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ABSTRACT

Many speech enhancement systems consist of a beamformer and
a spectral suppression postfilter. While it is well understood how
to design beamformers to suppress either non-directional or direc-
tional interference, their suppression ability is limited by the num-
ber, type and positions of microphones. However, spectral postfilters
that can further increase the suppression, are usually only designed
to suppress non-directional noise. In this work, we propose a spa-
tially selective spectral suppressor addressing directional and non-
directional interference. The proposed suppressor is based on the
relative transfer function of the target source location. While existing
directional suppression techniques are limited to farfield scenarios
or certain microphone geometries, we propose a general approach
without restrictions on the microphone array and without farfield as-
sumption. We show that the proposed spatial suppressor is able to
suppress noise and directional interfering speakers, which substan-
tially improves the performance of speech recognizer, and reduces
undesired recognition of interfering talkers.

Index Terms— Spatial filtering, directional gain, postfiltering

1. INTRODUCTION

Most modern devices used for speech communication and sound
capturing are equipped with multiple microphones. This allows the
use of spatial filtering techniques to, for example, capture the sound
only from a certain direction while suppressing sound from other
directions. Linear spatial filtering or beamforming [1], which com-
bines the microphone signals with a certain weighting to a single
signal, is a popular, well studied, and powerful technique in acous-
tic signal processing and speech enhancement. However in prac-
tice, most devices are equipped only with a small number of micro-
phones to save hardware cost and computational complexity. This
limits the maximum possible amount of diffuse noise suppression,
which strongly depends on the number of microphones. While in
theory linear spatial filters can completely cancel coherent direc-
tional sources, complete cancellation is rarely achieved in practice
due to source localization errors and due to reverberation, which re-
mains audible as it arrives from different directions than the direct
path.

To improve the spatial selectivity and suppression performance
of spatial filters, spectral suppression postfilters are commonly used
as postfilters. Suppression techniques used for stationary noise sup-
pression, e. g. based on some kind of single-channel voice activity
detector (VAD) [2, 3, 4] as well as multichannel speech presence
probability (SPP) estimators [5] are not spatially selective. Spatial
coherence-based methods such as [6, 7, 8, 9, 10] are designed to only
suppress non-directional interference, such as diffuse noise, while
directional interfering sources, such as undesired talkers, are either

captured as desired sound or can not be sufficiently suppressed us-
ing these methods. The methods proposed in [11, 12] require prior
knowledge of the spatial coherence of an interfering source in addi-
tion to the stationary noise coherence.

Some spectral suppressors that are explicitly spatially selective
have been proposed in [13, 14], as well as VADs using spatial cues
[15, 16] could be used to design spatially selective suppression fil-
ters. However, all of these methods have at least one of the fol-
lowing limitations: (i) they exploit only phase differences, but ne-
glect the magnitudes, which might be of high importance in nearfield
beamforming applications or specific array geometries with acoustic
shading between the microphones; (ii) the microphone geometry is
restricted to two microphones, or even to a certain source position,
e. g. the broadside direction.

In a farfield scenario, where the steering vector to the de-
sired source is independent of the distance, estimated narrowband
direction-of-arrivals (DOAs) could mapped via a target directivity
function to a suppression gain to suppress sources arriving outside
of the region of interest [17]. However, this does not generalize to
a nearfield scenario, where the relative transfer function (RTF) is
distance dependent. To deal with this case, DOA estimators using a
discrete set of RTFs such as [18, 19] could be used, where the target
nearfield RTF could be added to a set of farfield RTFs. However, the
choice of an optimal mapping from estimated RTF from the dataset
is an open question, which leads to only heuristic solutions. In [20],
an array-specific pre-trained spatial dictionary is used.

