
Speculative Distributed CSV Data Parsing
for Big Data Analytics

Chang Ge§∗ Yinan Li† Eric Eilebrecht† Badrish Chandramouli† Donald Kossmann†

†Microsoft Research §University of Waterloo
c4ge@uwaterloo.ca, {yinan.li, eric.eilebrecht, badrishc, donaldk}@microsoft.com

ABSTRACT
There has been a recent flurry of interest in providing query
capability on raw data in today’s big data systems. These raw
data must be parsed before processing or use in analytics.
Thus, a fundamental challenge in distributed big data systems
is that of efficient parallel parsing of raw data. The difficulties
come from the inherent ambiguity while independently pars-
ing chunks of raw data without knowing the context of these
chunks. Specifically, it can be difficult to find the beginnings
and ends of fields and records in these chunks of raw data. To
parallelize parsing, this paper proposes a speculation-based
approach for the CSV format, arguably the most commonly
used raw data format. Due to the syntactic and statistical
properties of the format, speculative parsing rarely fails and
therefore parsing is efficiently parallelized in a distributed
setting. Our speculative approach is also robust, meaning
that it can reliably detect syntax errors in CSV data. We ex-
perimentally evaluate the speculative, distributed parsing
approach in Apache Spark using more than 11,000 real-world
datasets, and show that our parser produces significant per-
formance benefits over existing methods.
ACM Reference Format:
Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and
Donald Kossmann. 2019. Speculative Distributed CSV Data Pars-
ing for Big Data Analytics. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Ams-
terdam, Netherlands. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3299869.3319898

∗Work performed during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319898

1 INTRODUCTION
The world is generating an ever growing amount of data.
A great deal of the data is never used. It would be prohib-
itively expensive to cook and load all these data into data-
base systems. Instead, these data are simply stored in file
systems in raw format and remain available on demand. If
needed, however, the data must be parsed before process-
ing. This way, parsing is on the critical path of many data
processing systems and, in particular, big data processing
systems. Prominent examples of cloud services that provide
SQL query capability on raw, unparsed data are Amazon
Athena [1], Amazon Redshift Spectrum [2], and Google Big-
Query [4, 21]. In the research community, NoDB [8, 17] is an
example system that enables query capability on raw data.
To be effective, big data systems work in clusters of ma-

chines and execute tasks in parallel on these machines. As
parsing is on the critical path and an expensive task, it is
crucial to parallelize parsing, too. Otherwise, the benefits of
parallelizing other tasks are diminished according to Am-
dahl’s law. Unfortunately, parallel and distributed parsing is
difficult [12]. The problem is that files can be split arbitrarily
into chunks without alignment of record or field boundaries
in modern distributed file systems such as HDFS, Amazon
S3 or Microsoft Azure Blob Store. In fact, these storage sys-
tems might not even be aware of what kind of data they are
storing and how to best align chunk boundaries to fields and
records. The following example illustrates the challenge of
parallel parsing with arbitrary chunk boundaries.

Ambiguous CSV Chunk: lice,",",16\nBob,",",17
Interpretation 1: lice,",",16\nBob,",",17
Interpretation 2: lice,",",16\nBob,",",17

Figure 1: Example ambiguous CSV chunk (quoted
fields are marked gray)

1.1 Example
Figure 1 shows a snippet of a real-world CSV dataset (Sec-
tion 7). This snippet could be the beginning of a chunk stored
on a machine of an HDFS cluster. This example shows the
ambiguity that a parser faces when it needs to parse this

https://doi.org/10.1145/3299869.3319898
https://doi.org/10.1145/3299869.3319898
https://doi.org/10.1145/3299869.3319898

chunk of data out of context. Given the semantics of the
CSV data format (see Section 2), there are two possible inter-
pretations. Interpretation 1 considers “lice” as the end of a
field and then “,” as the next field, followed by a nummeric
field and interprets the newline as the end of record. In con-
trast, Interpretation 2 considers “lice,” as the end of a field
and then the newline is part of the next field and does not
signal a new record. Obviously, these two interpretations
are totally different and would result in drastically different
query results if further processed by a big data system such
as Apache Spark [11, 26]. According to the CSV specification,
both interpretations are possible. A traditional CSV parser
would need to get more context (i.e., the result of parsing
the previous chunk) to disambiguate and could not process
this chunk of data in parallel.

