use these

improved labels to re-synthesize a better set of programs.

We iterate the process of re-synthesizing the programs and

re-training the ML models, and find that such an iterative

process improves the quality of the extraction process. This

iterative approach, calledHDEF, is novel, not only the in way
it combines the ML models with program synthesis, but also

in the way it adapts program synthesis to deal with noise

and heterogeneity.

More broadly, our approach points to ways by which ma-

chine learning and programming language techniques can

be combined to get the best of both worlds — handling noise,

transferring signals from one context to another using ML,

producing interpretable programs using PL, and minimizing

user intervention.

1 Introduction
Extracting structured attributes from heterogeneous unstruc-

tured or semi-structured data is an important problem, which

∗
This work was done when the author was at Microsoft Research, Bangalore,

India.

PLDI 2019, June 22–26, 2018, Phoenix, AZ
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

arises in many situations. One example is processing web-

sites in domains such as travel, shopping, and news and

extracting specific attributes from them. Another example

is in processing machine generated emails in such domains,

and extracting specific attributes. A third example is data

wrangling where the goal is to transform and map raw data

to a more structured format, with the intent of making it

more appropriate and valuable for a variety of downstream

purposes such as analytics.

In the ML community, these problems have been han-

dled by training ML models. While impressive progress has

been made in making use of signals from noisy and large

scale data [12, 23, 24, 26], the models produced are not inter-

pretable and hence hard to maintain, debug and evolve. In

the PL community, program synthesis has been used to gen-

erate programs, such as Excel macros, from a small number

of training examples [7, 13, 18]. If the data-sets are large and

heterogeneous, and training data is small and noisy, neither

ML models nor program synthesis work well in isolation.

In this paper, we show an approach to combine these ideas

from the ML and PL communities to perform extraction from

heterogeneous data.

Our approach, called HDEF, Heterogeneous Data Extrac-
tion Framework, works by first training an MLmodel (such as

a conditional random field) using some training data. We use

this baseMLmodel to produce candidate output labels for the

entire heterogeneous data-set, including on input formats

for which there is no training data. Due to the generalization,

the base ML model produces output labels even for the for-

mats with no training data. However, the labels so generated

are typically noisy. We then use these noisy labels as input

specifications to a modified program synthesis algorithm.

Since the input data is heterogeneous, a single program can-

not handle all the inputs. Our synthesis algorithm, called

NoisyDisjSyn, Noisy Disjunctive Program Synthesis, produces
a set of programs that cover the entire input data-set and
maximizes the number of inputs for which correct outputs

are produced, where correctness of an output is defined us-

ing a type specification called field constraint. These base

programs partition the data-set into clusters, where each

program works for inputs from one cluster. Our approach

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

works by iteratively refining both the ML model and syn-

thesized programs using each other. We use the synthesized

programs to generate output labels for all the inputs. Next,

we compare the outputs from ML models and synthesized

programs to vote on the inferred labels –increasing confi-

dence on the labels in cases where there is agreement and

picking a winner in a semi-automated manner when there

is disagreement. We then re-train the ML model with the

revised confidence on the labels, and use the ML model’s out-

put to re-synthesize a better set of programs. We iterate the

process of re-synthesizing the programs and re-training the

ML models, and find that such an iterative process improves

the quality of the extraction process, while minimizing the

user intervention needed.

We use state-of-the art ML models such as Conditional

Random Fields (CRFs) and Bidirectional Long Short-Term

Memory augmented with CRFs (LSTM-CRFs) as ML models.

Our program synthesis needs to handle both noisy labels,

as well as heterogeneous inputs. We use a novel disjunctive

program synthesis algorithm to generate a set of programs

(rather than a single program) to deal with heterogeneity.

In cases where the ML model and synthesized programs

disagree in their output, we use ranking techniques or human

annotation to pick a winner. For example, when a highly

ranked program (which works over many inputs in a format)

produces an output which is different from the ML model,

we pick the program output as the winner. In cases where

neither the program nor the ML model’s output is highly

ranked, we seek user intervention.

This paper makes the following contributions:

• We present a novel iterative algorithm HDEF which

interleaves MLmodel training (Section 4) and program

synthesis to reduce noise fromMLmodels and produce

interpretable programs (Sections 3, 6).

• We also present a novel disjunctive synthesis algo-

rithm NoisyDisjSynth (used by the HDEF algorithm

as a subroutine), which takes noisy input-output ex-

amples as inputs, and produces a set of programs that

handle heterogeneous inputs from different formats

(Section 5).

• We show how type specifications and appropriately

designed Domain Specific Languages can greatly im-

prove the performance of the HDEF approach (Sec-

tions 5.3, 5.4, and 7.3).

• We present a thorough evaluation of the approach on

two data-sets (Section 7). We show that our approach

is able to improve the quality of the extraction process

(as measured by F-1 score) in 24 of the 30 extraction

tasks, as compared to a plain ML model based extrac-

tion. In several cases, precision and recall improves

dramatically from below 0.3−0.4 to close to the perfect
1.0 score. Further, in the cases where the quality did

not improve, we are able to qualitatively characterize

the extraction task that leads to failure. Additionally,

for the political data-set, we perform ablation studies

to demonstrate the significance of the choice of DSL

and the importance of field constraints.

2 Overview
We first present two exemplar data-sets that motivate the

design of our data-extraction framework. Then we present

an overview of our extraction approach.

2.1 Exemplar Data-sets
Political Data-set. This data-set consists of 605 individual

string inputs, each containing the personal details of candi-

dates in the Indian parliamentary elections. Two example

inputs are shown in Figure 1. Each string (formatted in an

ad-hoc manner) contains information such as the candidate’s

name and date of birth, as well as other unstructured textual

descriptions of "Other information", "Special Interests" and

"Positions held". Further, the data has undergone significant

bit rot: a fraction of the strings are missing the new line char-

acters, etc. The data-set has the following characteristics:

• Fields are commonly specified using an indicator prefix

(that we call key). However, the same field can have

different keys in different inputs. In the figure, the

father’s name field has two separate keys: “Father’s

name: ” and “s of.”.

• Some fields have no clear keys. In the second input,

the date of birth field has no specific key, but instead

the place of birth field and the date of birth field are

together prefixed by the key “b. at”.

• There can be fields missing in each input. In the second

input, the field spouse’s name has no value.

• There are no fixed field separators and field values can

be large amounts of “unstructured text” (e.g., the value

of “Social activities” field in the second input).

M2H Flight Email Data-set. This data-set consists of au-
tomated machine-to-human emails related to flight reserva-

tions, cancellations, etc. These emails are sent automatically

by airlines and travel agencies (e.g. Expedia, Orbitz, Oman

Air, etc), each of which we refer to as a domain. Two exam-

ples of such emails are shown in Figure 2. Here, the task is to

automatically extract details such as passenger names, flight

numbers, origin, destination, etc. The following aspects of

this data-set makes extraction difficult:

• Long tail of formats. Each domain corresponds to a

few formats – for example, one for reservation con-

firmation, cancellation, etc. However, the number of

these formats is quite large with a large fraction of

the emails coming from a small number of leading do-
mains, and a large number of tail domains having a

small number of emails from them.

• Variation within formats. While each format follows a

high-level template, there is significant variation even

within formats. For example, even for flight reservation

confirmation emails from a single domain, there are

variations based on the number of passengers, the

2

Synthesis and Machine Learning for Heterogeneous Extraction PLDI 2019, June 22–26, 2018, Phoenix, AZ

Figure 1. Two inputs from the political data-set. Keys and values are highlighted as per the legend in the third row

Figure 2. Two emails from the M2H email data-set

number of flight legs, presence of an associated hotel

booking or car rental, presence of an advertisement

for upgrades, etc.

2.2 Data Extraction Framework
There are several commonalities in the above two data-sets

that motivate the design of our data extraction framework.

Due to the large number of different formats it is infeasible

to provide training data for each format in the data-set. We

need to generalize across formats, and produce reasonable

extraction output for a format even if no training data of

that format is provided. We use ML models for this purpose.

Even though the number of formats is large, inputs within a

single format are similar, and the logic of extracting fields

from inputs of a single format can be expressed precisely.

Hence we design domain-specific languages and use pro-

gram synthesis to produce synthesized programs to perform

the extraction for each format. Using programs instead of

ML models enables interpretability and debuggability of the

extraction, as programs (as compared to ML models) are

human readable. We employ a feedback loop to iteratively

refine the extraction labels. Figure 3 shows a block diagram

of our extraction framework. The framework consists of an

ML model, a program synthesizer, and a semi-automated

annotator, which completes the feedback loop. We explain

each of these components next.