In this paper, we propose a probabilistic approach to obtain a
spectral suppression gain. Our aim is to develop a spatially selective
suppressor that neither depends on the DOA, nor requires a full set
of RTFs to all possible source locations, which saves computational
complexity and simplifies the solution. Our method is formulated
generally without restrictions on the microphone array and source
positions by taking magnitude and phase differences into account,
which is important as we aim at a nearfield beamforming scenario.
We are equally interested in suppressing non-directional noise as
well as highly coherent directional interfering speakers, by predefin-
ing the target source location. The proposed method is evaluated
and compared to other suitable methods in a nearfield beamforming
scenario using a head-mounted display in the presence of interfering
talkers and ambient noise.

2. SIGNAL MODEL AND ENHANCEMENT SYSTEM

We assume a general device equipped with M microphones. The
m-th microphone signal for m = {1, . . . ,M} is given in the short-
time Fourier transform (STFT) domain by

Ym(k, n) = Am(k, r)Sr(k, n) + Vm(k, n) (1)
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Fig. 1. Description of the acoustic scene. We assume only one dom-
inant directional source per time-frequency bin, either from the de-
sired or an undesired source location.

where Am(k, r) is the direct path transfer function of some source
signal Sr(k, n) at location r to the m-th microphone, Vm(k, n) is
ambient noise at them-th microphone, and k and n are the frequency
and time indices, respectively. The noise Vm(k, n) can contain noise
as well as reverberation. Note that due to the spectral sparsity of
speech, the signal model can be valid even for double talk of two
sources at different locations by assuming only one dominant source
per time-frequency bin. The sound scene model is shown in Fig. 1.

In contrast to acoustic transfer functions, RTFs are easier to esti-
mate. By choosing the first microphone as reference, without loss of
generality, the RTFs from the first to the other microphones related
to source location r are given by

Bm,1(k, r) =
Am(k, r)

A1(k, r)
. (2)

Our goal is to obtain the source signal only from the desired
location rd as received by the first microphone, while suppressing
noise and sources form other locations, i. e.,

X1(k, n) =

{
A1(k, rd)Sd(k, n) if r = rd

0 if r 6= rd.
(3)

The enhancement system may be a two-stage system, a beam-
former followed by a non-linear post-filter, which is a spectral sup-
pressor, as shown in Fig. 2. An estimate of the desired signal (3) is
obtained by applying the beamformer weights Wm(k) and the time-
varying postfilter weight WP(k, n) to the input signals, i. e.,

X̂1(k, n) = WP(k, n)

M∑
m=1

W ∗
m(k)Ym(k, n). (4)

The beamformerWm(k) may be of any type, while all beamformers
typically depend on the RTFs. If the desired source location rd is
given, the RTFs Bm,1(k, rd) can be determined e. g. using an an-
alytic sound propagation model, or measuring the acoustic transfer
functions in an anechoic chamber. In this work, we choose the time-
invariant superdirective minimum variance distortionless response
(MVDR) beamformer [1] for Wm(k), while in the following, we
propose a method to obtain a spatially selective postfilterWP(k, n).

3. PROPOSED RTF-BASED SPATIAL SUPPRESSOR

In this section, we derive a spectral suppressor utilizing the known
RTFs of the desired source location and current RTF estimates from
the microphone signals. From these two RTFs sets, we build a spatial
correlation feature to obtain an indicator for the probability, that the
sound in the current time-frequency bin originates from the desired
source location rd, or from somewhere else.

Spectral 
suppression gain

Beamformer
1-channel 

output

M-channel 
input

output

Extract spatial 
information

Desired RTF

Fig. 2. System consisting of a beamformer and a spatial suppressor
utilizing spatial information.

3.1. RTF-based correlation feature

By neglecting the noise term in (1), the RTF can be estimated from
the microphone signals in the least-squares sense by

B̂m,1(k, n) =
E {Ym(k, n)Y ∗

1 (k, n)}
E {|Y1(k, n)|2} (5)

where the expectation operator E {·} can be approximated by first-
order recursive smoothing with small time constant. Note that in the
presence of noise, the RTF estimate given by (5) is biased. Although
there exist a variety of more sophisticated and unbiased RTF esti-
mators [21, 22, 23], we aim to keep the computational complexity
low.