Interestingly, this example also guides the path to build an
efficient speculative parser. First, even though both interpre-
tations are possible according to the CSV specification (see
Section 2), the first interpretation is much more likely: the
string “,16\nBob,” is rare as a field value whereas numeric
fields and the string “Bob” look like “normal” field values.
Second, even though handling ambiguity is indispensable, it
turns out that such ambiguous chunks of data are not very
common in practice. As a result, we can skip the speculation
process for unambiguous chunks to minimize the overhead
associated with speculation, if there exists a way to quickly
detect such chunks. In sum, even though the CSV specifi-
cations give room for many forms of ambiguity, there is no
reason to give up on parallel parsing.

1.2 Contributions
This paper presents a parallel CSV parser and shows how it
can be integrated into Spark. It gives the results of compre-
hensive performance experiments on real-world datasets.
The main contribution is a novel speculative method to

determine field and record boundaries in arbitrary chunks of
CSV data. Our parser parses CSV data in almost all real-world
cases in a single pass and in parallel. As a baseline, this paper
also describes an altnerative conservative, non-speculative
approach for parallel parsing. Such a conservative approach
requires two passes over the CSV data to handle bad cases
such as those of Figure 1. The first pass determines field and
record boundaries and thus provides context for the second
pass in which the tokenization happens. While both passes
can be carried out in parallel, the additional pass is wasteful
in the light that our speculative approach almost always
guesses correctly and simply degenerates to the two-pass
approach if it mispredicts.
One important feature of our speculative method is that

it detects ill-formed CSV data. Obviously, error detection is
extremely important in practice and non trivial in concert

with speculation. Another important feature is that our spec-
ulative method can be integrated with any state-of-the-art
parsers. Recently, there have been breakthroughs in the de-
velopment of parsers for semi-structured data [19, 24] and
it is important that our approach composes well with those
parsers. Specifically, we used the Mison parser [19] for our
performance experiments.
While this paper focuses on CSV data, the principles of

speculation for parallel parsing of semi-structured data are
general. We are currently working on extending the frame-
work for other plain-text formats such as JSON and XML.

We present the results of extensive performance experi-
ments on more than 11,000 real-world CSV datasets, using
Apache Spark [11, 26] as the query engine. We show that a
speculative parallel parser is up to 2.4X faster than a conser-
vative, two-pass parallel parser. The speculative approach
mispredicts in less than once in ten million chunks. In fact,
we show that our parallel parser performs almost as well
as an ideal parallel parser which has a perfect oracle to de-
termine record boundaries. In other words, our speculative
method to predict record boundaries (and recover from mis-
predictions) has negligible overhead.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces background on CSV format. Section 3
presents the distributed parsing approaches. Sections 4 gives
details on speculative parsing on CSV chunks. Syntax error
handling is covered in Section 5. Section 6 presents our im-
plementation of the proposed approaches in Apache Spark.
Section 7 describes our experimental results. Section 8 covers
related work. Section 9 contains concluding remarks.

2 BACKGROUND ON CSV FORMAT
CSV (Comma-Separated Values) is a lightweight, plain-text,
tabular data format, and is the the most commonly used data
format in many applications ranging from data analytics to
machine learning. According to the standard RFC-4180 [25],
the CSV format can be recursively defined as follows (we
omit the formal definition of Header in the interest of space):

File = [Header \n] Record \n ... \n Record
Record = Field , ... , Field

Field =Quoted | Unqoted

Quoted = " Escaped...Escaped "

Escaped = Char | " " | \n | ,

Unqoted = Char...Char

Char = Any char except of " , \n , and ,

ACSV file contains an optional header record that includes
names corresponding to the fields in this file, followed by
a sequence of zero or more records, separated by newlines

(“\n”). A record is a sequence of one or more fields, separated
by commas (“,”). Each field is either quoted or unquoted.
A field containing quotes (“"”), commas, or newlines must
be quoted, which is represented as quotes surrounding a
sequence of zero or more (escaped) characters. An embedded
quote within a quoted field must be escaped by preceding it
with another quote. Whitespaces are considered as a part of
a field, and should never be ignored.
Despite its popularity, the CSV format has never been

officially standardized. RFC-4180 [25] is largely considered
to be the main reference for CSV parsers, but it is not an
official specification. Some variations on the CSV format use
another delimiter (e.g., tab or space) to separate fields, or use
an alternative character (e.g., backslash) to escaped a quote
inside a quoted field. In this paper, we assume that all CSV
files are in the format defined by RFC-4180. However, the
proposed approaches can be extended to support other CSV
variations such as TSV (Tab Separated Values).

3 DISTRIBUTED PARSING
This section provides an overview of distributed parsing on
CSV data. We assume that the CSV input is well-formed, i.e.,
there is no syntax error. We relax this assumption and extend
our approaches to handle ill-formed data in Section 5.

