
Regularized Programming with the BOSQUE Language
Moving Beyond Structured Programming

Mark Marron
marron@microsoft.com

Abstract
The rise of Structured Programming and Abstract Data Types
in the 1970’s represented a major shift in programming lan-
guages. These methodologies represented a move away from
a programming model that reflected incidental features of
the underlying hardware architecture and toward a model
that emphasized programmer intent more directly. This shift
simultaneously made it easier and less error prone for a de-
veloper to convert their mental model of a system into code
and led to a golden age of compiler and IDE tooling devel-
opment. This paper takes another step on this path by further
lifting the model for iterative processing away from low-level
loop actions, enriching the language with algebraic data trans-
formation operators, and further simplifying the problem of
reasoning about program behavior by removing incidental
ties to a particular computational substrate and indeterminate
behaviors. We believe that, just as structured programming
did years ago, this regularized programming model will lead
to massively improved developer productivity, increased soft-
ware quality, and enable a second golden age of developments
in compilers and developer tooling.

1 Introduction
The introduction and widespread use of structured program-
ming [14] and abstract data types [42] marked a major shift
in how programs are developed. Fundamentally, the concepts
and designs introduced by these programming methodologies
simplified the reasoning about program behavior by elimi-
nating substantial sources of, usually entirely accidental [8],
complexity. This allowed engineers to focus on the intent
and core behavior of their code more directly and, as a re-
sult, produced a drastic improvements in software quality and
ability to construct large software artifacts. Just as accidental
complexity is an impediment to human understanding of a
program it is also an impediment to applying formal reasoning
techniques. Despite the inability of structured programming
to fully bridge the chasm of formal mathematical analysis, is-
sues with loop-invariants and mutation-frames among others
prevented the practical use of verification techniques, it did
provide the needed simplifications to enable reasoning about
limited forms of program behavior and supported a golden
age of IDE tooling and compiler development [34, 54].

Drawing inspiration from these successes, this paper seeks
to identify additional opportunities to eliminate complexity
with the intent that these simplifications will lead to simi-
lar advances in software quality, programmer productivity,

and compilers/tooling. The first contribution of this paper is
an identification and categorization of unnecessary complex-
ity sources which can be alleviated via thoughtful language
design (Section 2).

Using the sources of complexity identified in Section 2
as a guide, the second contribution of this paper is the in-
troduction of the BOSQUE LANGUAGE1 (Section 3). The
BOSQUE language demonstrates the feasibility of eliminating
these sources of complexity while retaining the expressivity
and performance needed for a practical language as well as
hinting at opportunities for improved developer productivity
and software quality.

Section 4 goes into detail on how the concepts used in the
design of the BOSQUE language represent a larger step in the
development of programming languages and models. Thus,
the third contribution of this paper is the introduction of the
regularized programming model. This model builds on the
successes of structured programming and abstract data types
by simplifying existing programming models into a regular-
ized form that eliminates major sources of errors, simplifies
code understanding and modification, and converts many au-
tomated reasoning tasks over code into trivial propositions.

To explore the opportunities that regularized programming
enables this paper concludes with three case studies, using
the ability to precisely analyze the semantics of a program to
verify correctness, validating SemVer [67] usage, and how the
regularized semantics enable SIMD [34] optimization in sce-
narios that would be otherwise difficult or impossible. These
results demonstrate how the unique properties of regularized
programming enable the implementation of previously im-
practical developer experiences beyond the direct benefits to
software quality and developer productivity that are possible
when moving beyond structured programming!

2 Complexity Sources
Based on a range of experiences and sources including devel-
oper interviews, personal experience with analysis/runtime/-
compiler development, and empirical studies this section iden-
tifies five major sources of accidental complexity that can be
addressed via thoughtful language design. These are sources
of various of bug families, increase the effort required for a
developer to reason about and implement functionality in an

1The BOSQUE specification, parser, type checker, reference interpreter,
and IDE support are open-sourced and available at https://github.com/
Microsoft/BosqueLanguage.

https://github.com/Microsoft/BosqueLanguage
https://github.com/Microsoft/BosqueLanguage

application, and greatly complicate (or make it infeasible to)
automatically reason about a program.

Mutable State and Frames: Mutable state is a deeply com-
plicated concept to model and reason about. The introduction
of mutability into a programming language destroys the abil-
ity to reason about the application in a monotone [56] manner
which forces the programmer (and any analysis tools) to iden-
tify which facts remain true after an operation and which are
invalidated. The ability for mutable code to affect the state
of the application via both return values and side affects on
arguments (or other global state) also introduces the need to
reason about the logical frame [47, 64] of every operation.
Section 4.1 examines how the BOSQUE language eliminates
this source of complexity through the use of immutable data
representation.

Loops, Recursion, and Invariants: Loops and recursion
represent a fundamental challenge to reasoning as the code
describes the effects of a single step but understanding the
full construct requires generalization to a quantified property
over a set of values. Invariants [19, 27] provide the needed
connection but a generalized technique for their computation
is, of course, impossible in general and has proved elusive
even for restricted applications. Section 4.5 examines how
BOSQUE handles the invariant problem by eliminating loops
and restricting recursion.

Indeterminate Behaviors: Indeterminate behaviors, includ-
ing undefined, under specified, or non-deterministic or envi-
ronmental behavior, require a programmer or analysis tool to
reason about and account for all possible outcomes. While
truly undefined behavior, e.g. uninitialized variables, has dis-
appeared from most languages there is a large class of under-
specified behavior, e.g. sort stability, map/dictionary enumer-
ation order, etc., that remains. These increase the complexity
of the development process and, as time goes on, are slowly
being seen as liabilities that should be removed [9]. Less
obviously the inclusion of non-deterministic and/or environ-
mental interaction results in code that cannot be reliably tested
(flakey tests), behaves differently for non-obvious reasons,
and frequently mixes failure logic widely through a codebase.
Section 4.2 explains how BOSQUE eliminates these sources
of complexity by fully determinizing the language semantics
and Section 4.4 further simplifies issues around evaluation
orders.

Data Invariant Violations: Programming languages gener-
ally provide operators for accessing, and in imperative lan-
guages updating, individual elements in arrays/tuples or fields
in objects/records. The fact that these accessors/updaters oper-
ate on an individual elementwise basis results in programmers
updating the state of an object over multiple steps, or man-
ually exploding and object before creating an updated copy,
during this span invariants which normally hold are temporar-
ily invalidated before being restored. During these intervals

the number of details that must be tracked and restored can
increase drastically increasing opportunities for mistakes and
oversights to occur. Section 4.1 shows how the BOSQUE lan-
guage eliminates this problem through the introduction of
algebraic bulk data operators.

Equality and Aliasing: Programming languages live at the
boundary of mathematics and engineering. Although lan-
guage semantics are formulated as a mathematical concept
there are common cases, e.g. reference equality, pass by-value
vs. by-reference, or evaluation orders, that expose and favor
one particular hardware substrate, generally a Von Neumann
architecture, either intentionally for performance or acciden-
tally by habit or history. While seemingly minor these choices
have a major impact on comprehensibility – merely expos-
ing reference equality pulls in the complexity of reasoning
about aliasing relations and greatly complicates compilation
on other architectures. Section 4.3 shows how the BOSQUE
language eliminates reference equality and, as a consequence,
eliminates the complexity of aliasing questions and by-value
vs. by-ref argument passing issues.

3 BOSQUE Language Overview
The BOSQUE language derives from a combination of Type-
Script [72] inspired syntax and types plus ML [52] and Node/
JavaScript [31, 58] inspired semantics. This section provides
the syntax and operators of the BOSQUE language with an
emphasis on features of the language that are not widely seen
in other programming languages. Section 4 focuses on how
these features and design choices address various sources of
complexity enumerated in Section 2.

3.1 BOSQUE Type System
The BOSQUE language supports a simple and non-opinionated
type system that allows developers to use a range of struc-
tural, nominal, and combination types to best convey their
intent and flexibly encode the relevant features of the problem
domain.

Nominal Type System: The nominal type system is a mostly
standard object-oriented design with parametric polymor-
phism provided by generics. Users can define abstract types,
concept declarations, which allow both abstract definitions
and inheritable implementations for const members, static
functions, member fields, and member methods. The concept

types are fully abstract and can never be instantiated con-
cretely. The entity declarations create types that can instan-
tiate concepts as well as override definitions in them and can
be instantiated concretely but can never be further inherited
from. Developers can also alias types or create special types
using typedef, enum, and ckey (Section 4.3) constructs.