ML models. We assume that the user gives us annotations

on a small number of inputs. Using these annotations, we

train an ML model so that the model can produce (noisy)

labels on all inputs. For instance, a conditional random field

(CRF) is an ML model which learns dependencies between

adjacent tokens and generalizes across formats. Figure 4

illustrates a CRF model on an example from the political

data set. The goal of this CRF model is to learn dependencies

between the tokens and labels. Specifically, this CRF can

learn that the token next to a "father name key or K-fname"

is a "father name or V-fname" with high probability, from

the few training examples given by the user. For the political

data-set, we use 25 annotated inputs to train a CRF model

for extraction. For the M2H data-set we use a more complex

model called LSTM-CRF (explained in Section 4).

The CRF model for the political data-set predicts the

value of the father’s name field when the key is “daugh-

ter of”, even though there is no training input with

that format. The LSTM-CRF model for M2H data-set

predicts the “Airport” field values with precision and

recall 0.78 and 0.34 on the emails from the Expedia do-
main, even though the training data does not include

any emails from that domain.

Program synthesizer. We take the noisy outputs produced

by the ML model and use it as a soft specification for the

3

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

Model TrainingAnnotated Inputs ML Model Noisy labels Program Synthesizer

Features All Inputs Constraints

Disjunctive ProgramSemi-automated AnnotatorAdditional Annotations

Figure 3. Data Extraction Framework

s. of Shri Alluri Satyanarayana Raju b. at

K-fname K-fname V-fname V-fname V-fname V-fname K-dob K-dob

Sequence:

Labels:

The features for a word are computed using its neighbouring words and labels

"K-" stands for key-based labels, and "V-" for value-based labels

Figure 4. Conditional Random Fields (CRFs)

program synthesizer. The synthesis algorithm needs to deal

with two major issues: noise in the specification and the

multiplicity of formats. To overcome both these issues, the

algorithm uses sampling to generate candidate programs that
cover subsets of the data-set. Intuitively, the algorithm re-

peatedly samples small sets (of size 1 − 4) of inputs with the

goal of sampling a subset of inputs that are all of the same

format, such that the ML model produces correct outputs

on all the sampled inputs. Given these inputs and the corre-

sponding ML model outputs as the specification, a standard

inductive synthesizer is capable of producing a program that

is not only correct for those specific inputs, but also other

inputs of the same format. Optionally, the user may provide

a type specification, which we call field constraint, which
identifies if a given extracted output (for a field) is correct

for a given input. For example, for the “Father’s name” field,

the constraint we use checks if each token of the produced

output is present in a dictionary of common Indian names.

Given 2 inputs where the value we want to ex-

tract lies between "Father’s Name:" and "Date

of Birth" (see Figure 1), the candidate synthe-

sized in the DSL is ValueBetween("Father’s Name",

"Date of Birth", inputTokens), i.e., extract between the

two relevant keys. On the other hand, given inputs of

different formats, say with the keys “Father’s Name”

and “s. of”, along with the correct outputs, there is no

candidate synthesized.

From the generated candidate programs we compute a

subset of programs that cover all the inputs (across vari-

ous formats), and maximizes agreement with the ML model

outputs, as well as satisfaction of any given constraints.

The synthesis algorithm is parameterized by a Domain

Specific Language (DSL) L. Intuitively, we tune the expres-

sivity of the DSL such that, for a fixed format of inputs, the

DSL only contains programs that can extract equivalent parts
of the outputs. As a result, the synthesized disjunctive pro-

gram produces correct output on almost all inputs of a format

if the ML model is correct on a sizable fraction of inputs in

the format. This leads to significant accuracy improvements

in the extraction algorithm.

Semi-automated annotator: Completing the loop. We

employ a feedback loop to iteratively improve the ML model

and the synthesis output. In cases where the ML model and

programs agree on the labels, we increase the confidence

value of these labels. In cases where there are disagreement,

we use a semi-automatic procedure for resolution: We rank

programs by the number of inputs that are correctly pro-

cessed by the program. If an ML model output disagrees with

output produced by a highly ranked program, we declare

the program’s output as the winner. We use the modified

labels to re-train the ML models and find that the re-trained

models have improved accuracy.

For the “Airport” field of the Expedia domain of the

M2H data-set, we automatically produce additional

training data by using the outputs of the disjunctive

program on these outputs (since these programs are

highly ranked). Using this additional training data, the

re-trained model has precision and recall of 0.99 and
0.99, as compared to 0.78 and 0.34 of the initial model.

In cases where there is a disagreement, but the program is

not highly ranked, we resort to user intervention to resolve

the disagreement. In this case, the synthesized programs are

shown to the user, who may either individually accept or

reject some of the programs, or provide annotations to fix

4

Synthesis and Machine Learning for Heterogeneous Extraction PLDI 2019, June 22–26, 2018, Phoenix, AZ

the errors. The readability of programs greatly helps users

make such debugging decisions.

In the "Father’s name" field, one program in the disjunc-

tive program extracted the value following "Spouse’s

name:"—the ML model was consistently mislabelling

spouses as fathers for 0.3-0.4% of inputs. A cursory ex-

amination of the program was sufficient to spot and

rectify this error. Debugging just the model would in-

volve thorough examination of all the labels produced.

3 Problem and HDEF Solution Framework
We now formalize the heterogeneous data-extraction prob-

lem and the present the outline of the HDEF framework.

3.1 Setting and Problem Statement
Data-sets and Fields. We model a heterogeneous data-set

D as a tuple (D, {F0, . . . , Fn}) where: (a) D is a finite set of

inputs, and (b) {F0, . . . , Fn} is a partition of D into formats,
i.e.,

⋃
Fi = D and ∀i , j . Fi ∩ Fj = ∅. The extraction frame-

work has access to the inputs D, but not the partitioning.

Henceforth, we write “data-set D” instead of “heterogeneous
data-set D” to denote that the exact partition of D into for-

mats {F0, . . . , Fn} is not explicitly available to the algorithm.

For a given data-set (D, {F0, . . . , Fn}), a field f : D ̸→ T is

a partial function that maps inputs to values of type T and

further, conforms to the partition {F0, . . . , Fn}. Formally, for

each Fi , either f is defined for all inputs in Fi or is undefined
for all inputs in Fi . In practice, we are interested in multiple

fields for a single data-set. However, for simplicity of pre-

sentation, our formal treatment considers extracting a single

field value.

Field Constraints. Given a field f on a data-set D, a field
constraint Cf : D ×T → {true, false} is predicate on input

and candidate field value pairs. A ideal constraint would

have Cf (i,o) = true if and only if o = f (i). However, such
constraints are practically in-feasible to write, and we allow

for soft constraints, which are noisy approximations of the

actual constraints. Note that our framework is able to handle

noisy constraints that are neither strict over- nor under-

approximations.

Example 1. In the political data-set, the constraint we use

for the date of birth field checks that: (1) the output is of the

form “<date> <month> <year>” (or a permutation thereof),

where “<date>” and “<year>” are integers within valid ranges,
and “<month>” is the name of a month (partial dates are also

accepted), and (2) no extension of the output is a valid date.

For the father’s name field, the constraint we use checks

that: (a) the output is a sub-string of the input, (b) each word

that occurs in the output is present in a dictionary of common

Indian names, and (c) no extension of the output satisfies the

above two conditions. For the first input from Figure 1, the

output “Shri Raja Reddy” satisfies the above constraint, but

the output “Shri Raja” does not. While both satisfy the first

two properties, “Shri Raja” can be extended (to “Shri Raja

Reddy”) while maintaining the two properties.

Annotations. Given a set of fields { f0, . . . , fn} of a data-

set D, an annotation annotation(i) of an input i ∈ D is a

tuple (o, e) where: (a) o = (f0(i), . . . , fn(i)) are the ground-
truth outputs, and (b) e is auxiliary information. Informally,

an annotated input contains not only the ground-truth field

values for a given input, but also some additional information

that explains the output value. For different data-sets, the
auxiliary information may take different forms, including

being absent in some cases.

Example 2. In the political data-set, the auxiliary informa-

tion takes the form of a labelling of keys for each field in the

input (as shown in Figure 4). While the keys are not a part

of the ground truth, they are important for extracting the

field values from the input.

The Heterogeneous Extraction Problem. We now define

the heterogeneous extraction problem. As input, an ex-

traction framework is provided: (a) inputs D from a data-

set, (b) an initial set of training inputs Dtr ⊆ D, which
are annotated by human annotators, (c) a field constraint

Cf : D × T → {true, false}, (d) access to an annotation

oracle AOracle, which can provide the annotation for any

input i ∈ D. The annotation oracle is semi-automatic. In

some cases, it can guess the correct annotation with high

confidence, using ML models and synthesized programs. In

cases it cannot guess the annotations, it queries a human

annotator.