3.1 Framework
The distributed parsing framework takes as input a list of
chunks that are split from a CSV input, and a CSV parser
that is capable of processing a sequence of complete records.
For each chunk, the framework assigns a worker, which
is responsible for locating the first record delimiter in the
chunk, as well as the first record delimiter after the end of
the chunk. The region between the two delimiters is called
adjusted chunk. If a chunk does not contain any record de-
limiters, its adjusted chunk is empty. As each adjusted chunk
contains a sequence of complete CSV records, the worker can
invoke the input parser to process the adjusted chunk. It is
straightforward to see that all adjusted chunks are connected
end to end, and any character in the CSV input is contained
in one and only one adjusted chunk. Thus, parsing is fully
parallelized in a distributed fashion. Figure 2 illustrates a
sequence of chunks and their adjusted chunks.

Chunk 1

xxxxxxxxxx

xx\nxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxx\nxxx

xxxxxxxxxx

xx\n xxxxx

xxxxxxxxxx

xxxxx\nxxx

xxxxxxxxxx

xxxxxxxxxx

Xxxxxxx\nx

xxxxx\n xx

xxxxxxxxxx

xxxxxxxxxx

xxxx\nxxxx

xxxxxxxxxx

xxxxxxxxxx

xx\n xxxxx

xxxxxxxxxx

xxxx\nxxxx

xxxxxxxxxx

x\nxxxxxxx

xxxxx

Chunk 2 Chunk 3 Chunk N

...

Figure 2: Chunks and adjusted chunks (solid boxes are
chunks, dashed boxes are adjusted chunks)

This framework is actually far from new – in fact, it has
been widely used in the Hadoop ecosystem. For example,
Spark [11] uses this framework to process data in a simpli-
fied variation of the CSV format, where newlines are not
allowed within quoted fields. For each chunk, Spark scans
the chunk to find the first newline within the chunk and the
first newline appearing after the end of the chunk, and pro-
cesses the region between the two newlines. This approach,
unfortunately, is not applicable to process standard CSV data
because in general, a newline could be an escaped newline
inside a quoted field rather than a record delimiter. In the rest
of this section, we present a two-pass approach (Section 3.2)
and a speculative approach (Section 3.3) to support standard
CSV dataset. Both approaches follow this framework.

This framework assumes that a worker can access data in
the subsequent chunks. This assumption holds for a majority
of usage scenarios (e.g., HDFS), but may not apply to certain
usage cases. In Appendix B.2, we relax this assumption and
extend our approaches to handle records at chunk boundaries
without accessing data in other chunks.

We note that the framework is designed for scenarios
where chunks are generally much larger than records, and
thus aims to achieve coarse-grained parallelism. For records
that are larger or close to the chunk size, the framework can
still correctly process the input, but the overhead of handling
records at chunk boundaries may increase significantly, and
hinders the overall parsing speed. Nevertheless, this rarely
occurs in big data systems where record sizes typically range
from tens of bytes to thousands of bytes, while chunk sizes
are typically at least several megabytes.
This framework decouples parsing from distributed pro-

cessing, and composes well with any CSV parser. This de-
coupling enables us to exploit recent innovations in parsing
algorithms such as Mison [19] and Sparser [24], to achieve
the best per-chunk parsing performance.

3.2 Two-Pass Approach
We first present a non-speculative approach for distributed
CSV parsing. This approach parses CSV data in a fully paral-
lel way, but needs to scan the input twice. This approach is
used as the fallback solution in our speculative approach to
recover from mispredictions.
The basic idea behind this approach has already been

implemented in the open-source project ParaText [5], which
aims to parse CSV data in parallel on multi-core machines.
Nevertheless, to the best of our knowledge, this approach
has not been documented in the literature yet. We therefore
describe this approach in the interest of completeness.

Following our framework (Section 3.1), this approach runs
in two passes: the first pass identifies adjusted chunks; the
second pass uses the CSV parser to process complete records

within each adjusted chunk. Unlike a more straightforward
approach that sequentially scans over the CSV input to iden-
tify adjusted chunks, the two-pass approach determines the
cutting points in a fully parallel fashion, by exploiting the
simplicity of the CSV format.