The BOSQUE core library defines several unique concepts/
entities. The Any type is a uber type which all others are a
subtype of, the None and Some types are for distinguishing

2

around the unique none value, and Tuple, Record, etc. exist
to unify with the structural type system. The language has
primitives for Bool, Int, String, etc. as well as the expected
parametric collection types such as List[T] and Map[K, V].

Structural Type System: The type system includes Tuples
and Records for structural types. These are structurally self-
describing, allow for optional entries with the “?” syntax,
and can be specified as closed or open using the “. . .” syntax.
Functions are also first class types. In the BOSQUE language
functions can use named arguments, thus names are part of the
function type with a special “_” name value for don’t cares.
Functions also allow for optional parameters, with the “?”
syntax, and rest parameters using the “. . .” syntax. Examples
of these types include:

[I n t , ? : Bool] / / Tuple , second index i s o p t i o n a l
[I n t , . . .] / / Tuple , has an I n t r e s t i s open
{ f : I n t , g ? : Bool } / / Record required f o p t i o n a l g
{ f : I n t , . . . } / / Record required f open other
fn (x : I n t) �> I n t / / Funct ion required x arg
fn (_ : I n t) �> I n t / / Funct ion required unnamed arg
fn (x ? : I n t) �> I n t / / Funct ion o p t i o n a l x arg
fn (. . . l : L i s t [I n t]) �> I n t / / Funct ion r e s t L i s t arg

Combination Type System: With the base structural and
nominal types we also provide support for union and, limited,
conjunction. The “T1 | T2” notation specifies a type may be
either T1 or T2 while the notation “T1?“ is shorthand for T1 |

None. Note that in this construction (T1?)? is the same type
as T1?. The type system also admits conjunction but limits
it to conjunctions of nominal types. The notation “T1 + T2”
specifies the type must provide both T1 and T2.

3.2 BOSQUE Expressions
Expressions in BOSQUE include the expected set of function
calls, global/const/local variable accesses, binary operators,
comparators, and data structure accessors. However, a key
observation from our interaction with Node.js developers was
the extensive time spent reshaping data via transforms which
involve copying, merging, and updating data from various
sources into a new representation. To simplify these tasks, and
remove several common sources of accidental complexity dis-
cussed in Section 4.1, we provide specialized bulk algebraic
data operations and integrated support for none (or optional
data) processing. Other notable features include atomic con-
structors, pipeline support for collection processing and the
support of if and match as expressions.

Call Arguments: A major feature of the JavaScript ES6 speci-
fication [31] was the introduction of spread and rest operators.
The rest operator is analogous to the well known varargs
from other programming languages but the spread operator
introduces new power by functioning as the conceptual in-
verse. The BOSQUE language has borrowed the rest/spread
concepts and combined them with named argument support
which can be used in situations as shown:

f u n c t i o n nsum (d : I n t , . . . a r g s : L i s t [I n t]) : I n t {
re turn a r g s . sum (d e f a u l t =d) ;

}

f u n c t i o n np (p1 : I n t , p2 : I n t) : {x : I n t , y : I n t } {
re turn @{x=p1 , y=p2 } ;

}

/ / c a l l s with e x p l i c i t arguments
var x = nsum (0 , 1 , 2 , 3) ;

var a = np (1 , 2) ;
var b = np (p2 =2 , 1) ; / / same as a
var c = np (p2 =2 , p1 =1) ; / / a l s o same as a

/ / c a l l s with spread arguments
var t = @[1 , 2 , 3] ;
var y = nsum (0 , . . . t) ; / / same as x

var r = @{p1 =1 , p2 =2} ;
var d = np (. . . r) ; / / same as a

The first of the examples show the use of rest and named
arguments in call signatures. These features work similarly
to implementations in existing languages. In our example the
call to nsum takes an arbitrary number of arguments which
are automatically converted into a List. The calls to np show
how named parameters can be used and mixed with positional
parameters.

The next set of examples show how spread arguments
can be used. In the first case a tuple, @[1, 2, 3], is created
and assigned to the variable t. This tuple is then spread to
provide some of the arguments to nsum. Semantically, the
call nsum(0, ...t) is the same as nsum(0, t[0], t[1], t

[2]) and, as a result, the value in y is the same as the value
computed for x. The spread operator also works for records
and named parameters. In the example the call to np(...r) is
semantically the same as np(p1=r.p1, p2=r.p2). Although
not shown here spread can also be used on any collection,
List, Set, Map, based data values as well.

Atomic Constructors: BOSQUE tuples, records and lambda
functions are created in the standard way. However, to reduce
the amount of boilerplate code introduced by constructors,
and in particular constructors that have long argument lists
that are mainly passed through to super constructors, BOSQUE
uses construction via direct field initialization to construct
entity (object) values. For many uses this simple direct initial-
izer approach is sufficient and there is no need for complex
constructors that compute derived values as part of the execu-
tion.

concept Bar {
f i e l d f : I n t ;

f a c t o r y d e f a u l t () : { f : I n t } {
re turn @{f =1};

}
}

e n t i t y Baz p r o v i de s Bar {
f i e l d g : I n t ;
f i e l d h : Bool = t rue ;

3

Exp �� Const ⋃︀ Access ⋃︀ Constructor ⋃︀ Lambda ⋃︀ Call ⋃︀ TupleOp ⋃︀ NamedOp

⋃︀ Project ⋃︀ Merge ⋃︀ Apply ⋃︀ Invoke ⋃︀ Pipeline ⋃︀ BinOp ⋃︀ BinCmp ⋃︀ BinLogic

⋃︀ Coalesce ⋃︀ Select ⋃︀ StmtExp ⋃︀ (Exp)

. . .

Constructor �� @[Args] ⋃︀ @{Args} ⋃︀ Type@{Args} ⋃︀ Type@Identifier(Args) ⋃︀ Lambda

TupleOp �� Exp�?�?[Idx] ⋃︀ Exp�?�?@[�Idx� �,] ⋃︀ Exp�?�?<~(�Idx=Expression� �,)

NamedOp �� Exp�?�?.Identifier ⋃︀ Exp�?�?@{ �Identifier� �, } ⋃︀ Exp�?�?<~(�Identifier=Expression� �,)

Project �� Exp�?�?#Type

Merge �� Exp�?�?<+(Exp)

Invoke �� Exp�?�?-> Identifier(Args)

Pipeline �� Exp|� ?⋃︀?? �?>Method�[Type �,]�?(Args)

. . .

Coalesce �� Exp � ?& ⋃︀ ?| � Exp

StmtExp �� If ⋃︀ Match ⋃︀ Block

Args �� � Exp ⋃︀ Identifier=Exp ⋃︀ . . .Exp ��
,

Figure 1. BOSQUE Expression Grammar (Subset)

f a c t o r y i d e n t i t y (i : I n t) : { f : I n t , g : I n t } {
re turn @{f = i , g= i } ;

}
}

var x = Baz@{f =1 , g =2} ;
var y = Baz@{f =1 , g =2 , h= f a l s e } ;

var p = Baz@i d e n t i t y (1) ;
var q = Baz @ { . . . Bar : : d e f a u l t () , g =2} ;

In this code snippet two Baz entities are allocated via the
atomic initialization constructor. In the first case the omitted h

field is set to the provided default value of true. Sometimes it
is useful to encapsulate initialization logic and, to accomplish
this, we allow for the definition of factory functions which
operate similar to constructors but, in some sense, are upside
down. A factory function returns a record with all the fields
needed for the enclosing entity/concept. So, the identity

factory defines f and g. When invoked with the constructor
syntax this is desugared to the atomic initializer with the result
of factory, Baz@{...Baz::identity(1)}, in our example.

Bulk Algebraic Data Operations: The bulk algebraic opera-
tions in BOSQUE start with support for bulk reads and updates
to data values. In addition to eliminating opportunities to for-
get or confuse a field the BOSQUE operators help focus the
code on the overall intent, instead of being hidden in the in-
dividual steps, and allow a developer to perform algebraic
reasoning on the data structure operations. We provide several
flavors of these algebraic operations for various data types,
tuples, records, and nominal types, and operations including
projection, multi-update, and merge.