Let us define the estimated RTF vector and the a priori deter-
mined RTF vector related to the desired source location rd as

b̂(k, n) =
[
B̂2,1(k, n) . . . B̂M,1(k, n)

]T
, (6)

bd(k) =
[
B2,1(k, rd) . . . BM,1(k, rd)

]T
, (7)

which are both vectors of length M − 1.
As a distance measure between those vectors, we propose the

normalized vector inproduct, which can also be interpreted as the
cosine of the hermitian angle [24]

∆ = cos
〈
bd(k), b̂(k, n)

〉
=
<
{
bHd (k)b̂(k, n)

}
‖bd(k)‖ ‖b̂(k, n)‖

, (8)

where <{·} is the real part operator. Note that −1 ≤ ∆(k, n) ≤ 1
is bounded. We suspect the feature ∆(k, n) to be close to one, when
the estimated RTF is close to the desired source location, otherwise
we expect the cosine angle to be smaller than one, or even negative.

3.2. Probability distribution of the RTF feature

If we assume that additive noise Vm(k, n) is always present, it is un-
likely that b̂(k, n) and bd(k, rd) will match identically. Therefore,
we investigate the probability distribution of the feature ∆(k, n) un-
der the two hypotheses:

• Hd: Speech from the desired target location rd and noise are
present.

• H0: Only noise, or noise plus directional sound from unde-
sired locations different from rd are present.

We are interested in the posterior probability density function (PDF)
of ∆(k, n) during speech activity from the target location p(∆|Hd),
and during target speech absence p(∆|H0).

In following we present an analysis of the distribution of ∆
using three signals for different conditions, that were generated as
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Fig. 3. Probability distributions of RTF feature during target speech
and inactive target speech, p(∆|Hd) and p(∆|H0), for different
SNRs. Fitted distributions for p(∆|Hd) are shown as dotted lines.

described in Sec. 4.1. The multichannel test signals contained a
speaker at the desired location rd, speakers at other undesired loca-
tions r 6= rd, and ambient noise with three different signal-to-noise
ratios (SNRs): low, mid, and high. Each time-frequency bin was
classified as target speech (Hd) or non-target sound (H0) based on
an ideal voice activity detector using an energy threshold on the tar-
get clean speech signal. Finally, the normalized histograms of the
features (8) for the time-frequency bins in the classes Hd and H0

were computed. The histograms during active target speech and in-
active target speech are shown in Fig. 3 as solid and dashed lines,
respectively for three different SNRs.

By considering the histograms in Fig. 3 as estimates of the PDFs
p(∆|Hd) and p(∆|H0), we can observe that the feature ∆ dur-
ing target speech activity is distributed in some kind of exponential
shape, while during inactive target speech its distribution follows a
raised cosine distribution. Furthermore, we can observe that the dis-
tribution p(∆|Hd) depends on the SNR, while p(∆|H0) is almost
independent of the SNR. It is worthwhile to note that the distribution
of the proposed RTF based feature is independent of the frequency,
which is not the case for magnitude or phase-related features as used
in [13].

From the observations in Fig. 3, we propose to model the PDFs
of the feature ∆ during target speech activity by a flipped and shifted
exponential distribution

p(∆|Hd) = β eβ(∆−1), (9)

where β is the shape parameter. Strictly speaking, p(∆|Hd) should
be a truncated PDF as ∆ ∈ [−1, 1], but we found that the truncation
correction terms have negligible influence on the PDF shape within
the range of interest, and therefore unnecessarily complicate the pa-
rameter estimation. The shape parameter β of the PDF (9) is related
to the mean µ∆ by [25]

β = (1− µ∆)−1. (10)

If we assume that during target speech absence, the hermitian
angle between estimated and target RTF is uniformly distributed,
given (8) the PDF p(∆|H0) naturally follows a cosine shape. From
this assumption and from observing Fig. 3, we model the PDF during
target speech absence by the raised cosine function

p(∆|H0) =
1 + cos(π∆)