For a field f of type T , the extraction framework is ex-

pected to output a partial function f ∗ : D ̸→ T . The quality
of the output f ∗ is measured using the following metrics:

• Precision p. This is the standard measure of false posi-

tives used in information retrieval, and is defined as:

p =
card ({i ∈ D | f (i) = f ∗(i) ∧ f ∗(i) , ⊥})

card ({i ∈ D | f ∗(i) , ⊥})
.

• Recall r . This is the standard measure of false negatives

used in information retrieval, and is defined as:

r =
card ({i ∈ D | f (i) = f ∗(i) ∧ f ∗(i) , ⊥})

card ({i ∈ D | f (i) , ⊥})
.

• F1 score. This measure combines precision and recall

into a single number, and is computed as 2pr/(p + r).

3.2 The Heterogeneous Data-Extraction Framework
Our heterogeneous data-extraction framework HDEF is

shown in Algorithm 1. In addition to the inputs D, Dtr , Cf ,

AOracle described above, it takes a Domain Specific Lan-

guage L, a threshold t , and a weightw as input parameters.

These parameters are described in later sections. We briefly

explain each of the components of the framework here; full

explanations follow in the subsequent sections.

5

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

The TrainML procedure takes a set of annotated inputs

and produces an ML modelM. We describe the ML models

we use in Section 4. Given any input i ∈ D, the ML model

M produces an outputM(i) which we call the model output.
Intuitively, the primary advantage of using ML models is

that they can generalize across formats — even if Dtr ∩Fj = ∅
for a format Fj ⊆ D, with significant probability, there may

exist i ∈ Fj .M(i) = f (i). The model training procedure we

use is detailed in Section 4.

The NoisyDisjSynth procedure is given all model outputs

for the whole data-set, along with any constraints the user

has provided. The procedure returns a disjunctive program
P = (P0, . . . , Pn) consisting of many programs. Intuitively,

we want each Pi to always produce the correct output on

a single format. As we show in subsequent sections, the

synthesized disjunctive program P can boost the precision

and recall significantly as compared to theM. Further, it

provides interpretability and debuggability. The disjunctive

synthesis procedure is detailed in Section 5.

The ChooseInputs procedure suggests additional inputs
to add to the training data. These additional inputs will be

annotated in a semi-automated manner and passed as addi-

tional training data to the next iteration.

For the sake of formalism, the above 3 steps are repeated

until the ML modelM and the disjunctive program P agree.

In practice, however, we either fix the number of iterations

(usually a small number 2-3) of the loop, or instead run till

there is sufficient agreement betweenM and P.

Algorithm 1 Heterogeneous Data-Extraction Framework

HDEF(D, Dtr , Cf , AOracle, L, t ,w)

Require: Set of inputs D
Require: Initial training data Dtr
Require: Field constraint Cf : D ×T → {true, false}
Require: Annotation oracle AOracle
Require: DSL L

Require: Threshold t ∈ [0, 1] and Constraint weightw ∈ [0, 1]
1: Annots← {(i,AOracle(i)) | i ∈ Dtr }
2: do
3: M ← TrainML(Dtr ,Annots)
4: SoftSpec← {(i,M(i)) | i ∈ D}
5: P ← NoisyDisjSynth(D, SoftSpec,L,Cf , t ,w)
6: D ′tr ← ChooseInputs(D,P,M, t ,w)
7: Dtr ← Dtr ∪ D

′
tr

8: Annots← Annots ∪ {(i,AOracle(i)) | i ∈ D ′tr }
9: while D ′tr , ∅

4 A Recap of ML Models
We briefly explain the ML models we use in HDEF. Our ML

models assign a categorical label to each token of a sequence

of observed values. The output of a model for a field f is the

set of tokens to which the label corresponding to the field is

assigned. Below, we discuss two ML models we use, namely,

Conditional Random Fields (CRFs) and Bidirectional Long

Short-Term Memory augmented with CRFs (LSTM-CRFs).

Conditional Random Fields (CRFs) is a state-of-the-art

method for assigning labels to token sequences. CRFs pro-

vide a flexible mechanism for exploiting arbitrary feature sets

along with dependency in the labels of neighboring words

[11], as shown in Fig 4. Each feature set fj in a CRF takes as

inputs a sentence s , the position i of a word in the sentence,

the label li of the current word, the label li−1 of the previous
word (or more adjacent words if required). Suppose we are

given a sentence s and an associated weight λj with each fea-

ture set fj . Further suppose that the sentence s has n words,

and we havem features. Then, we can score a labelling l of s
as follows:

score{l |s} =
m∑
j=1

n∑
i=1

λj fj (s, i, li , li−1) (1)

During the training process, we learn the weights λj associ-
ated with the feature set, given annotated training data. That

is, with annotated training data, the score is known, and we

use an optimization algorithm (such as gradient descent) to

learn the weights that best fit the training data. CRFs model

the conditional distribution P(l |s), without having to model

P(s) explicitly. While CRFs perform exceedingly well in ex-

traction tasks, one of the requisites to train such a model is a

good set of feature functions. Deep neural nets obviate this

need by providing mechanisms to learn feature functions

automatically.

The other class of ML models we use is Long Short-Term

Memory (LSTM) networks [8]. Specifically, we use a Bidirec-
tional LSTM-CRF as the ML model. This model also utilizes

CRFs to learn labeling over a sequence of tokens. However,

the key difference between CRFs and LSTM-CRFs is that

the features are manually defined in CRFs, and automati-

cally learned from the data in LSTM-CRF. LSTM-CRFs have

been shown to work well for tasks such as Named Entity

Recognition and other sequence labeling tasks [12].

5 Program Synthesis with Noisy Inputs
The program synthesis procedure receives input-output ex-

amples, where the outputs are generated by an ML model,

and hence are noisy. Its goal is to produce a set of programs

that cover the different formats in a heterogeneous data-set.

As shown in Algorithm 1, the noisy disjunctive program

synthesis step is given the set of inputsD, a soft specification
SoftSpec : D ̸→ T composed of the model outputs on D, a
domain specific language L, a field constraint Cf : D ×
T → {true, false}, a threshold parameter t , and a weight

parameterw , which parameterizes the scoring function used

in the algorithm. The aim of the disjunctive synthesis step is

to produce a disjunctive program that extracts “good” output

values from as many inputs as possible. The definition of

“good” includes agreement with ground truth (whenever

provided), satisfaction of field constraints, and agreement

between ML models and extracted programs in L (see below

for a precise definition of agreement).

6

Synthesis and Machine Learning for Heterogeneous Extraction PLDI 2019, June 22–26, 2018, Phoenix, AZ

Algorithm 2 Noisy Disjunctive Synthesis

NoisyDisjSynth(D, SoftSpec,L,Cf , t ,w)
Require: Inputs from data-set D
Require: Soft specification SoftSpec ⊆ D ×T
Require: DSL L

Require: Field constraint Cf : D ×T → {true, false}
Require: Threshold t ∈ [0, 1] and Constraint weightw ∈ [0, 1]
1: P ← ⟨⟩ ; candidates← ∅
2: while Score(P,D, SoftSpec,Cf ,w) < t · card(D) do
3: candidates← candidates ∪
4: GenerateCandidate(D,L, SoftSpec)
5: P ← ApproxMaxCover(D, candidates, SoftSpec,Cf ,w)

6: return P
7:

8: fun GenerateCandidate(D,L, SoftSpec)
9: SubSpec← Sample(D, SoftSpec)
10: return Synth(L, SubSpec)
11:

12: fun ApproxMaxCover(D, candidates, SoftSpec, Cf ,w , t)
13: P ← ⟨⟩ ; uncovered← D
14: while Score(P,D, SoftSpec,Cf ,w) < t · card(D) do
15: Pb ← {P ∈ candidates such that

16: Score(P , uncovered, SoftSpec,Cf ,w) is max }

17: ifScore(Pb , uncovered, SoftSpec,Cf ,w) = 0

18: break
19: P ← P + P
20: uncovered← {i ∈ D | P(i) is undefined}
21: return cover
22:

23: fun Score(P , S , SoftSpec, Cf ,w)

24: conformance← card({i ∈S| P(i) = SoftSpec(i)})
25: constraint← card({i ∈S| Cf (i, P(i)) = true})
26: returnw · conformance + (1 −w) · constraint

5.1 The Noisy Disjunctive Synthesis Problem
Example-based Synthesis. Our disjunctive program syn-

thesis algorithm uses example-based synthesis as a sub-

procedure (denoted by Synth). The example-based synthe-

sis is parameterized by a domain specific language (DSL) L.
Given a set of examples {(i0,o0), . . . , (in ,on)} as input, the
procedure Synth returns a program P ∈ L from the DSL such

that ∀j : P(i j) = oj . The example-based synthesis procedure

we use is based on the FlashMeta synthesis framework (See

Section 5.4 for a full explanation), initialized with specific

DSLs for the political and M2H email data-sets.