(@[7 , 8 , 9]) @[0 , 2] ; / / @[7 , 9]

(@[7 , 8]) <~(0=5 , 3=1) ; / / @[5 , 8 , none , 1]
(@[7 , 8]) <+(@[5]) ; / / @[7 , 8 , 5]

(@{ f =1 , g =2})@{f , h } ; / / @{f =1 , h=none }
(@{ f =1 , g =2}) <~(f =5 , h =1) ; / / @{f =5 , g =2 , h=1}
(@{ f =1 , g =2}) <+(@{ f =5 , h =1}) ; / / @{f =5 , g =2 , h=1}

Baz@i d e n t i t y (1)@{f , h } ; / / @{f =1 , h= true }
Baz@i d e n t i t y (1)@{f , k } ; / / e rror
Baz@i d e n t i t y (1) <~(f =5) ; / / Baz@{f =5 , g =1 , h= true }
Baz@i d e n t i t y (1) <~(p =5) ; / / e rror
Baz@i d e n t i t y (1) <+(@{ f =5}) ; / / Baz@{f =5 , g =1 , h= true }

None Processing: Handling none values (or null, undefined,
etc. in other languages) is a relatively common task that can
obscure the fundamental intent of a section of code with nests
of cases and conditional handling for the special case. To
simplify this type of code languages have introduced vari-
ous forms of null-coalescing or elvis operators. The defini-
tion of BOSQUE follows a similar approach by having both
elvis operator support for all chainable actions and specific
none-coalescing operations (e.g. as opposed to truthy based
coalescing of the logical operators in JavaScript).

@{}.h / / none
@{}.h . k / / e rror
@{}.h ? . k / / none
@{h ={}} . h ? . k / / none
@{h={k =3}} . h ? . k / / 3

f u n c t i o n d e f a u l t (x ? : I n t , y ? : I n t) : I n t {
re turn (x ? | 0) + (y ? | 0) ; / / d e f a u l t on none

}
d e f a u l t (1 , 1) / / 2
d e f a u l t (1) / / 1
d e f a u l t () / / 0

f u n c t i o n check (x ? : I n t , y ? : I n t) : I n t ? {
re turn x ?& y ?& x + y ; / / check none

4

Stmt �� VarDecl ⋃︀ Assign ⋃︀ Result ⋃︀ Validate ⋃︀ If ⋃︀ Match ⋃︀ Block

VarDecl �� var Identifier�: Type�? = Exp; ⋃︀ var! Identifier�: Type�?� = Exp�?; ⋃︀ �var ⋃︀ var!� Structure = Exp;

Assign �� Identifier = Exp; ⋃︀ Structure = Exp;

Validate �� assert Exp; ⋃︀ check Exp;

. . .

Figure 2. BOSQUE Statement Grammar (Subset)

}
d e f a u l t (1 , 1) / / 2
d e f a u l t (1) / / none
d e f a u l t () / / none

Collection Pipelining: Higher-order processing of collections
is a fundamental aspect of the BOSQUE language (see Sec-
tion 4.5) but often times chaining filter/map/etc. is not a nat-
ural way to think about a particular set of operations and
can result in the creation of substantial memory allocation
for intermediate collection objects. Thus, BOSQUE allows
the use of both method chaining for calls on collections and
pipelining, |> inspired by LINQ [6, 41], values through mul-
tiple steps. This allows a developer to specify a sequence
of operations, each of which is applied to elements from a
base collection sequence, that transform the input data into
a final collection. As with other chaining we support none-
coalescing operations, |?>, which propagates a none imme-
diately to the output in the pipeline and, |??>, which short
circuits the processing and drops the value.

var v : L i s t [I n t ?] = L i s t @{1, 2 , none , 4 } ;

/ / Chained �� L i s t @{1, 4 , 16}
var r1 = v . f i l t e r (fn (x) => x != none)

. map [I n t] (fn (x) => x*x) ;

/ / Piped with none to r e s u l t �� L i s t @{1, 4 , none , 16}
var r2 = v | ? > map [I n t] (fn (x) => x*x) ;

/ / Piped with noneable f i l t e r �� L i s t @{1, 4 , 16}
var r3 = v | ?? > map [I n t] (fn (x) => x*x) ;

3.3 BOSQUE Statements
Given the rich set of expression primitives in BOSQUE there
is a reduced need for a large set of statement combinators.
Coming from a functional language perspective the language
includes the expected Match and If which can be used as both
expressions and statements as well as a structured assignment
operator for easy destructuring of return values. As high reli-
ability software is a key goal, BOSQUE provides an assert,
enabled only for debug builds, and a check, enabled on all
builds, as first class features in the language (in addition to
pre/post conditions and class invariants). We also note that
there are no looping constructs in the language.

Block SSA Local variables with block structured code is a
very appealing model for developers in the cloud/IoT space.

JavaScript and TypeScript being two of the most popular lan-
guages with other interesting projects, like ReasonML [62],
experimenting with fusing functional programming with block
scopes and “{. . .}” braces. The BOSQUE language follows
this trend with two novel adjustments, allowing multiple as-
signments to a variable and supporting statement expressions,
to support functional style programming in a block-scoped
language. Consider the code:

/ / M u l t i p l e ass ignment
f u n c t i o n abs (x : I n t) : I n t {

var ! y = x ;
i f (y < 0) {

y = �y ;
}
re turn y ;

}

This function shows the use of multiple updates to the same
variable. We distinguish between variables, var, that are fixed
and those, var!, that can be updated. This ability to set/update
a variable as a body executes simplifies a variety of common
coding patters and, since the language is loop free, can be
easily converted to a SSA [13] form that restores the purely
functional nature of the semantics.

4 Regularized Programming
This section focuses on how concepts and features in the
BOSQUE language interact to address various sources of com-
plexity identified in Section 2 and how this regularized form
eliminates major sources of errors, simplifies code understand-
ing and modification, and converts many automated reasoning
tasks over code into trivial propositions.

4.1 (Im)mutable State
Reasoning about and understanding the effect of a statement
or block of code is greatly simplified when it is side-effect
free. Functional languages have long benefited from this prop-
erty and developers, in particular in the cloud/web space, have
been migrating towards programming models that either en-
courage the use of immutable data [29, 61, 63] or explicitly
provide immutable and functional programming as part of the
language semantics [16, 62]. BOSQUE follows this trend by
adopting a functional programming model with immutable
data. Moving to an immutable model of computation these
avoids the issues with non-monotone reasoning [56] and the
need to compute logical frames [47, 64] identified previously.

5

//JavaScript Implementation
class Bar {

constructor(f) {

this.f = f;

}

}

class Baz extends Bar {

constructor(f, g) {

super(f);

this.g = g;

}

}

var x = new Baz(1, 2);

var y = new Baz(3, x.g);

//Bosque Implementation
concept Bar {

field f: Int;

}

entity Baz provides Bar {

field g: Int;

}

var x = Baz@{f=1, g=2};

var y = x<~(f=3);

Figure 3. Constructors and Updates: JavaScript vs. Bosque

However, even with immutable objects there can be sub-
tle challenges with constructor semantics and implement-
ing operations which create a copy of a value with updates
to some subset of the contained values. Constructor bodies
where fields are initialized sequentially with, potentially other
computation mixed in, can lead to issues where methods are
invoked on partially initialized values. Updates to objects are
often implemented by copying fields/properties individually
while replacing the some subset with new values. These is-
sues can lead to both subtle bugs during initial coding and
also make it difficult to update data representations when
refactoring code or adding a new feature at some later date.

Consider the code shown in Figure 3. The JavaScript imple-
mentation on the left has substantially more boilerplate con-
struction code and argument propagation than the BOSQUE
version on the right. Further, the use of atomic constructors
prevents the partially initialized object problem [17, 18, 32]
when constructing the Baz object. This example also shows
how the bulk algebraic operations simplify the update/copy
of the Baz object as well.

The value of the bulk algebraic operators is more evident
when we consider what happens when a developer later de-
cides that the base class Bar needs a new field, say k, to sup-
port a new feature request. The diff of code in JavaScript and
BOSQUE required to make this change is shown in Figure 4.

As can be seen the addition of a single field in the JavaScript
code requires manually threading the new value though both
constructors, updating the constructor calls, and the copy oper-
ations – touching almost every line of code. On the other hand
the BOSQUE code only requires an update to the constructor
since the algebraic update operator, <~, handles the changed
set of fields automatically. This is not only a reduction in the
number of places that must be updated to support the change
but it also eliminates whole classes of bugs when there may
be multiple constructors and one update copy might match

a constructor with a default value for k creating an incorrect
update.