More specifically, in the first pass, each worker scans the
assigned chunk and collects three statistics: 1) the number of
quotes within the chunk; 2) the position of the first newline
after an even number of quotes within the chunk; 3) the
position of the first newline after an odd number of quotes
within the chunk. Once the scan is complete, each worker
sends these statistics back to the master. The master then
sequentially iterates over the statistics of all chunks and
computes the starting positions of all adjusted chunks. For
the k-th chunk, the master sums up the number of quotes
in the first k − 1 chunks. If the number is even, then the
k-th chunk does not start in the middle of a quoted field,
and the first newline after an even number of quotes (the
second collected information) is the first record delimiter
in this chunk. Otherwise, if the number is odd, the first
newline after an odd number of quotes (the third collected
information) is the first record delimiter. The end position of
the adjusted chunk is obtained based on the starting position
of the next adjusted chunk. Clearly, this approach follows our
framework, but requires an addition pass of scan to locate
adjusted chunks.

3.3 Speculative Approach
The two-pass approach fully parallelizes CSV parsing, but
requires an additional pass of scan to identify record delim-
iters. In this section, we aim to remove this additional pass
and process each chunk in one pass. As shown in Section 1.1,
it is inherently impossible to fully determine starting pars-
ing states for an arbitrary chunk. As a result, we design a
speculation-based approach by exploiting the opportunities
we discussed in Section 1.1.

chunks

Applications

Ambiguity Checker

CSV Parser

Speculator

chunk, start position

(if yes) chunk (if no)
chunk,
start

position

Worker 1

Ambiguity Checker

CSV Parser

Speculator

chunk, start position

(if yes) chunk (if no)
chunk,
start

position

Worker N

Master

Validator

Scheduler
chunk 1

re
su

lt
s,

 p
o
si

ti
o
n

 o
f

ad
ju

st
ed

 c
h
u
n
k

...

two-pass parsing
(misprediction)

results
(successful
speculation)

chunk N

Figure 3: Architecture of speculative parsing

Figure 3 shows the architecture of the speculative ap-
proach. We focus on the master in this section and will
present our parsing techniques for workers in Section 4.
The master assigns each chunk to a worker that can pro-

cess the data in parallel. Each worker speculatively parses
the chunk and returns the parsing results along with the
position of the predicted adjusted chunk to the master. The
master is responsible for validating the speculations made
independently by all workers. A speculation on a chunk is
considered to be successful if its adjusted chunk starts im-
mediately after a record delimiter (or the beginning of the
input) and ends at a record delimiter. Formally, we introduce
Property 1 for validating speculations of all workers. The
formal proof is provided in Appendix A.

Property 1. A speculation on the k-th chunk is successful if
the first k predicted adjusted chunks are connected end to end.

Following Property 1, the master sequentially iterates over
all positions of all predicted adjusted chunks in the order of
chunk IDs, and examines if each predicted adjusted chunk
is connected to its previous adjusted chunk end to end. If
not, the speculation fails, and we fall back to the two-pass
approach (Section 3.2) to recover from mispredictions. If all
predicted adjusted chunks are connected, the speculative
parsing completes successfully.
The speculative approach also follows our framework to

handle records at chunk boundaries (Section 3.1). If all specu-
lations are successful, each worker starts from the first record
delimiter within the corresponding chunk, and ends with
the first record delimiter in the subsequent chunks, which
is fully in line with the requirements of the framework. If
speculations fail, we discard all parsing results and fall back
on two-pass parsing, which follows the framework as well.

The speculative approach runs in one pass if speculations
on all chunks are successful, and in three passes (two of
which are from the fallback reparsing) in the case of mispre-
dictions. As we will show empirically using a large number
of real-world datasets (Section 7.3), our method mispredicts
less than once in ten million chunks. Thus, the speculative
approach is nearly an one-pass approach from the statistical
point of view.

4 SPECULATIVE PARSING ON CHUNKS
In this section, we present techniques for parsing individual
chunks speculatively. Given an arbitrary chunk of a CSV
file, our algorithms predict the starting parsing state without
the context on previous chunks, and optimistically parse the
chunk based on the predicted state.
Our parsing approach is in general independent to the

character encoding of the CSV input. It relies on the decoder
of the input to convert the encoded byte stream into (multi-
byte) characters, and applies algorithms presented in this

section on decoded characters. However, for common encod-
ings such as UTF-8 and UTF-16, our algorithms can process
an encoded byte stream as a sequence of single-byte char-
acters, without having to decode the multi-byte characters.
This optimization is discussed in Appendix B.1.