Disjunctive Programs. A disjunctive program P : D ̸→ T
is a sequence of programs ⟨P0, . . . , Pn⟩ where each program

Pj : D ̸→ T is a partial function. We define constrained

semantics of disjunctive programs: Given an input i and
constraint Cf , P returns Pj (i) for the least j where Pj (i) is
defined, and satisfies the constraint Cf .

Synthesis Objectives. Informally, the objective of the pro-

gram synthesizer is to maximize the number of inputs i ∈ D
where the output P(i) satisfies the field constraint Cf , and

the number of inputs i ∈ D where the ML modelM and P

are in agreement. However, these objectives can often con-

flict with each other: for example, if most ML model outputs

M(i) do not satisfy the field constraint Cf , agreement with

the model hurts the satisfaction of constraints. We define

the following scores for a disjunctive program P:

• Constraint satisfaction score as the number of inputs

on which the P outputs satisfy the constraint, i.e.,

constraintScore(P) = |{i ∈ D | C(i,P(i)) = true}
• Conformance score as the number of inputs on

which P conforms to the the ML model M, i.e.,

conformanceScore(P) = |{i ∈ D | M(i) = P(i)}|
We combine the above scores with a weight factor 0 ≤ w ≤ 1,

i.e., Score = w ·constraintScore+(1−w) ·conformanceScore.
Given a threshold 0 ≤ t ≤ 1, the aim of the disjunctive

synthesis procedure is to produce a disjunctive program

P such that Score(P) > t · card(D). Of all such possible

disjunctive programs, we want to produce the one with the

smallest cardinality, i.e., number of component programs.

5.2 The Noisy Disjunctive Synthesis Algorithm
Our algorithm for noisy disjunctive synthesis (depicted in

Algorithm 2) has two major steps. First, it generates a num-

ber of candidate programs Pi , each of which can be a part of

the final disjunctive program. Second, it picks a cover of can-
didate programs that minimize the given synthesis objective

– informally, this cover approximates the best disjunctive

program can be produced with the generated candidates.

While the produced disjunctive program does not cover a

given fraction of the inputs (as measured by a score of the

objective), we generate more candidate programs and repeat.

Candidate Generation. In the candidate generation step,

the algorithm repeatedly samples small subsets of exam-

ples from the soft specification SoftSpec, and synthesizes

programs using the domain-specific example-based synthe-

sis engine Synth. From the soft specification SoftSpec :

D ̸→ T , the Sample procedure randomly picks small sub-

set SubSpec = {(i0,o0), . . . , (in ,on)} such that for each ik ,
SoftSpec(ik) is defined and is equal to ok . SubSpec becomes

a hard specification for the example-based synthesis engine

to produce a candidate program P .

Guided Sampling. In abstract, the algorithm produces the

sampled sub-specification SubSpec through uniform random

sampling over subsets of SoftSpec. However, in practice, we

sample with some specific constraints:

• First, we usually restrict SubSpec to have very few

examples (1− 4 in practice) as program synthesis tech-

niques can generalize from very few examples.

• Second, we guide the sampling to pick inputs for which

none of the already generated candidates produce a

valid output that satisfies Cf .

Informally, the aim of the candidate generation is to pro-

duce candidate programs that correspond to formats in the
data-set, i.e., for each format Fj ⊆ D, we want a program

7

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

PFj such that ∀i ∈ Fj . PFj (i) = f (i). In practice, for such

a candidate to be produced, we need: (a) Sample to pick a

SubSpec containing only inputs from Fj , (b) thatM is cor-

rect on all the inputs in SubSpec, i.e.,M(i) = f (i) for the
sampled inputs, and (c) that the DSL L and the synthesis

procedure Synth are “sufficiently inductive” to generalize

SubSpec to program that is correct on all of Fj .

Approximate Cover. Given the set of program candidates,
we now need to construct the minimal size disjunctive pro-

gram P that satisfies the given threshold t . We can show

that even a simplified version of this problem (without field

constraints) and t = 1 is NP-hard.

Theorem 3. Given a set of inputs D, a set of candidate pro-
grams {P0, . . . , Pn}, and a soft specification SoftSpec, the task
of deciding if there exists a disjunctive program P of size at
most k such that ∀i ∈ D. P(i) = SoftSpec(i) is NP-complete.

The proof is straightforward through a reduction to the set

cover problem. Hence, we use an approximation algorithm

ApproxSetCover. Informally, the ApproxSetCover algorithm
treats the problem of constructing a disjunctive program as

a variant of the generalized set maximum coverage prob-

lem, and uses the classical greedy heuristic of picking the

candidate with the maximum score on the uncovered in-

puts (line 16). Each candidate program P represents a set

consisting of all the inputs on which it produces outputs

that conform to the ML modelM and satisfies the field con-

straint Cf . It can be shown using standard techniques that

the approximation factor is at most log(card(D)).

Theorem 4. Given inputs D and candidate programs
candidates, suppose there exists a disjunctive program Popt
consisting only of programs from candidates of sizek such that
Score(Popt,D, SoftSpec, Cf ,w) > t · card(D). Then, the pro-
cedure ApproxMaxCover(D, candidates, SoftSpec,Cf ,w, t)
returns a disjunctive program P such that:
(a) Score(P,D, SoftSpec,Cf ,w) > t · card(D), and
(b) card(P) ≤ card(Popt) · log card(D)

5.3 Parameter Spaces: A Discussion
We discuss the high level parameters to the algorithm (the

valuesw and t , and the DSL L), their choice and their impact

on the algorithm.

Tuning parametersw and t . Informally,w controls which

of the two noisy artifacts (M and Cf) we “trust” more? The

exact choice depends on how tight the constraint Cf is, and

on how good the ML models are likely to be? We can use

one of two techniques to choosew :

• Human intervention. Given the programs produced

by the disjunctive synthesis algorithm are human-

interpretable, a user may manually examine the pro-

duced programs and their relation to the constraints

and the modelM to fixw .

• Validation data. Here, the quality of P is compared to

that ofM on a validation set that is apart from the test

and training data-sets. IfM is better, then we increase

w , thereby driving P towardsM.

For our experiments, we foundw = 0.5 to be a good trade-

off between the ML models and constraints in both data-

sets. This value was found using the first technique, i.e.,

the programs were examined manually andw was changed

based on the tightness of the constraints Cf .

On the other hand, we need not fix a threshold t in ad-

vance: we can set t = 1 and lower t if no disjunctive program
is returned after a sufficiently many iterations. In our ex-

periments, t was tuned to 0.95 for the M2H data-set, and to

0.6 − 1.0 for the political data-set depending on the field.

Bias-Variance trade-off and DSL design. Intuitively, we
are relying on the program synthesizer’s ability to induc-
tively generalize from a small number of consistent examples.

Modern program synthesis engines are designed to achieve

good inductive generalization from a small number of exam-

ples [7, 13, 18]. We additionally have the following informal
restrictions on the power of the DSL L: (a) lack of cross-

format generalization, i.e., L programs should not be able

to extract outputs out of different formats, as they are likely

to be incorrect; and (b) no generalization over inconsistent

outputs, i.e., when we sample incorrect SubSpec even from

a single format, an L program should not be able to extract

these inconsistent outputs. These informal requirements are

a reflection of the bias-variance trade-off expressed in terms

of the expressivity of the DSL. If the DSL L is very expres-

sive, the synthesizer is able to more closely approximate

M—however, this will not “filter the noise” in SoftSpec as
desired. On the other hand, if L is not very expressive, it

might not be able to approximateM at all.

5.4 Domain-specific Example-based Synthesis
To complete the discussion of the disjunctive synthesis algo-

rithm, we provide the details of the synthesis engine Synth
we use and the individual DSLs we use. As stated before, our

synthesis engine is based on the FlashMeta framework [18]

for synthesizing from examples, customized with appropri-

ate domain specific languages as detailed below. A synthesis

task in the FlashMeta framework is given by a pair (L,Ex)
where L is a fragment of the DSL and Ex is the example spec-

ification, i.e., input-output pairs. The FlashMeta framework

is based on the idea of writing back-propagation transform-
ers for each operator in the DSL, transforming (L,Ex) to a

series of sub-tasks (L1,Ex1), (L2,Ex2), etc that correspond to
sub-fragments of L. The full FlashMeta framework is too

complex to reproduce here; the reader is referred to [18].

Our intended target users are not end-users of extractions,

but experts who design extractors. These experts need not

specify one DSL per dataset, but one per input-domain. In-

deed, a DSL for extracting flight information from emails can

easily be re-purposed for parcel emails or web-form sites, as

they share the common domain of semi-structured HTML.