4.2 Indeterminate Behavior
When the behavior of a code block is under-specified the
result is code that is harder to reason about and more prone to
errors. As a key goal of the BOSQUE language is to eliminate
sources of unneeded complexity that lead to confusion and
errors we naturally want to eliminate these under-specified
behaviors. To start with BOSQUE does not have any truly un-
defined behavior such as allowing uninitialized variable reads.
However, we can go further by eliminating implementation
defined behavior as well. Thus, in the language definition
sorting is defined to be stable and all associative collections
(sets and maps) have a stable enumeration order. As a result
of these design choices there is always a single unique and
canonical result for any BOSQUE program!

This means that developers will never see intermittent pro-
duction failures or flakey unit-tests in BOSQUE code. Con-
sider the following example where a list with records contain-
ing duplicate id properties is sorted and then, as the test, the
developer asserts the first element is associated with a given
value. In many languages, including JavaScript, where sort
stability is not specified this test may fail or succeed depend-
ing on the version of the runtime or even between different
runs on the same runtime.

var l = L i s t [{ i d : I n t , v a l : S t r i n g }]@{
@{i d =1 , v a l =" yes " } ,
@{i d =1 , v a l =" no " } ,
@{i d =2 , v a l =" maybe "}

}
. s o r t (fn (a , b) => a . i d < b . i d) ;

a s s e r t l [0] . v a l == " yes " ;

6

//JavaScript Implementation (Diff)
class Bar {

constructor(f, k) {

...

this.k = k;

}

}

class Baz extends Bar {

constructor(f, g, k) {

super(f, k);

...

}

}

var x = new Baz(1, 2, true);
var y = new Baz(3, x.g, x.k);

//Bosque Implementation (Diff)
concept Bar {

...

field k: Bool;

}

var x = Baz@{f=1, g=2, k=true};
...

Figure 4. Diff for New Field: JavaScript vs. Bosque

These types of indeterminate behaviors, and the failures
they cause, are a major pain point for testing and for develop-
ment in general. However, the semantics of BOSQUE ensure
a single unique and canonical result so these types of issues
are completely eliminated.

In addition to undefined and implementation defined behav-
iors there are also environmental sources of nondeterminism,
IO, getting dates/times, event-loop scheduling, random num-
bers, UUID generation, etc. that are also present in most
languages. JavaScript took an interesting step by decoupling
the core compute language in the JS specification from the
IO and event loop which are provided by the host [44, 58].
The AMBROSIA [20] project pushed this idea further by
fully moving all sources of environmental nondeterminism to
host provided calls. We take the same approach of decoupling
the core compute language, BOSQUE, from the host runtime
which is responsible for managing environmental interaction.

In combination with the fully determinized semantics the
movement of external interaction out of the core language
enables transparent failure recovery [20], diagnostic record-
replay or time-travel-debugger systems [3, 4], and serverless
frameworks that rely on restartability and migration [15] to
be built on BOSQUE code without any (or minimal) additional
instrumentation or runtime support!

4.3 Equality and Representation
Equality is a multifaceted concept in programming [57] and
ensuring consistent behavior across the many areas it can sur-
face in a modern programming language such as ==, .equals,
Set.has, and List.sort, is source of subtle bugs [28]. This
complexity further manifests itself in the need for develop-
ers and tooling to consider the possible aliasing relations of
values, in addition to their structural data, in order to under-
stand the behavior of a block of code. The fact that reference

equality is chosen as a default, or is an option, is also a bit of
an anachronism as reference equality heavily ties the execu-
tion semantics of the language to a hardware model in which
objects are associated with a memory location.

Once reference equality, and the aliasing relation it induces,
are present in a language they quickly spread with major im-
pacts on value representation, passing semantics, and evalua-
tion strategies. In the absence of user visible reference seman-
tics then the choice of pass-by-value vs. pass-by-reference for
argument and return values no longer impacts the behavior
of the program. Eliminating aliasing also moves choices on
value representation, inline, shared reference, sliced, and eval-
uation optimizations such as memoization from semantic to
purely performance related concerns.

The BOSQUE language does not allow user visible ref-
erence equality in any operation including == or container
operations. Instead equality is defined either by the core lan-
guage for the primitives Bool, Int, String, etc., or as a user
defined composite key (ckey) type. The composite key type
allows a developer to create a distinct type to represent a com-
posite equality and order comparable value. The language
also allows types to define a key field that will be used for
equality/order by the associative containers in the language.

ckey MyKey {
i d x : I n t ;
c a t e g o r y : S t r i n g ;

}

e n t i t y Baz p r o v i de s I n d e x a b l e {
f i e l d key : MyKey ;

}

var a = Baz@{MyKey@{1, " yes " } } ;
var b = Baz@{MyKey@{1, " yes " } } ;
var c = Baz@{MyKey@{1, " no " } } ;

var s e t = S e t [Baz]@{a } ;

7

s e t . has (a) ; / / t rue
s e t . has (b) ; / / t rue
s e t . has (c) ; / / f a l s e

This sample shows how a developer can use primitive types
and custom keys to define the notion of equality e.g. iden-
tity, primary key, equivalence, etc. that makes sense for their
domain without the complication of a default that needs to
be overridden. From a reasoning standpoint this simplifica-
tion eliminates the need to track aliasing, allows all values
to be reasoned about as pure terms, and eliminates the need
to model implicit re-entrant .equals calls during container
operations. As desired it also enables a developer or compiler
to switch between representations and evaluation strategies
without worrying about effecting semantically observable
behavior.

4.4 Evaluation Strategies
Evaluation order and error behavior are the second area where
details of a CPU based execution model have crept into default
choices for language semantics. The sequencing operators,
specifically “;” and “,”, inject a notion of single-threaded
in-order execution for a CPU or a step-debugger. This artifi-
cially limits the evaluation strategies that a runtime can use
by adding a new and arbitrary relation between actions in
a program. Beyond the natural mapping to execution on an
idealized CPU this choice is also motivated by the ability to
observe execution order via side effecting logging, raise, or
runtime error semantics which leak information on execution
interleaving. Our goal is to provide a model where the seman-
tics of sequence operators are simultaneous execution modulo
true data or control dependencies and errors are unable to leak
ordering information.

The BOSQUE language takes a novel view of logging, run-
time errors, and debugging. Since the semantics and design
of the language ensure fully determinized execution of any
code there is actually no real need to perform logging within
a block of code. So, logging is not available in the compute
language. However, runtime error reporting requires the inclu-
sion of observable information, like line numbers and error
messages, to support failure analysis and debugging. In this
case, since BOSQUE execution is fully deterministic and re-
peatable, we opt for a design where the language has two
execution semantics: deployed and debug. In the deployed
semantics all runtime errors are indistinguishable while in the
debug semantics errors contain full line number, call-stack,
and error metadata. When an error occurs in deployed mode
the runtime simply aborts, resets, and re-runs the execution
in debug mode to compute the precise error!

For a given program P the debug mode semantics the follow
a strict sequential and left-to-right evaluation of the code and
preserves a simple model that a developer can step though
in the debugger. The deployed mode applies simultaneous
execution semantics which: respects any true data or control
dependencies and for errors is only required to ensure that:

Y Pdebug�x� v � Pdeployed�x� v
Y Pdebug�x� error� Pdeployed�x� error�

Or informally that the deployed semantics must raise some
error at some point2 if the debug semantics would also raise
an error.

f u n c t i o n foo (l : L i s t [I n t] , i : I n t) : I n t {
var y = l . min () ; / / runtime error
check i != 0 ; / / check error
return y + i ;

}

var k = foo (L i s t [I n t] { } , 0) ;

This example shows code with 2 errors under debug execu-
tion semantics and will always fail on the call to l.min. How-
ever, the deployed semantics can either, fail with l.min, fail
with check i != 0, or statically determine the call always
fails and reduce the program to error. This has a number of
interesting implications. A compiler can reorder execution
freely, parallelization restrictions are substantially relaxed,
and it becomes feasible to perform larger scale semantic trans-
forms such as switching from chained collection processing
to pipelined or eager evaluation to lazy.

4.5 Loop Free and Controlled Recursion
Enforcing limited structure on iteration was a breakthrough
in allowing developers to concisely express their intent, e.g.
for(i = 0; i < length; ++i) vs. goto Lhead,
and was a critical development in empowering compilation
and verification tools based on structured dataflow analy-
ses [54]. In this section we explore a second step in raising
the level of expressive power, from structures to intents, in
expressing iterative flow with the goal of achieving similar
improvements in program clarity and analysis effectiveness.