4.1 Overview
We say that a chunk is quoted if the chunk starts in the
middle of a quoted field, or is unquoted if not. The fundamen-
tal challenge for parsing individual chunks is to speculate
whether a chunk is quoted or unquoted. Once this starting
state is predicted, the adjusted chunk of this chunk will be
determined, so is the way to parse. More specifically, if the
chunk is speculated to be unquoted, the first record delimiter
is the first newline after an even number of quotes within
the chunk. Otherwise, if the chunk is predicted to be quoted,
the predicted first record delimiter is the first newline after
an odd number of quotes. Having the predicted first record
delimiter as the starting position of the adjusted chunk, we
then invoke the parser to optimistically scan and parse the
chunk. When it reaches the end of the chunk, it continues
processing by reading data from the subsequent chunks until
it encounters a record delimiter, whose position is considered
as the predicted end position of its adjusted chunk.
Therefore, in the remaining of this section, we focus on

the problem of speculating whether or not a given chunk is
quoted. First of all, we observed that in many cases a worker
may be able to fully determine the starting state of a chunk,
if the alternative starting state results in invalid parsing on
the chunk. According to this observation, we define that a
chunk is ambiguous if we cannot fully determine whether a
chunk is quoted or not by only analyzing the data within the
chunk. Conversely, a chunk is unambiguous if it is confirmed
to be either quoted or unquoted.
In this section, we present two algorithms to determine

the ambiguity of a chunk. The first algorithm, described in
Section 4.3, is a more straightforward algorithm but is com-
putationally expensive. Nevertheless, it lays the theoretical
foundation upon which we develop the second algorithm.
Section 4.4 presents the second algorithm that produces the
same results as the first algorithm but in a far more effi-
cient way. If a chunk is unambiguous, its starting state is
determined directly and the speculation is unnecessary. For
a chunk that is inherently ambiguous, its starting state has
to be determined speculatively. In Section 4.5, we present
an algorithm to make the speculation decision based on the
insights we mentioned in Section 1.1.
Either the algorithm to examine the ambiguity, or the al-

gorithm to speculate the starting state requires access to
the data in the chunk. These speculation-related processes
introduce an additional pass of scan before parsing, making

the speculative approach downgrade to a two-pass approach.
However, the speculative property gives us the flexibility to
trade-off speculation accuracy for processing speed. This en-
ables us to perform our algorithms on only a (small) portion
of the chunk, usually a fixed-size (e.g., 64KB) prefix of the
data in the chunk. In this case, the ambiguity inferred from
the portion of the chunk may have false positives on the am-
biguity of the whole chunk, but definitely no false negatives
– in other words, the whole chunk is either definitely unam-
biguous or possibly ambiguous. These false positives may
introduce overhead in initiating the subsequent speculation
algorithm and the possible reparsing when mispredict hap-
pens. However, our statistical results on real-world datasets
show that false positives introduced by this optimization are
extremely rare in practice (Section 7.3). In the rest of this
section, the term “chunk” refers to an arbitrary fragment of a
file, which could be a whole chunk, or a prefix of the chunk.

4.2 Finite-State Machine for CSV
We first introduce the Finite-State Machine (FSM) for the
CSV format, a foundation upon which we design and ana-
lyze algorithms throughout this paper. The CSV format is
defined in a regular language (see Section 2), which has an
equivalent FSM and vice versa. As a result, a string follows
the CSV specification if and only if the string is accepted by
the equivalent FSM.

The FSM for CSV data has five possible states: Record start
(R), Field start (F), Unquoted field (U), Quoted field (Q), and
quoted field End (E). Among these states, R is the start state,
while the final states include R, F, U, and E. There are four
possible types of input characters: quote, comma, newline,
and other, i.e., any other character except the three struc-
tural characters. Figure 4 shows the state transition function
of the FSM. For each possible state, the table shows the out-
put states resulting from each input. Note that not all input
characters are allowed at certain states. For instance, if the
current state is U and the next character is quote, the tran-
sition is invalid (marked “-” in Figure 4), as a field value
containing quotes must be quoted. Similarly, other is not
allowed at the state E, because at this state the previous char-
acter could be either a closing quote that must be followed by
a structure character (i.e., comma or newline), or an escaping
quote that must be followed by an escaped quote.

quote comma newline other

R (Record start) Q F R U
F (Field start) Q F R U
U (Unquoted field) - F R U
Q (Quoted field) E Q Q Q

E (quoted End) Q F R -

Figure 4: State transition table of FSM for CSV format

The five states can be categorized into two classes: the R,
F, U, and E states are called unquoted states as the character
at these states are always outside of quoted fields; the Q
state is called quoted state because characters at this state
are embedded in a pair of quotes. Interestingly, as can be
observed from Figure 4, states in the same category always
produce the same output state (ignoring invalid transitions),
whereas states in different categories never transit into the
same output state for any input character.

4.3 Determining Ambiguity using a FSM
In this section, we present an algorithm to examine whether
a given CSV chunk is ambiguous, based on the FSM described
above. The algorithm is adapted from Fisher’s algorithm [16].