8

Synthesis and Machine Learning for Heterogeneous Extraction PLDI 2019, June 22–26, 2018, Phoenix, AZ

Prog := let iTokens = Tokenize(input) in tokenProg
tokenProg := iTokens

| ValueAt(key, keys, tokenProg)
| ValueBetween(key, key’, tokenProg)
| Slice(tokenProg, pos, pos)
| SubSequence(tokenProg, separator, pos)

pos := FromStart(i) | FromEnd(i)
integer i; string key, key’, separator ; Set[string] keys;

Figure 5. Syntax of the token-based key-value language LT

Token-based Key-Value Language. The syntax of the

token-based key-value language LT is shown in Figure 5.

The DSL LT is a variant of the FlashFill DSL that operates

on tokens and uses keys as anchor points, rather than strings

and using regular expressions as anchor points. The symbols

i , key, key′, and keys can be replaced by any constant value

of the given types. In practice, the strings key, key′, and the

set keys are drawn from the most frequent n-grams in the

data-set, and the strings separator are drawn from common

separator tokens such as comma, semi-colons, periods, etc.

Each program in LT first tokenizes the input string (us-

ing Tokenize) to obtain a token sequence. The tokeniza-

tion splits the input string at each white-space and special

character (e.g., semi-colons, commas, etc) boundaries. Now,

the program can perform the following operations: (a) Ex-

tract the tokens between the constant strings key and key′

(ValueBetween), or between a constant string key and any

string from keys (ValueAt), (b) Take the sub-sequence be-

tween two indices (Slice), (c) Pick a separator separator to
partition the token sequence into sub-sequences, and pick

the sub-sequence at the given index (SubSequence).

Example 5. Consider the following subsequence of an in-

put from the political data-set: ". . . s. of Shri Allabux Jafri; b. at
Burhanpur, Madhya Pradesh; on March 1, 1929; ed. at H. L. Col-
lege . . . ". We seek to extract the date “March 1, 1929”. A valid

program in LT would be the following: let iTokens = Tok-
enize(input) in Slice(SubSequence(ValueBetween("b. at", "ed.
at", iTokens), ";", FromStart(1)), FromStart(1), FromEnd(0)).
A short explanation of the program:

• Tokenize returns [. . . , s., .of, Shri, Allabux, . . .].
• ValueBetween extracts between b.at and ed. at, yield-
ing the sequence [Burhanpur, Madhya, Pradesh, “;”,on,
March, 1, “,”, 1929,“;”].
• SubSequence splits using “;” as a separator and picks

the second sub-sequence, i.e., [on, March, 1, “,”, 1929]
• The Slice takes each token except the first, yielding [

March, 1, “,”, 1929], which is desired result.

The Web Extraction DSL. The DSL LW we use for the

M2H email data-set is a combination of the HTML extrac-

tion DSL from [20] and the FlashFill text-transformation

DSL [7]. We do not explain the semantics of the DSL in detail,

but instead refer to the corresponding papers. Informally,

we use the HTML extraction DSL to select a set of DOM

nodes from each email, and then use the FlashFill DSL to

Prog := map(λ node . FFProg(node), Nodes)
Nodes := AllNodes(input) | Descendants(Nodes)

| filter(Selector, Nodes) | Children(Nodes)
Selector := tag = c | class = c | id = c | nth-child(n) | . . .
FFProg := Substring | Concat(SubString, FFProg)

SubString := node.TextValue
| Extract(RegexPos, RegexPos, SubString)

RegexPos := RegexSearch(regex, k)

Figure 6. Syntax of the M2H extraction language LW

transform the text inside the DOM nodes to the field values.

The HTML extraction DSL is inspired by CSS selectors and

each program is a composition of atomic selectors that act

as filters on the set of DOM nodes in the email. The Flash-
Fill DSL extracts sub-strings based on regular expression

matches within the text content of each DOM node.

6 Generating Annotations
We now discuss the semi-automated annotator to produce

additional annotated training inputs. This step is provided as

input the data-set D, the ML modelM, the synthesized dis-

junctive program P, and the field constraint Cf . We provide

two strategies for producing the additional training data.

Distinguishing Inputs. This is a fully automated strat-

egy for producing additional training data in the scenario

where annotations only consist of the output values of the

fields, and no auxiliary information. Here, we use distin-

guishing inputs, i.e., inputs Ddiff = {i ∈ D | M(i) , P(i)}
as additional inputs. The corresponding outputs are given

by the P outputs, i.e., the additional training data will be

D ′tr = {(i,P(i) | M(i) , P(i)}. Informally, we use P, which

contains highly ranked programs produced by the covering

algorithm, as a (possibly noisy) annotation oracle to fully

automatically produce training data. We use this strategy to

generate additional annotations for the M2H email data-set.

Sampling fromP-definedClusters. In the scenario where
a human annotator is required to produce the auxiliary in-

formation for the annotations, the goal is to minimize the

number of annotations while maximizing the variety of in-

puts annotated. To this end, we use a clustering approach:

the disjunctive program P = ⟨P0, . . . , Pn⟩ induces a set

of clusters {D0, . . . ,Dn ,D⊥} on the data-set D with each

D j = {i ∈ D | P(i) = Pj (i)} and D⊥ = {i ∈ D | P(i) = ⊥}.
Informally, these clusters are the “closest approximations” of

the formats available to the extraction framework. Now, we

measure the conformance score and the constraint score on

each cluster D j , and sample over the D j ∩ Ddiff weighted by

the constraint score and inversely by the conformance score.

Effectively, we want to provide a sufficient variety of addi-

tional training data over the clusters on whichM performs

worse on. For the political data-set, we use this strategy to

pick a small number of additional inputs to annotate for the

next iteration.

9

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

7 Evaluation
We evaluate our extraction framework HDEF with two data-

sets introduced in Section 2, namely the political data-set and

M2H flight emails data-set. The political data-set consists

of 25 annotated training inputs, and 605 randomly selected

test inputs, with an average of 423 tokens per input. There

are about 4 high-level shapes to the data, each shape having

around 4 − 5 variations. The M2H data-set consists of 570

emails from 19 different domains as training data, and 400

emails distributed across 4 separate domains as test data.

In our experiments, we perform the evaluation on the test

data, one domain at a time, for greater clarity. Within each

domain, there can be 5 or more structural variations. Our

goal is to extract various attributes from these data-sets with

an intention to answer the following questions:

• Q1: Does combining program synthesis with ML models
improve the model performance?
• Q2: Does the feedback loop between synthesis and ML
models improve the performance?
• Q3: What is the impact of field constraints and DSL
choice on the quality of data-extraction?

An important point to note is that the framework itself does

not provide any formal guarantees due to the stochastic

nature of ML model training and disjunctive synthesis, and

the unknown inductive power of the underlying synthesizer.

Experimental setup for political data-set. We train a CRF

model (Section 4) on 25 annotated inputs. We use a stan-

dard implementation of a CRF from [17]. The features we

use are bigram and trigram frequencies, token frequencies,

dictionary look-ups for punctuation marks, months, names,

etc. We use Prose [1], a freely available implementation of

the FlashMeta framework, instantiated with the key-value

DSL LT described in Section 5.4 as the Synth procedure. The

noisy disjunctive synthesis procedure produces 5 − 13 pro-

grams in each disjunctive program in this data-set. For the

next iteration, we use 5 additional training inputs (human

annotated) that were picked by the strategy described in

Section 6. For the fields “Father’s Name”, “Spouse’s name”,

and “Date of Birth”, we use the field constraints mentioned

in Example 1. For the “Place of Birth” field we do not use

any constraint.

Experimental setup for M2H data-set. We use 570 anno-

tated emails to train a LSTM-CRF model using the code

available at [15]. We use an embedding size of 100, 16 LSTM

units and run the algorithm for 30 epochs. We utilize only

the HTML text, after removing all the tags, for both training

and prediction. We use Prose, instantiated with the web

extraction DSL LW as the Synth procedure. For each ad-

ditional iteration, we use the P outputs on the whole test

set as additional training inputs (with no human interven-

tion). For the M2H data-set, we use a field constraint only

for the “AirportIata” field: the constraint specified that the

output should have 3 upper case characters. In addition, we

impose an implicit constraint that the output be non-empty.

The noisy disjunctive synthesis procedure produces 2 − 6

programs in each disjunctive program in this data-set.

Transductive learning We do not provide ground-truth

labels for test data to the HDEF framework in any manner —

their only use is to compute precision and recall numbers.

However, labels predicted by one HDEF component (ML

model or PROSE) on the entire data set (which includes both

training and test) are used for training the other component.

This is similar to semi-supervised or transductive settings

in ML [6], where one has some labelled training data and

lots of unlabelled data. Here, the model trained on labelled

data is used to label unlabelled data, and then newly labelled

points are augmented to the training data.