4.6 Looping Constructs
A fundamental concept in a programming language is the iter-
ation construct and a critical question is can this construct be
provided as high-level functors, such as filter/map/reduce or
list comprehensions, or do programmers benefit from the flex-
ibility available with iterative, while or for, looping constructs.
To answer this question in a definitive manner the authors
in [1] engaged in an empirical study of the loop “idioms”
found in real-world code. The categorization and coverage
results of these semantic loop idioms shows that almost every
loop a developer would want to write falls into a small num-
ber of idiomatic patterns which correspond to higher level
concepts developers are using in the code, e.g., filter, find,
group, map, etc.

Inspired by this result BOSQUE trades structured loops for
a set of high-level iterative processing constructs (functors).
The elimination of loops and their replacement with functors

2The error raised by the deployed semantics does not need to be from the
same source or related in any way to the error from the debug semantics. One
could be a div by 0 while the other is an out-of-bounds access.

8

//Imperative Loop (JavaScript)
var: number[] a = [...];

var: number[] b = [];

/**
Pre: b.length == 0

**/
for(var i = 0; i < a.length; ++i) {

/**
Inv: b.length == i /\

forall i in [0, i) b[i] == a[i]*2

**/
b.push(a[i]*2);

}

/**
Post: b.length == a.length /\

forall i in [0, a.length) b[i] == a[i]*2

**/

//Functor (Bosque)
var a = List[Int]@{...};

/**
Pre: true

**/
var b = a.map[Int](fn(x) => x*2);

/**
Post: List[Int]::eq(fn(x, y) => y == x*2, a, b)

**/

Figure 5. Loops vs. Functors with Symbolic Transformers : JavaScript vs. Bosque

is a critical design choice. Eliminating the boilerplate of writ-
ing the same loops repeatedly eliminates whole classes of
bugs, e.g. bounds arithmetic, and makes programmer intent
clear with descriptively named functors instead of relying
on a shared set of mutually known loop patterns. Critically,
for enabling automated program validation and optimization,
eliminating loops also eliminates the need for computing
loop-invariants [19, 27]. Instead, with careful design of the
collection libraries, it is possible to write precise transformers
for the functors. Thus, eliminating the loop invariant gener-
ation problem when computing strongest-postconditions, or
weakest-preconditions, and reducing the task to a simple and
deterministic matter of formula pushing!

The idioms in [1] contain the expected set of functors
seen in most functional languages, filter/map/reduce/find, as
well as operators, join/take/first/every, that also appear in
the stream oriented C# LINQ [41], Java Stream [30] APIs,
or JavaScript functional libraries like underscore [73] or lo-
dash [43]. Instead of relying solely on our intuition to select
these operators we apply the data driven design suggested
in [1] to ensure that our library of operators does not miss any
frequent use cases.

Figure 5 contains a simple example of how the loop free
nature of BOSQUE simplifies the analysis of a program. In-
stead of requiring sophisticated techniques to heuristically
generate an invariant for each loop a programmer writes, we
manually write a template (once) for each functor in the col-
lection library, and then when analyzing a call to the functor
we instantiate it with the lambda body semantics. The result
is a faster and more predictable analysis as there are no heuris-
tics which may run slowly or fail based on subtle variations
in the way a loop is written. Since the collection functors are
associated with high-level intents the transformers associated
with them can also be written using higher-level predicates,

as seen by the use of the List[Int]::eq predicate in the sam-
ple. The improvements in performance and results quality are
not limited to weakest-precondition/strongest-postcondition
formula computation but also apply to any other abstract in-
terpretation [56] based analyses [46, 53] or more specialized
symbolic based analysis [22].

In previous systems the semantics of container processing
operations and their chaining was restricted by the underlying
language providing a single “.” composition operator. Thus,
steps in the process were either layered where all elements
were processed before moving to the next step or streamed
where a single element was run through all processing steps
before moving the next element. Further study of looping
code indicated that developer preference for reasoning about
a block of code, and efficiency of processing, was variable and
that providing developers the option of using either semantics
was ideal. Thus, the BOSQUE language provides a stream pip-
ing operator “|>” which allows a developer to stream objects
through a processing pipeline in addition to the standard “.”
chaining operator.

4.7 Recursion
The lack of explicit looping constructs, and the presence of
collection processing functors, is not unusual in functional
languages. However, the result is often the replacement of
complex loop structures with complex recursion structures.
Complex raw control flows obfuscate the intent of the code
and hinder automated analysis and tooling regardless of if
the flow is a loop or recursion. Thus, BOSQUE is designed
to encourage limited uses of recursion, increase the clarity
of the recursive structure, and enable compilers/runtimes to
avoid stack related errors [48].

To accomplish these goals we borrow from the design of the
async/await syntax and semantics from JavaScript/TypeScript

9

and F# [2] which is used to add structured asynchronous
execution to these languages. In this design the async keyword
is used to explicitly identify functions that are asynchronous
while the await keyword is placed at the continuation points
of async function calls. In the background the compiler uses
these markers to identify where it should convert the linear
code into a continuation passing form.

The BOSQUE language takes a similar approach by intro-
ducing the rec keyword which is used at both declaration
sites to indicate a function/method is recursive and again at
the call site so to affirm that the caller is aware of the recursive
nature of the call.

t y p e d e f TNode = { l : TNode ? , r : TNode ? , d : I n t } ;

rec f u n c t i o n f i n d (t : TNode ? , d : I n t) : TNode? {
i f (t == none) {

re turn none ;
}
e l i f (t . d == d) {

re turn t ;
}
e l s e {

re turn (t . d < d) ? rec f i n d (t . l , d)
: rec f i n d (t . r , d) ;

}
}

As seen in the example the rec marker provides clarity to the
developer on which calls may involve recursion and enables
the compiler to check these as well. The rec keyword can also
be used to power alternative compiler/runtime implementa-
tion of recursive calls. In addition to the standard unbounded
call stack implementation the rec keyword can be used like
the await keyword as a marker for points where conversion
to a continuation passing version can be performed, with a
worklist implementation, to enable recursion on a bounded
depth stack.

The combination of explicit demarcation of recursive ex-
ecution along with the ability to place strong pre/post con-
ditions on these calls serve as limits on the complexity that
recursion can introduce while still providing it as an option
for when functors cannot (or cannot reasonably) be used to
express a computation. We believe that further work, such
as identifying recursive idioms [26, 49] or other fundamen-
tal algorithmic patterns [33, 55, 74], can further reduce the
need for unstructured recursion – eventually limiting it to an
infrequently used part of the language.

5 Case Studies
The previous sections of this paper have presented regularized
programming as a concept and a specific realization of this
model in the BOSQUE language. This section uses three ex-
amples to examine the implications of these ideas in enabling
the creation of previously impractical developer experiences,
improving software quality, and increasing developer produc-
tivity.

Figure 6 shows a fragment of BOSQUE code from a hypo-
thetical coffee-shop finder application. Our focus is on the
closest function which takes in a list of stores, a matching
list of their locations, and the users current location. It is in-
tended to output the [Shop, Location] tuple corresponding
to the nearest, in Manhattan distance, coffee shop.

Given the argument lists and current location the closest

code in Figure 6 will first check the requires clause of the
function to ensure that the lists are of the same length. Assum-
ing this test passes the first step in the actual computation is
to use pipeline processing to go over the elements in the locs

list, first doing a combination of computing the Manhattan
distance for the element and checking that it does not exceed a
sanity limit on distances, and then finding the index in the list
with with minimum distance. Once this minimum distance
index is known the code gets the corresponding store and
location from the paired lists and returns a tuple containing
these values.

5.1 Verification and Threshing
The BOSQUE type system provides rich structural information
about the values of function arguments. In particular the non-
noneability and lack of aliasing in the language semantics
make it feasible to build precise symbolic models a program
state from them and, as as result, it is feasible to perform
modular abstract symbolic execution on each function. This
approach is very effective for this code and will flag three
potential errors that could be raised.

1. The requires stores.size() == locs.size() fails.
2. The check mdist < sanityDist fails for some value.
3. The call to minIndex on line 19 raises a runtime error.

Instead of reporting these potential errors directly, bur-
dening the developer with potential false positives and forc-
ing them to interpret a first-order logic formula detailing
the violation, we can instead try a combination of weakest-
precondition computation and threshing [7].

For the first error, since there is no mutation, it is simple to
back prop the failure condition to line 31 where the arguments
originate. Using the fact that the size of the result list from
a map is the same as the input list size it is trivial to deduce
that stores.size() == opts.size() == locs.size(). Thus,
this can be ruled out as satisfied by the caller.