FSMs are usually used for parsing a sequence of characters
from the beginning of the input. Interestingly, the FSM can
also be adapted to process a CSV chunk whose beginning is
in the middle of the input. The basic idea is to enumerate all
possible states as the starting state, and simultaneously exe-
cute multiple state machines, one for each possible starting
state. Not all FSMs can pass through the chunk. Some FSMs
may encounter an invalid transition (“-” in Figure 4), which
in turn indicates that the corresponding starting state is in-
valid for the chunk. After passing through the whole chunk,
all invalid starting states are identified. Then, the chunk is
ambiguous if and only if the remaining valid starting states
are all either unquoted states or quoted state.

l i c e , " , " , 1 6 \n B o b , " , " , 1 7

R U U U U F Q Q E F U U R U U U F Q Q E F U U
F U U U U F Q Q E F U U R U U U F Q Q E F U U
U U U U U F Q Q E F U U R U U U F Q Q E F U U
Q Q Q Q Q Q E F Q Q Q Q Q Q Q Q Q E F Q Q Q Q
E -

(a) Ambiguous CSV chunk

l i c e , " \n " , 1 6 \n B o b , " M " , 1 7

R U U U U F Q Q E F U U R U U U F Q Q E F U U
F U U U U F Q Q E F U U R U U U F Q Q E F U U
U U U U U F Q Q E F U U R U U U F Q Q E F U U
Q Q Q Q Q Q E R Q Q Q Q Q Q Q Q Q E - - - - -
E -

(b) Unambiguous CSV chunk

Figure 5: Determining ambiguity using FSM (invalid
starting states are marked gray)

Figure 5 demonstrates the process to examine the ambigu-
ity of two example CSV chunks. In Figure 5(a), the starting
state E encounters an invalid transition after reading the
first character in the chunk, and thus is considered to be
an invalid starting state. In contrast, all other starting states
successfully pass through the whole chunk. Since the remain-
ing starting states R, F, U, and Q fall into two categories, the

chunk is ambiguous. This is consistent with the observation
we made in Figure 1. Actually, the sequence of states starting
from the R, F, and U states corresponds to Interpretation 1 in
Figure 1, whereas the the sequence of states starting from
the Q state corresponds to Interpretation 2. In Figure 5(b),
the example chunk has an additional invalid starting state
Q, because other are not allowed after the state E, which is
transited from the starting state Q after reading the string
“lice,"\n",16\nBob,"”. This eliminates the possibility of
having Q as a starting state. Thus, all valid starting states are
unquoted and the example chunk is therefore unambiguous.

4.4 Determining Ambiguity using Patterns
Although the FSM-based algorithm (Section 4.3) gives us a
fundamental view on this problem, it is unfortunately not a
sufficiently practical solution in terms of processing speed.
It requires to run up to five FSMs simultaneously, and may
dominate the overall execution time. This issue gets more
serious when the algorithm is used with state-of-the-art
parsers [19, 24], which are up to orders of magnitude faster
than FSM-based parsers. To address this issue, we develop a
novel approach that can fully determine the ambiguity of a
CSV chunk in a much faster way.

We introduce two interesting string patterns. The first one,
called q-o pattern, represents a class of two-char strings that
start with a quote followed by an other (i.e., any character
other than a quote, a comma, and a newline). The second
one, called o-q pattern, represents a class of two-char strings
that start with an other followed by a quote.
Both q-o and o-q patterns have a crucial property: for all

possible input states, the FSM transits into the same output state,
after reading an input string following the pattern. Figure 6
shows the transitions starting from all five possible states
for both patterns. It is clear to see that all starting states
converge to the Q state for the q-o pattern, and converge to
the E state for the o-q pattern.

quote other

R Q Q
F Q Q
U - -
Q E -
E Q Q

(a) q-o pattern

other quote

R U -
F U -
U U -
Q Q E
E - -

(b) o-q pattern

Figure 6: State transitions on q-o and o-q patterns

Due to this property, the pattern-based algorithm to de-
termine whether or not a given chunk is ambiguous is re-
markably simple: the chunk is ambiguous if and only if it
contains neither q-o pattern strings nor o-q pattern strings.
The correctness of the pattern-based algorithm is proved

by Property 2 and Property 3 shown as follows. The proofs
of these properties rely on the FSM-based algorithm we de-
scribed in Section 4.3 and can be found in Appendix A.

Property 2. A chunk that contains q-o pattern string(s) or
o-q pattern string(s) must be unambiguous.