7.1 Combining ML models and Program Synthesis
Table 1 presents precision/recall numbers for various extrac-

tions. Each row in the table corresponds to a single iteration

of theHDEF. The iteration number listed under column “Iter”,

for a particular field in a certain domain (column “Domain/-

Field”). The first set of numbers labeled "MLmodel" represent

the performance of the ML modelM in the beginning of the

iteration, while the second set of numbers labeled "Synthe-

sis" represent the performance of the disjunctive program

P synthesized using the outputs ofM in the end of that

iteration. We highlight the cases where the performance

improves at the end of each iteration.

We notice that in most cases (24 out of 30 extraction tasks,

as seen from the highlighted last column), we see perfor-

mance improvement (as evidenced by the F1 score increas-

ing). In some cases, the improvement is spectacular, such as,

for example with the “Expedia Aiport” and the “Political Date

of Birth” fields. In case of “Expedia Aiport”, the precision-

recall numbers improve from 0.78/0.34 to 0.99/0.99. This is
because the NoisyDisjSynth algorithm is able to synthesize

programs that cover most of the inputs, in spite of the noisy

specifications produced by the ML model. Also, we note per-

formance improvements of two kinds with synthesis: low

precision-high recall ML model as in “Expedia Date” and

high precision-low recall ML model as in “Orbitz Airport”.

This demonstrates the broad applicability of our framework.

We analyze the fields that perform worse withHDEF as com-

pared to the base ML model, and found the following two

underlying reasons to explain these cases (6 of 30):

• Semantic Conflation. In some fields of M2H data-set, the val-

ues are from 2 or more semantically distinct categories, even

within the same format. For example, the “Orbitz/Reserva-

tion Id” field conflates entities such as Aggregator Id (6 alpha-

numeric characters), Booking Id (6 alpha-numeric charac-

ters), and ticketing Id (13 digits). These fields occur in differ-

ent parts of the input email and cannot be extracted with a

single LW program. We need to increase the expressiveness

of Lw to handle these fields better.

• Noise Amplification. In the place of birth field of political

10

Synthesis and Machine Learning for Heterogeneous Extraction PLDI 2019, June 22–26, 2018, Phoenix, AZ

data-set, the ML model consistently produces only a prefix of

the true output. The HDEF procedure consistently amplifies

this error, leading to worse results.

7.2 Effect of Feedback Loop
We categorize the effect of the feedback loop in four different

buckets: 1. Results saturate after first iteration itself, 2. Re-

sults saturate after second iteration, 3. Results increase across

3 iterations, and 4. Results deteriorate across iterations. The

saturation of results imply that the ML model and synthe-

sis have reached an optimum for the given inputs. As seen

from Tables 1 and 2, the results for 13 out of 30 extraction

tasks saturate after one iteration of HDEF. Some of these

fields are “Political Father’s Name”, “Expedia AirportIata”

and “FlyFrontier Time”. We consider “Orbitz FlightNumber”

and “FlyFrontier Date” in this bucket, as their results are

within the noise levels. Furthermore, we can see that the

results for 9 labelling tasks saturate after two iterations of

HDEF. Some example tasks in this bucket are “Expedia Date”

and “OmanAir Name”. Results for 5 tasks increase across

the three iterations of HDEF. Some of these include “Orbitz

AirportIata” and “FlyFrontier Name”. These three buckets

comprise 27 out of the total 30 tasks; this shows the positive

impact of the Feedback loop in 90% of the extraction tasks.

There are 3 cases where the results reduce across iter-

ations, namely “Political Place of Birth”, “Expedia Name”

and “Orbitz ReservationId”. The reduction in precision-recall

numbers for these labels are due to the problems of Semantic

conflation and Noise amplification as described above. As

an example, the field “Expedia Name” occurs in multiple

contexts such as "Passenger Name", "Hotel Booking Name",

or "Car Rental Name" within an email. We do not handle

polysemous labels in our framework currently.

7.3 Ablation study on the political data-set
We perform an ablation study on the political data-set to

understand the impact of DSLs and field constraints on the

results. Table 3 presents precision/recall numbers for variants

of the synthesis algorithm, done on fields from the political

data-set. We vary two axes: each row in the table corre-

sponds to an instance of synthesis for a different DSL, listed

under column “DSL”. LF E is the FlashExtract language

from [13], and Lt is for the token-based key-value language

introduced in Section 5.4. The first set of numbers represent

the performance without constraints and the second set of

numbers shows the impact of field constraints.

The numbers clearly demonstrate the impact of choos-

ing the right DSL and the right field constraints. For the

FlashExtract DSL, the poor precision and recall reflect

the bias-variance trade-off discussed in Section 5.3. For in-

stance, the F1 score on “Father’s name” field is 0.23 with

FlashExtract DSL as compared to 0.98 with language Lt .

FlashExtract can express “very general” programs: For ex-

ample, one of the programs for the “Father’s Name” field find

the first occurrence of 3 consecutive alpha-numeric tokens

followed by a semi-colon and an alpha-numeric token, and

outputs the 2
nd

and 3
rd

alpha-numeric tokens. While this

program can produce outputs on inputs of many formats,

the outputs are unlikely to be precise. Using a better adapted

language, we explore a smaller, more consistent space of pro-

grams. Moreover, we increase interpretability in the domain,

thus qualitatively impacting the feedback loop experience.

Similarly, a good field constraint rejects general programs

very efficiently. The FlashExtract program above may pro-

duce outputs for many inputs, but the “Father’s Name” field

constraint rightly rejects almost all of these, resulting ulti-

mately in a low score for the program (and in its subsequent

rejection from the cover). For the “Place of Birth” field, we

do not have a field constraint and hence, cannot overcome

the bad precision/recall for the FlashExtract DSL.

7.4 Execution times
Our focus in the evaluation has been to measure precision

and recall of the HDEF system. While we did not focus on

execution times, we report on them briefly here. For the

political data-set, CRF training took 20 minutes on CPU, and

synthesis took less than 30 seconds. For M2H, LSTM-CRF

training took around 90 seconds/epoch on a Tesla-P100 GPU

(we used 30 epochs) and synthesis took less than 2 minutes.

These execution times are representative of training and

synthesis times for all our experiments.

8 Related Work
Extracting attributes from heterogeneous data has been well

studied in the machine learning and data mining communi-

ties. The prevalent approach is to train an ML model, such

as a CRF, using training data, and make the model work

on heterogeneous inputs. Recent approaches include neural

models such as LSTMs and LSTM-CRFs which work across

multiple natural languages in the context of named entity

recognition [12]. Common ML models rely heavily on struc-

tural features. In order to build machine learning models

that take into account content features in addition to struc-

tural features, Satpal et al [24] have explored using Markov

Logic Networks, which allow constraints about content to be

written using the full expressive power of first order logic.

A recurrent problem which arises in heterogeneous ex-

traction is to manage the noise that arises from such ML

models. Zhang et al [26] use a two-layered approach, where

they first train a CRF model using weak binary learners, and

then use an Expectation Maximization (EM) algorithm on

the CRF to reduce the noise and improve the accuracy. An-

other approach, which has been proposed to handle noise,

is to use the labels generated by ML models (such as CRFs)

to generate simple wrapper programs. Generating wrappers

from labeled examples has been well studied [9, 10]. How-

ever, such wrappers are not robust to noisy labels that are

typically produced by ML models. Dalvi et al [4] propose an

interesting approach to deal with noisy labels, which they

11

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

Domain

Field
Iter

ML model Synthesis

Pre. Rec. F1 Pre. Rec. F1

Political

Father’s Name

1 0.99 0.96 0.98 1.00 0.99 0.99
2 0.99 0.96 0.98 1.00 0.99 0.99

Political

Spouse’s Name

1 1.00 0.91 0.95 0.99 0.95 0.97
2 1.00 0.91 0.95 0.99 0.95 0.97

Political

Date of Birth

1 0.99 0.81 0.89 1.00 1.00 1.00
2 0.99 0.80 0.88 1.00 1.00 1.00

Political

Place of Birth

1 0.99 0.77 0.87 0.99 0.71 0.83

2 0.99 0.76 0.86 0.99 0.71 0.83

Expedia

AirportIata

1 0.98 0.93 0.95 1.00 0.97 0.98
2 0.96 1.00 0.98 1.00 0.97 0.98
3 0.97 1.00 0.98 1.00 0.97 0.98

Expedia

Airport

1 0.78 0.34 0.47 0.99 0.99 0.99
2 0.96 0.97 0.96 0.99 0.99 0.99
3 0.93 0.99 0.96 0.99 0.99 0.99

Expedia

FlightNumber

1 0.91 0.99 0.95 1.00 1.00 1.00
2 0.97 0.97 0.97 1.00 1.00 1.00
3 0.96 1.00 0.98 1.00 1.00 1.00

Expedia

Name

1 0.45 0.99 0.62 0.59 0.99 0.74
2 0.48 1.00 0.65 0.50 0.99 0.66
3 0.39 1.00 0.56 0.50 0.99 0.66