Similarly, the check on line 16 reduces to manhattanDist(

l, curr) A� sanityDist when propagated back to through
the lambda, reduces to § e > locs s.t. manhattanDist(l,
e) A� sanityDist as the precondition for the map functor,
and eventually back to line 28/29 where the locations are
computed. At line 29 this is trivally refuted as the list is
empty. On line 28 we can use a template on the precondition
semantics for the filter operation and check if (§ e > opts

s.t. manhattanDist(l, e[1]) A� sanityDist) , (¦ e > opts

manhattanDist(l, e[1]) @ sanityDist) is satisfiable. In
10

1 global sanityDist: Int = 100;

2
3 typedef Shop = ...;

4 typedef Location = {x: Int, y: Int, zip: String};

5 typedef GeoData = Map[String, List[[Shop, Location]]];

6
7 function manhattanDist(l1: Location, l2: Location): Int {

8 return (l1.x - l2.x).abs() + (l1.y - l2.y).abs());

9 }

10
11 function closest(stores: List[Shop], locs: List[Location], curr: Location): [Shop, Location]

12 requires stores.size() == locs.size()

13 {

14 var near = locs |> map[Int](fn(l) => {

15 var mdist = manhattanDist(l, curr);

16 check mdist < sanityDist;

17 return mdist;

18 })

19 |> minIndex();

20
21 var store = stores.at(near);

22 var at = locs.at(near);

23 return @[store, at];

24 }

25
26 function getOptions(data: GeoData, curr: Location): [List[Shop], List[Location]] {

27 var opts = data.tryGet(curr.zip)

28 ?.filter(fn(opt) => manhattanDist(opt[1], curr) < sanityDist)

29 ?| List[[Shop, Location]]@{};

30
31 return @[opts.map[Shop](fn(opt) => opt[0]), opts.map[Location](fn(opt) => opt[1])];

32 }

33
34 entrypoint function getNearby(data: GeoData, curr: Location): [Shop, Location]? {

35 var info = getOptions(data, curr);

36 return closest(...info, curr);

37 }

Figure 6. Example Code Closest Coffee-Shop Code

this case it is not and so we know that this error is impossible
as well.

In the third case it is possible to propagate the formula,
locs.size() != 0 from line 19. Up to line 29 as a possible
source of the empty list. At this point we can continue to push
the formula up with the inference that data.has(curr.zip)
and eventually to the entrypoint function getNearby on line
34.

At this point we can concretize the error trace to get at
least one failing input for the developer to inspect and debug.
In this case we may provide data = Map[String, List[[

Shop, Location]]@{} as the failure example. From this the
developer could add a check for the empty list in the closest

function and return the sentinel none to resolve the issue.

The ideas of symbolic validation and threshing are not
new but, as shown in this example, features of the regular-
ized programming model move these tools from aspirational
to a realizable part of a developers toolkit. The regularized
programming model allowed the symbolic engine to avoid
the complexities of reasoning about frames, havocs, loop-
invariant generation, fact-retraction, alias analysis, and nullity.
As a result the symbolic analysis task was done using basic
formula propagation and without the use of heuristics, case
splitting optimizations, or complex generalization strategies.

5.2 SemVer Check
In addition to enabling verification and validation scenarios,
regularized programming also has the potential to revolu-
tionize many aspects of the software lifecycle as develop-
ers experience it today. The topic of Semantic Versioning

11

(SemVer) [67] is a major concern. Our example code may
ship as part of a library consumed by other applications. It
is given a SemVer number, Major.Minor.Patch, which
specify the version of the software and, informally, what
may change during an upgrade. By convention Major may
change existing APIs, Minor may add new functionality but
existing behavior is preserved, and Patch may only fix bugs.
There is no formal specification for what any of these mean
exactly and, when updating a SemVer, the developer must use
their best judgement as to what their changes are and what
the appropriate SemVer change should be.

The ability to effectively reason about code in the regular-
ized model has the potential to change this. With techniques
like symbolic diffing [37] we can begin to formalize what
each SemVer level means and validate, both on the provider
and consumer side, if they can upgrade without experienc-
ing breakage or estimate where and how much change might
occur. As a very conservative approximation we can state
formally that for a change from P � P’ where ¦ v s.t. P(v) x
error� P(v) � P’(v), i.e. we have only removed possible
errors, then the SemVer change is a Patch.

In our example the developer has fixed a previous error
when the GeoData had no information for the current zipcode
and would fail with an exception. In the new version it will
instead return the sentinal none value indicating no data was
found for the users query. In this case, as we saw in the
verification example, the regularized programming model
enables the automated analysis of this code and validation
of our SemVer Patch condition. Thus, after fixing a bug
that was (automatically) identified the developer can also fix
and deploy it with complete confidence that it will not cause
problems to downstream consumers.

5.3 SIMD Vectorization
Beyond correctness and streamlining the software lifecycle
process, regularized programming also has the potential to
unlock substantial developments in compiler optimization
and application performance. To illustrate this we will look
at the task of auto-vectorizing code using SIMD instructions.
This transformation can lead to large performance increases
but it has been very difficult to consistently apply these opti-
mizations in practice [5, 45].

Suppose we want to transform the collection processing
code in the closest function from a simple scalar implemen-
tation into a SIMD version. There are four issues that need to
be resolved:

1. SIMD operations either cannot (or are poor perfor-
mance) at pointer chasing. Thus, the list of Location
records should have value, not reference, semantics.

2. The pipeline operator implies a sequential order on
processing – each element in locs is processed by the
full pipeline before the next value.

3. There is the possibility of a check failure on each
pipelined element which must be considered.

4. The scalar logic needs to be converted into SIMD –
existing compiler and synthesis techniques can handle
this [5, 34, 45].

In any previous language the first 3 issues would realis-
tically eliminate any hope of SIMD converting this loop.
However, the regularized semantics of BOSQUE mostly or
completely eliminates these issues.

As discussed in Section 4.3 the language semantics do not
allow the observation of reference identity and by-value vs.
by-reference representation are indistinguishable. Thus, the
compiler can trivially transform the locs list into a represen-
tation where the values are stored inline. The error semantics
in Section 4.3 also allow the compiler to interchange the error
raise across iterations of the pipeline processing or even move
out of the loop entirely and only raise upon completion if re-
quired. With the error issue resolved the rest of the operations
are trivially commutative based just on the immutable value
semantics and definition of map and minIndex.

Using these insights a compiler can trivially convert the
pipeline into a fused version of map + min, hoist the check

error out of the loop, flatten the locs values into a by-value
representation, and perform SIMD expansion plus instruction
selection on the now fully flat and scalar code.

This example shows how the simplifications of regular-
ized semantics transformed a complex, and often impossible
to verify safe, optimization into one that was almost trivial
to check and perform. Many of the features that made the
SIMD transformation simple including representation opac-
ity, immutability, reorderabilty, also drastically simplify other
classes of program optimizations or runtime implementations
including, memory allocation/collection, expression move/e-
limination, stack allocation, partial evaluation, etc.

6 Related Work
Throughout this paper we have cited the conceptual frame-
works [8, 14, 33, 42] and language constructs [1, 6, 15, 52,
55, 72] that have motivated the development of the regular-
ized programming paradigm and the design of the BOSQUE
language. Thus, we focus on topics related to the complexity
issues identified and connections to other lines of research.

Invariant generation: The problem of generating loop in-
variants goes back to the introduction of loops as a con-
cept [19, 27]. Despite substantial work on the topic [23,
39, 66, 68] the problem of generating precise loop invari-
ants remains an open problem. This has severely limited the
usability and adoption of formal methods in industrial de-
velopment workflows. Notable successes include seL4 [35],
CompCert [40], and Everest [60]. However, all of these sys-
tems required expertise in formal methods that is beyond
what is available to most development teams. The BOSQUE

12

language seeks to sidestep this challenge entirely by avoiding
the presence of unconstrained iteration.

Equality and Reference Identity: Equality is a complicated
concept in programming [57]. Despite this complexity it has
been under-explored in the research literature and is often
defined based on historical precedent and convenience. This
can result in multiple flavors of equality living in a language
that may (or may not) vary in behavior and results in a range
of subtle bugs [28] that surface in surprising ways.

Reference identity, and the equality relation it induces,
is a particularly interesting example. Identity is often the
desired version of equality for classic object-oriented pro-
gramming [57] and having it as a default is quite convenient.
However, in many cases a programmer desires equality based
on values, or a primary key, or an equivalence relation and
a default equality based on identity is, instead, a source of
bugs. Further, the fact that it is based on memory addresses is
a complication to pass-by-value optimizations of attempts to
compile to non Von Neumann architectures like FPGAs [36].