Property 3. An unambiguous chunk must contain q-o pat-
tern string(s) or o-q pattern string(s).

Consider the examples in Figure 5 again. The CSV chunk
in Figure 5(a) does not contain any strings following either
q-o or o-q patterns, and therefore is an ambiguous chunk. In
contrast, the chunk in Figure 5(b) contains the q-o pattern
string “"M”, and thus is an unambiguous chunk. These results
are consistent with the outcome of the FSM-based method.

4.5 Speculation
As described in the previous section, CSV chunks that con-
tain neither q-o pattern strings nor o-q pattern strings are
inherently ambiguous for parallel parsing. In these cases, we
have to speculate whether or not the chunk is quoted. In
this section, we present a speculation algorithm that exploits
conditional probabilities based on the data in each chunk to
speculate on the starting state of the chunk.

We first explain the core insights and intuition behind the
algorithm by taking the ambiguous CSV chunk in Figure 1
as an example again. Even though both interpretations for
the example chunk are completely possible in theory, the
first interpretation looks much more likely than the second
interpretation. This is because that if, otherwise, the sec-
ond interpretation is correct, it is too coincidental that the
strings inside the quoted fields (e.g., “,513\nBob,”) in the first
interpretation happen to completely follow the CSV speci-
fication in the alternative interpretation. If the string does
not start with comma or end with comma, the string in second
interpretation is not a valid CSV string anymore and the
chunk becomes unambiguous. This example reveals the intu-
ition behind our speculation algorithm: we randomize field
strings in a chunk in one interpretation, and compute the
probability that the chunk also follows the CSV specification
in the alternative interpretation; the higher the value, the
more likely the predicted interpretation is correct.
Formally, we model this problem as a conditional proba-

bility problem. Given a chunk, let sQ denote the sequence of
states that is produced by reading the quoted chunk, and sU
denote the sequence of states that is produced by reading the
unquoted chunk. Let C be the set of chunks that either pro-
duce sQ if the chunk is quoted, or produces sU if the chunk
is unquoted. In addition, let Q be the event that a chunk in
C is quoted (i.e., it starts in the middle of a quoted field), and
U be the event that the chunk is unquoted (i.e., it does not
start in the middle of a quoted field). We also use VQ and VU

to denote the events that a chunk in C is valid starting from
a quoted state and an unquoted state, respectively. Thus,
VQ ∩VU represents the event of a chunk in C is ambiguous.

Then, the probability of an ambiguous chunk in C being
unquoted is given by the following conditional probability:

P(U |VU ∩VQ) =
P(U) · P(VU ∩VQ |U)

P(VU ∩VQ)
(Bayes’ rule)

=
P(U) · P(VQ |U)

P(VU ∩VQ)
. (U ⊂ VU) (1)

Similarly, the probability of an ambiguous chunk in C
being quoted is given by

P(Q |VU ∩VQ) =
P(Q) · P(VU |Q)

P(VU ∩VQ)
. (2)

To speculate the starting state of the chunk, we compare
P(Q |VU ∩ VQ) and P(U |VU ∩ VQ) by computing the ratio
between them:

P(U |VU ∩VQ)

P(Q |VU ∩VQ)
=

P(U) · P(VQ |U)

P(Q) · P(VU |Q).
(3)

Next, we compute P(VQ |U) based on the characters in the
chunk. According to Property 2, an ambiguous chunk must
contain neither q-o nor o-q pattern strings. Therefore, given
a chunk in C that is valid starting from an unquoted state,
the chunk is also valid starting from a quoted state, if the
first character after an opening quote is either a comma or
a newline and the last character before a closing quote is
either a comma or a newline. Let q to be the probability of a
character is either a comma or a newline. Then, for the i-th
quoted field in the chunk, the probability pi of the field string
being also valid in the alternative interpretation is: 1) 1 if the
field string is empty; 2) q if the quoted field is a partial field or
its length is 1; and 3) q2 if the complete quoted field contains
at least two characters. Thus, P(VQ |U) can be computed by
Πpi for all quoted strings in the chunk.
In order to compute P(U) and P(Q) in Equation 3, we

assume that the chunk shows the same ratio of quoted char-
acters to the whole CSV input. Thus, P(U) (or P(Q)) equals to
the percentage of quoted (or unquoted) states in the chunk.
Let uU and uQ be the ratio of unquoted states in state se-
quence sU and sQ , respectively. Then, we have

P(U) = uU · P(U |VU ∩VQ) + uQ · P(Q |VU ∩VQ), (4)
P(Q) = (1 − uU) · P(U |VU ∩VQ)

+ (1 − uQ) · P(Q |VU ∩VQ). (5)

By substituting Equation 4, 5 into Equation 3, we obtain a
quadratic equation in P (U |VU ∩VQ)

P (Q |VU ∩VQ)
. By solving this equation,

we get the value of P (U |VU ∩VQ)

P (Q |VU ∩VQ)
. If this value is greater than

1, it is more likely that the chunk is unquoted. Otherwise, if
the value is less than 1, the chunk is more likley quoted.