Expedia

ReservationId

1 0.85 0.83 0.84 0.98 1.00 0.99
2 0.91 1.00 0.95 0.98 1.00 0.99
3 0.79 1.00 0.88 0.98 1.00 0.99

Expedia

Time

1 0.80 0.99 0.88 0.85 0.96 0.90
2 0.77 1.00 0.87 0.85 0.96 0.90
3 0.78 1.00 0.88 0.85 0.96 0.90

Expedia

Date

1 0.45 1.00 0.62 0.98 1.00 0.99
2 0.93 1.00 0.96 1.00 1.00 1.00
3 0.91 1.00 0.95 1.00 1.00 1.00

Orbitz

AirportIata

1 0.79 0.99 0.88 0.79 1.00 0.88
2 0.93 1.00 0.96 0.93 0.99 0.96
3 0.96 1.00 0.98 0.98 0.99 0.98

Orbitz

Airport

1 0.82 0.61 0.70 0.91 1.00 0.95
2 0.89 0.90 0.89 1.00 1.00 1.00
3 0.86 0.94 0.90 1.00 1.00 1.00

Orbitz

FlightNumber

1 0.94 0.94 0.94 0.77 0.92 0.84

2 0.97 0.87 0.92 0.76 0.88 0.82

3 0.96 0.87 0.91 0.76 0.87 0.81

Orbitz

Name

1 0.51 0.93 0.66 0.70 0.94 0.80
2 0.61 0.99 0.75 0.80 0.94 0.86
3 0.55 0.97 0.70 0.84 0.87 0.85

Orbitz

ReservationId

1 0.80 0.98 0.88 0.69 0.68 0.68

2 0.79 0.97 0.87 0.78 0.91 0.84

3 0.83 0.96 0.89 0.75 0.74 0.75

Orbitz

Time

1 0.86 0.89 0.87 1.00 0.92 0.96
2 0.94 0.99 0.96 1.00 0.99 0.99
3 0.94 1.00 0.97 1.00 0.99 0.99

Orbitz

Date

1 0.75 0.90 0.82 1.00 0.88 0.94
2 0.88 0.97 0.92 1.00 0.97 0.98
3 0.87 0.99 0.93 1.00 0.97 0.98

Table 1. Precision, Recall and F1 numbers on coupling ML

models and synthesis

Domain

Field
Iter

ML model Synthesis

Pre. Rec. F1 Pre. Rec. F1

FlyFrontier

AirportIata

1 0.06 0.04 0.05 0.55 0.39 0.46
2 0.36 0.01 0.01 0.55 0.39 0.46
3 0.30 0.36 0.33 0.37 0.99 0.54

FlyFrontier

Airport

1 0.26 0.28 0.27 0.54 0.84 0.66
2 0.37 0.69 0.48 0.43 0.95 0.59
3 0.62 0.72 0.67 0.59 0.98 0.73

FlyFrontier

FlightNumber

1 0.01 0.01 0.01 0.00 0.00 nan

2 0.37 0.66 0.47 0.47 1.00 0.64
3 0.47 1.00 0.64 0.47 1.00 0.64

FlyFrontier

Name

1 0.46 0.61 0.52 0.44 1.00 0.61
2 0.52 0.97 0.68 0.51 1.00 0.66

3 0.54 0.89 0.67 0.51 1.00 0.67

FlyFrontier

ReservationId

1 0.23 0.69 0.35 0.21 1.00 0.35

2 0.81 0.87 0.84 1.00 1.00 1.00
3 0.92 0.79 0.85 1.00 1.00 1.00

FlyFrontier

Time

1 0.96 1.00 0.98 1.00 1.00 1.00
2 0.96 1.00 0.98 1.00 1.00 1.00
3 0.96 1.00 0.98 1.00 1.00 1.00

FlyFrontier

Date

1 0.81 0.95 0.87 0.78 0.93 0.85

2 0.52 0.96 0.67 0.70 0.93 0.80
3 0.55 0.96 0.70 0.75 0.96 0.84

OmanAir

FlightNumber

1 0.96 1.00 0.98 0.99 0.92 0.95

2 0.99 0.98 0.98 0.99 0.92 0.95

3 1.00 0.98 0.99 0.99 0.92 0.95

OmanAir

Name

1 0.66 0.68 0.67 0.80 0.57 0.67

2 0.56 0.41 0.47 0.86 0.64 0.73
3 0.52 0.32 0.40 0.86 0.64 0.73

OmanAir

ReservationId

1 0.69 0.91 0.78 0.62 1.00 0.77

2 0.76 0.99 0.86 1.00 1.00 1.00
3 0.93 0.99 0.96 1.00 1.00 1.00

OmanAir

Time

1 1.00 1.00 1.00 1.00 0.82 0.90

2 1.00 0.69 0.82 1.00 0.82 0.90
3 1.00 0.66 0.80 1.00 0.82 0.90

OmanAir

Date

1 0.60 0.63 0.61 0.47 0.48 0.47

2 0.69 0.60 0.64 0.91 0.48 0.63

3 0.73 0.60 0.66 1.00 0.48 0.65

Table 2. Table 1 continued.

Domain

Field
DSL

No Constraint With Constraint

Pre. Rec. F1 Pre. Rec. F1

Political

Father’s Name

LF E 0.13 0.9 0.23 1.00 0.99 0.99
LT 0.97 0.99 0.98 1.00 0.99 0.99

Political

Spouse’s Name

LF E 0.01 0.16 0.02 0.82 0.79 0.81
LT 0.90 0.96 0.93 0.99 0.95 0.97

Political

Date of Birth

LF E 0.32 0.43 0.37 0.97 0.96 0.97
LT 0.88 0.90 0.89 1.00 1.00 1.00

Political

Place of Birth

LF E 0.33 0.12 0.17 – – –

LT 0.99 0.71 0.83 – – –

Table 3. Precision, Recall and F1 numbers, ablation study.

12

Synthesis and Machine Learning for Heterogeneous Extraction PLDI 2019, June 22–26, 2018, Phoenix, AZ

call generate and test. They generate all possible wrappers,

each of which satisfies different subsets of labels, using an

efficient enumeration algorithm. Long et al [14] build on this

approach by using an extractor scoring model that uses vari-

ous forms of domain knowledge and features to choose the

extractors. Our approximate cover algorithm is inspired by

Dalvi et al’s generate and test approach. However, Dalvi et al.

use the simple language of XPaths to generate wrappers. Our

approximate cover algorithm is more general and can work

for synthesizing programs in any Domain Specific Language

(DSL). Also, our interleaving of ML models and synthesized

programs iteratively to improve the performance of extrac-

tion, and use of type specifications to reduce noise in the

iteration process are novel.

Extraction using program synthesis is an active area of

work in the programming languages community. Flashfill [7]

is a feature released in Microsoft Excel, which uses program

synthesis technology to automatically generate Excel macros

from a few examples. FlashExtract [13] is an extraction sys-

tem based on program synthesis, where the user gives a few

training examples, and the system synthesizes an extrac-

tion program using an algebra of pre-defined operators such

as map, reduce and filter. The above approaches work well

when inputs are homogeneous. When inputs are heteroge-

neous, it is challenging to generate programs that cover all

inputs using only a few training examples. A recent work,

called FlashProfile [16], attempts to characterize clusters in

the input using a given language of patterns. Several works

explore disjunctive program synthesis to handle varying

requirements for different subsets of inputs [2, 3, 21, 22].

However, none of these works can handle noise in the speci-

fications. Raza and Gulwani have explored another strategy

to deal withmultiple and unknown input formats by postpon-

ing the decision of which program to use to the runtime [20].

Raychev et al. [19] also learn programs from noisy data.

The main difference between their work and ours is that our

synthesis task is intuitively a combination of clustering and

synthesis. Raychev et al. generate a single program from a

noisy dataset that minimizes empirical risk, while our ap-

proach produces a minimal disjunctive program (i.e., a set of

programs) that cover the entire noisy dataset, where each dis-

junct intuitively identifies a cluster. In other words, Raychev

et al. still work with a homogeneous (though noisy) dataset,

where one program can cover the whole dataset, whereas

our setting has heterogeneous data with many clusters with

each cluster requiring a different program. In addition, our

work iteratively improves both ML model and synthesized

programs using a feedback loop which Raychev et al. do

not do. Devlin et al. [5] use RNNs to synthesize programs

directly — the model is not used to generate a specification

for synthesis. The domain considered is still homogeneous

and there is no iterative interaction between models and

programs.

Intrepretabilty is an important advantage of our approach

and we believe that there is a rich space to explore here. As

another point in this design space, Verma et al [25] propose

an approach to generate interpretable policies in a high level

programming language, from a policy generated using a deep

neural network, obtained by reinforcement learning.