Alias Analysis: The introduction of identity as an observ-
able feature in a language semantics immediately pulls in the
concept of aliasing. This is another problem that has been
studied extensively over the years [24, 25, 38, 50, 51, 69] and
remains an open and challenging problem. A major motiva-
tion for this work is, in a sense, to undo the introduction of
reference identity and identify code where reference equal-
ity does not need to be preserved. This is critical to many
compiler optimizations including classic transformations like
scalar field replacement, conversion to pass-by-value, and
copy-propagation [34, 54]. As discussed in Section 5 this
information is also critical to compiling to accelerator archi-
tectures like SIMD hardware [5].

Frames and Ownership: The problem of aliasing is further
compounded with the introduction of mutation. Once this is
in the language the problem of computing frames [64] and
purity [70] becomes critical. Often developers work around
the problem of explicit frame reasoning by using an owner-
ship [11, 12] discipline in their code. This may be a com-
pletely convention driven discipline or, more recently, may
be augmented by runtime support such as smart pointers [55]
and type system support [21, 65, 71, 75].

Synthesis: Program synthesis is an active topic of research
but the need to reason about loops has limited the application
of synthesis to mostly straight-line code. Work on code with
loops has been more limited due to the challenge of reasoning
about loops in code [5, 10] and the difficultly synthesizers
have constructing reasonable code that includes raw loop and
conditional control-flow [59]. Thus, a language like BOSQUE,
that provides high-level functors as primitives and can be ef-
fectively reasoned about opens new possibilities for program
synthesis.

7 Conclusion
This paper introduced and defined the concept of regular-
ized programming which represents major step in the jour-
ney, started with structured programming, towards code that
simple, obvious, and easy to reason about for both humans
and machines. This advance was based on the identification
and elimination of various sources of accidental complexity
that have remained unaddressed in modern programming lan-
guages and insights on how they can be alleviated via thought-
ful language design. Using these insights we developed the
BOSQUE language3 which demonstrates the feasibility of
regularizing these sources of complexity while retaining the
expressivity and performance needed for a practical language.
Finally, using several case studies this paper demonstrated
opportunities for improved developer productivity and soft-
ware quality. As a result of these developments we believe
that, just as structured programming did years ago, this regu-
larized programming model will lead to massively improved
developer productivity, increased software quality, and en-
able a second golden age of developments in compilers and
developer tooling.

Acknowledgments
We would like to thank our colleagues and interested readers
(both in person and via GitHub) who provided comments and
found mistakes in earlier drafts of this work.

References
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, Premkumar T. De-

vanbu, Mark Marron, and Charles A. Sutton. 2018. Mining Semantic
Loop Idioms. IEEE Transactions on Software Engineering 44 (2018),
651–668.

[2] Async/Await 2018. https://blogs.msdn.microsoft.com/dsyme/2007/
10/10/introducing-f-asynchronous-workflows/.

[3] Earl T. Barr and Mark Marron. 2014. Tardis: Affordable Time-travel
Debugging in Managed Runtimes. In OOPSLA.

[4] Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth.
2016. Time-travel Debugging for JavaScript/Node.Js. In FSE.

[5] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and
Mark Marron. 2013. From Relational Verification to SIMD Loop
Synthesis. In PPoPP.

[6] Gavin Bierman, Erik Meijer, and Wolfram Schulte. 2005. The Essence
of Data Access in Cω : The Power is in the Dot!. In ECOOP.

[7] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013.
Thresher: Precise Refutations for Heap Reachability. In PLDI.

[8] Frederick P. Brooks, Jr. 1987. No Silver Bullet Essence and Accidents
of Software Engineering. Computer 20 (1987), 10–19.

[9] Chromium 2018. V8 doesn’t stable sort. https://bugs.chromium.org/
p/v8/issues/detail?id=90.

[10] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017.
Sound Loop Superoptimization for Google Native Client. In ASPLOS.

[11] Dave Clarke and Sophia Drossopoulou. 2002. Ownership, Encapsula-
tion and the Disjointness of Type and Effect. In OOPSLA.

3The BOSQUE specification, parser, type checker, reference interpreter,
and IDE support are open-sourced and available at https://github.com/
Microsoft/BosqueLanguage.

13

https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
https://bugs.chromium.org/p/v8/issues/detail?id=90
https://bugs.chromium.org/p/v8/issues/detail?id=90
https://github.com/Microsoft/BosqueLanguage
https://github.com/Microsoft/BosqueLanguage

[12] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership
Types for Flexible Alias Protection. In OOPSLA.

[13] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Transactions on
Programming Language Systems 13 (1991), 451–490.

[14] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare (Eds.). 1972. Structured
Programming. Academic Press Ltd., London, UK, UK.

[15] Durable Functions 2019. https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-overview.

[16] elm 2019. https://elm-lang.org/.
[17] Manuel Fähndrich and K. Rustan M. Leino. 2003. Declaring and Check-

ing Non-null Types in an Object-oriented Language. In OOPSLA.
[18] Manuel Fahndrich and Songtao Xia. 2007. Establishing Object Invari-

ants with Delayed Types. In OOPSLA.
[19] R. W. Floyd. 1967. Assigning meanings to programs. Mathematical

Aspects of Computer Science 19 (1967), 19–32.
[20] Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Sebastian

Burckhardt, Badrish Chandramouli, Darren Gehring, Niel Lebeck,
Umar Farooq Minhas, Ryan Newton, Rahee Ghosh Peshawaria, Tal
Zaccai, and Irene Zhang. 2018. A.M.B.R.O.S.I.A: Providing Performant
Virtual Resiliency for Distributed Applications. Technical Report.

[21] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,
and Joe Duffy. 2012. Uniqueness and Reference Immutability for Safe
Parallelism. In OOPSLA.

[22] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. 2009. SPEED:
Precise and Efficient Static Estimation of Program Computational Com-
plexity. In POPL.

[23] Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient
Invariant Generator. In CAV.

[24] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive Pointer Analysis
for Millions of Lines of Code. In CGO.

[25] Michael Hind. 2001. Pointer Analysis: Haven’T We Solved This Prob-
lem Yet?. In PASTE.

[26] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. 2013. Unifying Struc-
tured Recursion Schemes. In ICFP.

[27] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
Commun. ACM 12 (1969), 576–580.

[28] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy.
SIGPLAN Notices 39 (2004), 92–106.

[29] immutable-js 2019. https://github.com/immutable-js/immutable-js.
[30] Java Streams 2019. https://docs.oracle.com/javase/8/docs/api/

java/util/stream/package-summary.html.
[31] JavaScript 2015. ES6. http://www.ecma-international.org/

ecma-262/6.0/index.html.
[32] Joe Duffy Blog 2010. On partially-constructed objects. http:

//joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/.
[33] Deepak Kapur, David R. Musser, and Alexander A. Stepanov. 1982.

Tecton: A Language for Manipulating Generic Objects. In Program
Specification.

[34] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[35] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In
SOSP.

[36] Stephen Kou and Jens Palsberg. 2010. From OO to FPGA: Fitting
Round Objects into Square Hardware?. In OOPSLA.

[37] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris
Hawblitzel. 2013. Differential Assertion Checking. In ESEC/FSE.

[38] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making
Context-sensitive Points-to Analysis with Heap Cloning Practical for

the Real World. In PLDI.
[39] K. Rustan M. Leino and Francesco Logozzo. 2005. Loop Invariants on

Demand. In APLAS.
[40] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. Journal

Automated Reasoning 43 (2009), 363–446.
[41] LINQ 2019. https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/linq/.
[42] Barbara Liskov and Stephen Zilles. 1974. Programming with Abstract

Data Types. In VHLL.
[43] Lodash 2019. https://lodash.com/.
[44] Matthew C. Loring, Mark Marron, and Daan Leijen. 2017. Semantics

of Asynchronous JavaScript. In DLS.
[45] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and

David A. Padua. 2011. An Evaluation of Vectorizing Compilers. In
PACT.

[46] Mark Marron, Mario Méndez-Lojo, Manuel Hermenegildo, Darko
Stefanovic, and Deepak Kapur. 2008. Sharing Analysis of Arrays,
Collections, and Recursive Structures. In PASTE.

[47] John McCarthy and Patrick J. Hayes. 1969. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In Machine Intelli-
gence 4. Edinburgh University Press, 463–502.

[48] Steve McConnell. 2004. Code Complete, Second Edition. Microsoft
Press, Redmond, WA, USA.