2
. (11)

3.3. Target speech presence probability

Given the feature ∆(k, n), the probability that the sound wave in the
current time-frequency bin originates from the target location rd is
P (Hd|∆). Using Bayes theorem, this probability is given by

P (Hd|∆) =
P (Hd)p(∆|Hd)

P (H0)p(∆|H0) + P (Hd)p(∆|Hd)

=
Λ(∆)

P (H0)
P (Hd)

+ Λ(∆)
, (12)

where the log-likelihood ratio is given by

Λ(∆) =
p(∆|Hd)

p(∆|H0)
, (13)

and P (Hd) and P (H0) are the a priori probabilities that speech is
present or absent, respectively. We assume an equal a priori prob-
ability ratio of P (H0)

P (Hd)
= 1. Given the PDF models (9), (11), the a

priori probability ratio, and the speech shape parameter β, we can
compute the probability (12). In the next section, we show how to
estimate the speech shape parameter from the observation.

To obtain more reliable probability estimates, the final probabil-
ity P̂ (Hd|∆) is a combination of the frequency-dependent probabil-
ity P (Hd|∆) and a broadband probability P (Hd|∆), that is obtained
from the frequency averaged log-likelihood ratio Λ(∆), i. e.

P̂ (Hd|∆) = P (Hd|∆)P (Hd|∆) (14)

3.4. Estimating the speech distribution shape

As shown in Fig. 3, the exponential distribution during target speech
presence p(∆|Hd) depends on the SNR. Therefore, we propose to
estimate the shape parameter β online from the data. Using the esti-
mated target speech absence probability P̂ (H0|∆) = 1− P̂ (Hd|∆)
as an adaptive update control, we can estimate the mean of ∆(k, n)
during target speech activity by

µ̂∆(k, n) = α P̂ (H0|∆) µ̂∆(k, n− 1)

+
[
1− α P̂ (H0|∆)

]
∆(k, n) (15)

where α is a constant smoothing parameter. We propose to estimate
the shape parameter (10) as a frequency-independent value β̂(n) per
frame, using a frequency-averaged version of µ̂∆(k, n) with (10).

3.5. Enhancement using spatial probability

The spatial probability P (Hd|∆) indicates, how likely the signals
at the microphones originate from the desired location. Therefore,
the desired signal (3) can be estimated by using the probability di-
rectly as suppression gain WP(k, n) in (4) [26]. To mitigate speech
distortion and artifacts, the postfilter can be limited by the minimal
suppression gain WP,min, i. e.,

WP(k, n) = max{P̂ (Hd|∆), WP,min}. (16)

4. EVALUATION

4.1. Experimental setup

We evaluate the proposed method using a mockup device of a head-
mounted display. The goal is to capture the speech of a user wear-
ing the microphone-equipped display on his head, while suppress-
ing noise and speech from surrounding speakers as much as pos-
sible. The positions of the M = 5 microphones and the desired
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Fig. 4. Model of the microphone setup used to compute the steering
vector.

source, which is the user’s mouth, are shown in Fig. 4, where the
grey sphere indicates the presence of the user’s head. By placing
the mockup device on a head and torso simulator (dummy head),
the target acoustic impulse response (AIR) was measured in an ane-
choic room using the dummy head’s mouth speaker. Additionally,
AIRs for interfering speakers were measured by placing the dummy
head setup in a reverberant room with about 400 ms reverberation
time, and measuring the AIRs from loudspeakers at horizontal angles
of {0, 45, 90, 135, 180, 220}◦ one meter distance from the dummy
head. Using these AIRs, the microphone signals originating from
user and interfering talkers were generated by convolving the AIRs
with speech from an internal database. The user speech had 80 dB
SPL and the interferer speech 90 dB SPL at their respective mouth
positions. Ambient noise recordings, stored in the spatial Ambison-
ics format, were rendered to the device microphones using a full
spherical set of anechoic AIRs of the device. The noise record-
ings were made on a busy road and in a pub, and were added with
[45, 55, 65, 75] dB SPL to the speech. In total, we used 144 audio
files each of 3 minutes length.