9 Conclusion
ML models and program synthesis have complementary

strengths. Our extraction framework HDEF combines the

two techniques and produces good results for extracting

fields from heterogeneous data. We have shared these results

with a team that builds an enterprise-scale M2H email ex-

tractor, and they are working with us to incorporate these

ideas in their product.

While the HDEF algorithm is able to handle random noise

in ML models using sampling, it does not work in cases with

systematic noise, and ends up boosting it. We have seen cases

where ML models consistently identify spouse’s names as

father’s names, or hotel booking ids as flight reservation ids.

The HDEF algorithm does not work well in such cases. One

possible solution to this issue is to write field constraints that

eliminate the systematic noise. For example, if we provide

a field constraint that flight reservation ids always match a

given regular expression (6 alpha-numeric characters), which

distinguishes flight reservation ids from hotel booking ids,

the systematic noise can be eliminated easily. However, it

might not be possible to write such field constraints, for all

the cases. The HDEF algorithm also has difficulty handing

inputs with multiple semantic contexts. We plan to pursue

these problems in future work.

In this work, we focused on extracting fields from het-

erogeneous data. In future work, we also plan to explore

other problems, where ML models and PL techniques can be

productively combined to produce useful solutions.

References
[1] 2015. Microsoft Program Synthesis using Examples SDK. https://

microsoft.github.io/prose/.
[2] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. 2015. Synthesis

ThroughUnification. InComputer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part II. 163–179. https://doi.org/10.1007/978-3-319-21668-3_10

[3] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling

Enumerative Program Synthesis via Divide and Conquer. In Tools
and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I. 319–336. https://doi.org/
10.1007/978-3-662-54577-5_18

[4] Nilesh N. Dalvi, Ravi Kumar, and Mohamed A. Soliman. 2011. Auto-

matic Wrappers for Large Scale Web Extraction. PVLDB 4, 4 (2011),

219–230. https://doi.org/10.14778/1938545.1938547
[5] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh,

Abdel-rahman Mohamed, and Pushmeet Kohli. 2017. RobustFill: Neu-

ral Program Learning under Noisy I/O. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017 (Proceedings of Machine Learning
Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR,

990–998. http://proceedings.mlr.press/v70/devlin17a.html

13

https://microsoft.github.io/prose/
https://microsoft.github.io/prose/
https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.14778/1938545.1938547
http://proceedings.mlr.press/v70/devlin17a.html

PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

[6] Alexander Gammerman, Volodya Vovk, and Vladimir Vapnik. 1998.

Learning by Transduction. In UAI ’98: Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, University of Wis-
consin Business School, Madison, Wisconsin, USA, July 24-26, 1998,
Gregory F. Cooper and Serafín Moral (Eds.). Morgan Kaufmann,

148–155. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=243&proceeding_id=14

[7] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly

Sagiv (Eds.). ACM, 317–330. https://doi.org/10.1145/1926385.1926423
[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term

Memory. Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/
10.1162/neco.1997.9.8.1735

[9] Chun-Nan Hsu and Ming-Tzung Dung. 1998. Generating Finite-State

Transducers for Semi-Structured Data Extraction from the Web. Inf.
Syst. 23, 8 (1998), 521–538. https://doi.org/10.1016/S0306-4379(98)
00027-1

[10] Nicholas Kushmerick. 2000. Wrapper induction: Efficiency and expres-

siveness. Artif. Intell. 118, 1-2 (2000), 15–68. https://doi.org/10.1016/
S0004-3702(99)00100-9

[11] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

2001. Conditional Random Fields: Probabilistic Models for Segmenting

and Labeling Sequence Data. In Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning (ICML 2001), Williams College,
Williamstown, MA, USA, June 28 - July 1, 2001. 282–289.

[12] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya

Kawakami, and Chris Dyer. 2016. Neural Architectures for Named

Entity Recognition. CoRR abs/1603.01360 (2016). arXiv:1603.01360

http://arxiv.org/abs/1603.01360
[13] Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data

extraction by examples. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali

(Eds.). ACM, 542–553. https://doi.org/10.1145/2594291.2594333
[14] Chong Long, Xiubo Geng, Chang Xu, and Sathiya Keerthi. 2012. A

simple approach to the design of site-level extractors using domain-

centric principles. In 21st ACM International Conference on Information
and Knowledge Management, CIKM’12, Maui, HI, USA, October 29 -
November 02, 2012, Xue-wen Chen, Guy Lebanon, Haixun Wang, and

Mohammed J. Zaki (Eds.). ACM, 1517–1521. https://doi.org/10.1145/
2396761.2398464

[15] Hiroki Nakayama. 2018. Bidirectional LSTM-CRF and ELMo for

Named-Entity Recognition. https://github.com/Hironsan/anago.
[16] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit

Gulwani, and Todd D. Millstein. 2018. FlashProfile: a framework for

synthesizing data profiles. PACMPL 2, OOPSLA (2018), 150:1–150:28.

https://doi.org/10.1145/3276520
[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[18] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a frame-

work for inductive program synthesis. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and

Patrick Eugster (Eds.). ACM, 107–126. https://doi.org/10.1145/2814270.
2814310

[19] Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause.

2016. Learning programs from noisy data. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 761–774.

https://doi.org/10.1145/2837614.2837671
[20] Mohammad Raza and Sumit Gulwani. 2018. Disjunctive Program

Synthesis: A Robust Approach to Programming by Example. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI

Press, 1403–1412. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/17055

[21] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli,

and Clark W. Barrett. 2015. Counterexample-Guided Quantifier In-

stantiation for Synthesis in SMT. In Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II. 198–216. https://doi.org/10.1007/
978-3-319-21668-3_12

[22] Shambwaditya Saha, Pranav Garg, and P. Madhusudan. 2015. Al-

chemist: Learning Guarded Affine Functions. In Computer Aided Veri-
fication - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. 440–446. https://doi.org/10.
1007/978-3-319-21690-4_26

[23] Sunita Sarawagi. 2008. Information Extraction. Found. Trends databases
1, 3 (March 2008), 261–377. https://doi.org/10.1561/1900000003

[24] Sandeepkumar Satpal, Sahely Bhadra, Sundararajan Sellamanickam,

Rajeev Rastogi, and Prithviraj Sen. 2011. Web information extraction

using markov logic networks. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, August 21-24, 2011, Chid Apté, Joydeep Ghosh,

and Padhraic Smyth (Eds.). ACM, 1406–1414. https://doi.org/10.1145/
2020408.2020615

[25] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet

Kohli, and Swarat Chaudhuri. 2018. Programmatically Interpretable

Reinforcement Learning. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018 (JMLR Workshop and Conference Proceedings),
Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. JMLR.org, 5052–5061.

http://proceedings.mlr.press/v80/verma18a.html
[26] Weinan Zhang, Amr Ahmed, Jie Yang, Vanja Josifovski, and Alexan-

der J. Smola. 2015. Annotating Needles in the Haystack without

Looking: Product Information Extraction from Emails. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb,

Dragos D. Margineantu, and GrahamWilliams (Eds.). ACM, 2257–2266.

https://doi.org/10.1145/2783258.2788580

14

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=243&proceeding_id=14
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=243&proceeding_id=14
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/S0306-4379(98)00027-1
https://doi.org/10.1016/S0306-4379(98)00027-1
https://doi.org/10.1016/S0004-3702(99)00100-9
https://doi.org/10.1016/S0004-3702(99)00100-9
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1603.01360
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2396761.2398464
https://doi.org/10.1145/2396761.2398464
https://github.com/Hironsan/anago
https://doi.org/10.1145/3276520
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2837614.2837671
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17055
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17055
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-21690-4_26
https://doi.org/10.1007/978-3-319-21690-4_26
https://doi.org/10.1561/1900000003
https://doi.org/10.1145/2020408.2020615
https://doi.org/10.1145/2020408.2020615
http://proceedings.mlr.press/v80/verma18a.html
https://doi.org/10.1145/2783258.2788580

	Abstract
	1 Introduction
	2 Overview
	2.1 Exemplar Data-sets
	2.2 Data Extraction Framework

	3 Problem and HDEF Solution Framework
	3.1 Setting and Problem Statement
	3.2 The Heterogeneous Data-Extraction Framework

	4 A Recap of ML Models
	5 Program Synthesis with Noisy Inputs
	5.1 The Noisy Disjunctive Synthesis Problem
	5.2 The Noisy Disjunctive Synthesis Algorithm
	5.3 Parameter Spaces: A Discussion
	5.4 Domain-specific Example-based Synthesis

	6 Generating Annotations
	7 Evaluation
	7.1 Combining ML models and Program Synthesis
	7.2 Effect of Feedback Loop
	7.3 Ablation study on the political data-set
	7.4 Execution times

	8 Related Work
	9 Conclusion
	References