[49] Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional
Programming with Bananas, Lenses, Envelopes and Barbed Wire. In
FPCA.

[50] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. 2010.
Parallel Inclusion-based Points-to Analysis. In OOPSLA.

[51] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Pa-
rameterized Object Sensitivity for Points-to Analysis for Java. ACM
Transactions on Software Engineering and Methodology 14, 1 (Jan.
2005), 1–41. https://doi.org/10.1145/1044834.1044835

[52] Robin Milner, Mads Tofte, and David Macqueen. 1997. The Definition
of Standard ML. MIT Press, Cambridge, MA, USA.

[53] Antoine Miné. 2006. The Octagon Abstract Domain. Higher Order
Symbolic Computation 19 (2006), 31–100.

[54] Steven S. Muchnick. 1997. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[55] David R. Musser, Gilmer J. Derge, and Atul Saini. 2001. STL Tutorial
and Reference Guide, Second Edition: C++ Programming with the
Standard Template Library. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[56] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Princi-
ples of Program Analysis. Springer-Verlag, Berlin, Heidelberg.

[57] James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, and
Mark S. Miller. 2016. The Left Hand of Equals. In Onward!

[58] Node.js 11 2019. https://nodejs.org/.
[59] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost.

2014. Test-driven Synthesis. In PLDI.
[60] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina

Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Four-
net, and Nikhil Swamy. 2017. Verified Low-level Programming Em-
bedded in F*. In ICFP.

[61] React 2019. https://reactjs.org/.
[62] ReasonML 2019. https://reasonml.github.io/.
[63] Redux 2019. https://github.com/reduxjs/redux.
[64] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In LICS.
[65] Rust 2019. https://www.rust-lang.org/.
[66] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004.

Non-linear Loop Invariant Generation Using GröBner Bases. In POPL.
[67] SemVer 2018. Semantic Versioning 2.0.0. https://semver.org/.

14

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://elm-lang.org/
https://github.com/immutable-js/immutable-js
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/
http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://lodash.com/
https://doi.org/10.1145/1044834.1044835
https://nodejs.org/
https://reactjs.org/
https://reasonml.github.io/
https://github.com/reduxjs/redux
https://www.rust-lang.org/
https://semver.org/

[68] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le
Song. 2018. Learning Loop Invariants for Program Verification. In
Advances in Neural Information Processing Systems 31. 7751–7762.

[69] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time.
In POPL.

[70] Alexandru Sălcianu and Martin Rinard. 2005. Purity and Side Effect
Analysis for Java Programs. In VMCAI.

[71] Jesse A. Tov and Riccardo Pucella. 2011. Practical Affine Types. In
POPL.

[72] TypeScript 2019. 3.3. https://www.typescriptlang.org/.
[73] Underscore.js 2019. https://underscorejs.org/.
[74] W3C 2013. Selectors API. https://www.w3.org/TR/selectors-api2/.
[75] Philip Wadler. 1990. Linear Types Can Change the World!. In Program-

ming Concepts and Methods.

Appendix A: Tic-Tac-Toe Code
The main body of the paper contains numerous examples
of BOSQUE code which illustrate key novel and interesting
features of the language. However, to provide a more organic
view for how the language works and flows in the large this ap-
pendix contains the source code for a simple tic-tac-toe
program that supports both updating the board with user sup-
plied moves, making an automated computer move, and man-
aging the various game state.

15

https://www.typescriptlang.org/
https://underscorejs.org/
https://www.w3.org/TR/selectors-api2/

namespace NSMain;

entity Board {

const playerX: String[PlayerMark] = 'x'#PlayerMark;

const playerO: String[PlayerMark] = 'o'#PlayerMark;

const allCellPositions: List[[Int, Int]] = List[[Int, Int]]@{

@[0, 0], @[1, 0], @[2, 0],

@[0, 1], @[1, 1], @[2, 1],

@[0, 2], @[1, 2], @[2, 2]

};

const winPositionOptions: List[List[[Int, Int]]] = List[List[[Int, Int]]]@{

List[[Int, Int]]@{ @[0, 0], @[0, 1], @[0, 2] },

List[[Int, Int]]@{ @[0, 1], @[1, 1], @[2, 1] },

List[[Int, Int]]@{ @[0, 2], @[1, 2], @[2, 2] },

List[[Int, Int]]@{ @[0, 0], @[1, 0], @[2, 0] },

List[[Int, Int]]@{ @[1, 0], @[1, 1], @[1, 2] },

List[[Int, Int]]@{ @[2, 0], @[2, 1], @[2, 2] },

List[[Int, Int]]@{ @[0, 0], @[1, 1], @[2, 2] },

List[[Int, Int]]@{ @[0, 2], @[1, 1], @[2, 0] }

};

//Board is a list of marks, indexed by x,y coords
field cells: List[String[PlayerMark]?];

factory static createInitialBoard(): { cells: List[String[PlayerMark]?] } {

return @{ cells=List[String[PlayerMark]?]::createOfSize(9, none) };

}

method getOpenCells(): List[[Int, Int]] {

return Board::allCellPositions->filter(fn(pos) => {

return !this->isCellOccupied(pos[0], pos[1]);

});

}

method getCellContents(x: Int, y: Int): String[PlayerMark]?

requires 0 <= x && x < 3 && 0 <= y && y < 3;

{

return this.cells->at(x + y * 3);

}

method isCellOccupied(x: Int, y: Int): Bool {

return this->getCellContents(x, y) != none;
}

method isCellOccupiedWith(x: Int, y: Int, mark: String[PlayerMark]): Bool

requires mark == Board::playerX || mark == Board::playerO;

{

return this->getCellContents(x, y) == mark;

}

method markCellWith(x: Int, y: Int, mark: String[PlayerMark]): Board

requires mark == Board::playerX || mark == Board::playerO;

requires 0 <= x && x < 3 && 0 <= y && y < 3;

requires !this->isCellOccupied(x, y);

16

{

return this<~(cells=this.cells->set(x + y * 3, mark));

}

hidden method checkSingleWinOption(opt: List[[Int, Int]], mark: String[PlayerMark]): Bool {

return opt->all(fn(entry) => this->isCellOccupiedWith(entry[0], entry[1], mark));

}

hidden method checkSingleWinner(mark: String[PlayerMark]): Bool {

return Board::winPositionOptions->any(fn(opt) => this->checkSingleWinOption(opt, mark));

}

method checkForWinner(): String[PlayerMark]? {

if(this->checkSingleWinner(Board::playerX)) {

return Board::playerX;

}

elif(this->checkSingleWinner(Board::playerO)) {

return Board::playerO;

}

else {

return none;
}

}

}

entity Game {

field winner: String[PlayerMark]? = none;
field board: Board = Board@createInitialBoard();

method hasWinner(): Bool {

return this.winner != none;
}

method getWinner(): String[PlayerMark]

requires this->hasWinner();
{

return this.winner->as[String[PlayerMark]]();
}

method makeAutoMove(mark: String[PlayerMark], rnd: Int): Game

requires !this->hasWinner();
{

var! nboard: Board;

if(!this.board->isCellOccupied(1, 1)) {

nboard = this.board->markCellWith(1, 1, mark);

}

else {

var opts = this.board->getOpenCells();
var tup = opts->uniform(rnd);

nboard = this.board->markCellWith(...tup, mark);

}

return this<~(board=nboard, winner=nboard->checkForWinner());

}

method makeExplicitMove(x: Int, y: Int, mark: String[PlayerMark]): Game

requires !this.board->isCellOccupied(x, y);

{

17

var nboard = this.board->markCellWith(x, y, mark);

return this<~(board=nboard, winner=nboard->checkForWinner());

}

}

entity PlayerMark provides Parsable {

field mark: String;

override static tryParse(str: String): PlayerMark | None {

return (str == "x" || str == "o") ? PlayerMark@{ mark=str } : none;
}

}

18

	Abstract
	1 Introduction
	2 Complexity Sources
	3 Bosque Language Overview
	3.1 Bosque Type System
	3.2 Bosque Expressions
	3.3 Bosque Statements

	4 Regularized Programming
	4.1 (Im)mutable State
	4.2 Indeterminate Behavior
	4.3 Equality and Representation
	4.4 Evaluation Strategies
	4.5 Loop Free and Controlled Recursion
	4.6 Looping Constructs
	4.7 Recursion

	5 Case Studies
	5.1 Verification and Threshing
	5.2 SemVer Check
	5.3 SIMD Vectorization

	6 Related Work
	7 Conclusion
	References