For the speech enhancement processing, the audio data sampled
at 16 kHz was transformed into the frequency domain using a STFT
using 50% overlapping Hann windows of 32 ms length (512 sam-
ples). The smoothing time constant for RTF estimation in (5) was
25 ms, and 300 ms for the mean estimation in (15). The suppression
gain limit in (16) wasWP,min = −10 dB, found as the optimal trade-
off between suppression and speech distortion for the given dataset.

The steering vector to the desired location bd(k) was computed
using an analytic soundfield propagation model, instead of using
measured transfer functions of the actual mockup device. Firstly,
using a presumably imperfect analytic model shows the robustness
of the method to slight deviations of the steering vector, which may
occur due to prior made assumptions on the fixed source location.
Secondly, the problem of measuring the transfer functions for each
individual user wearing the device is alleviated. In our case, the
steering vector bd(k) was computed by assuming the microphones
being placed on a rigid sphere [27] with a diameter of 26 cm as
shown in Fig. 4. The microphone positions are indicated as blue
dots, and the desired source position as red triangle.

4.2. Results

Due to the data generation process described in Sec. 4.1, the clean
user speech as well as text annotations of the speech were available.
We computed the perceptual evaluation of speech quality (PESQ)
[28] and the C-weighted segmental SNR (SNRC) as perceptually
motivated distance metrics between the processed audio and clean
speech. Further, the processed speech was fed into a deep neu-
ral network-based online speech recognizer trained on clean speech
[29], and the word error rate (WER) is reported. The WER con-
sists of three error types: (i) insertions are potentially words from
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Fig. 5. Results of the MVDR followed by either coherence-based
diffuse noise suppressor [30] (coh.), power-based expander [31]
(exp.), or proposed spatial probability-based suppressor. (prop.)

undesired interfering talkers; (ii) deletions are missed words of the
desired talker; (iii) substitutions are incorrect recognized words of
the desired talker due to noise or distortion.

Figure 5 shows PESQ, SNRC, and WER for the unprocessed
reference microphone, the MVDR beamformer, and the MVDR fol-
lowed by either one of two existing, or the proposed postfilter. The
spatial coherence-based postfilter [30] (coh.) is designed to mini-
mize the diffuse noise at the MVDR output. The postfilter proposed
in [31] (exp.), is based on the level difference before and after the
MVDR. The method can be interpreted as a kind of expander based
on the signal power ratio between MVDR input and output.

We observe that all methods substantially improve PESQ,
SNRC, and WER. The coh. postfilter improves PESQ, SNRC,
but achieves no significant WER improvement over the MVDR, as it
is assumes only diffuse noise, but no interfering directional talkers.
While the exp. postfilter improves the WER of the MVDR from
3.0% to 2.6%, the proposed method reduces the WER significantly
down to 2.2%. It is remarkable that in contrast to all other methods,
the proposed postfilter almost eliminates the word insertions, which
are mainly originating from undesired talkers, and yields the best
PESQ, SNRC, and overall WER scores.

5. CONCLUSION

We proposed a spectral suppression filter designed to suppress direc-
tional and non-directional interference. The proposed approach as-
sumes prior knowledge of the RTF related to the target sound source
location, and consequently takes magnitude and phase information
into account. The proposed postfilter is derived using a general for-
mulation to extract nearfield and farfield target sources, yields low
computational complexity, and does require a DOA estimator. We
showed in experiments aiming to extract the nearfield speech of a
head-mounted display user, that the proposed suppressor improves
the perceptual quality, SNR and WER in the presence of noise and
directional interfering talkers. In contrast to existing approaches, es-
pecially directional interference can be suppressed more efficiently.
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