Taking the ambiguous chunk in Figure 1 as an example
again, in the first interpretation (starting with an unquoted
state), there are two quoted fields of length 1. Thus, we have
P(VQ |U) = q2. Similarly, in the second interpretation, there
are two partial quoted fields and a complete quoted field
of length eight. Hence, P(VU |Q) = q · q2 · q = q4. Then,
we count the number of unquoted states in both interpre-
tations, and get uU = 18/22 and uQ = 4/22. In this ex-
ample, assuming that all characters in the ASCII character
set are uniformly distributed, thus q = 2/128. By substitut-
ing all parameters into the quadratic equation, we obtain
P (U |VU ∩VQ)

P (Q |VU ∩VQ)
= 18427 ≫ 1, meaning that it is very likely that

the example chunk is unquoted.
Finally, let us consider a special case where P (U |VU ∩VQ)

P (Q |VU ∩VQ)
=

1. In this case, we cannot determine the starting state of the
chunk according to the probability model. Instead, we fall
back to a speculation method based on a heuristic: chunks
are usually much larger than records in big data applications.
To apply this heuristic, we compute the maximum record
size in the chunk for both starting states, and choose the
starting state that results in smaller maximum record size.
As an example, consider chunks that do not contain any

quotes. For these chunks, we always have P (U |VU ∩VQ)

P (Q |VU ∩VQ)
= 1

by solving the equation. In this case, we cannot determine
between the two cases: 1) the chunk is completely outside
of any quoted fields, and 2) the whole chunk is a part of a
(large) quoted field. In the former case, the maximum record
size equals to the chunk size. In the latter case, the maximum
record size is smaller than the chunk size. According to the
heuristic, we always choose the case with smaller records
and thus speculate that the chunk is unquoted.

5 SYNTAX ERROR HANDLING
Syntax errors are norms rather than exceptions in real-world
datasets. These syntax errors are usually caused by a wide
variety of reasons, ranging from program bugs, character set
and encoding errors, to incorrect usage of toolsets. This issue
gets more serious for CSV data, because, as we mentioned
before, the CSV format is not fully standardized and there
are many other CSV variations. Users may incautiously feed
the CSV data in one format variation into a parser that is de-
signed for another format variation. All that said, a practical
CSV parsing solution should be capable of dealing with such
errors. In this section, we analyze and extend the proposed
approaches to handle malformed CSV data.

5.1 Problem Definition
In this paper, we focus on detecting syntax errors in CSV
data. Formally, a CSV input has syntax errors if and only if
the FSM either encounters an invalid transition or ends in

non-final states, by reading the CSV input. Semantic errors,
such as inconsistent field types or invalid field values, are
undetectable from the syntax point of view, and are therefore
out of scope of this paper. Automatic correction of detected
syntax errors is an interesting direction for future work but
is also out of scope of this paper.
We say that a parser is error-detectable if it meets two

requirements: 1) the parser detects error(s) if and only if the
CSV input contains syntax errors; 2) the parser reports the
first error if there are multiple syntax errors in the input.
The first requirement is for correctness: if a parser fails to
find an error in a CSV input, the parser may produce incor-
rect parsing results without being aware of it. The second
requirement is for usefulness: since subsequent errors are
usually caused by errors appearing before, only the first error
is guaranteed to be an actual error from a user perspective.
In order to formally describe syntax errors encountered

during parsing, we augment the FSM for CSV data (see Fig-
ure 4) with a new error state X. Figure 7 shows the transition
table of the augmented FSM. As can be seen from the figure,
two transitions shift the state from non-error states to the
error state: U

quote
−−−−→ X and E

other
−−−−→ X. Once a FSM gets into

the X state, it stays in this state until the end of the input. As
an example, Figure 8 shows a CSV input with syntax errors
and the corresponding state on each character of the input
(we can ignore the chunking on the input for now).

quote comma newline other

R (Record start) Q F R U
F (Field start) Q F R U
U (Unquoted field) X F R U
Q (Quoted field) E Q Q Q

E (quoted End) Q F R X
X (Error) X X X X

Figure 7: Augmented FSM for CSV format

5.2 Extending Framework
In this section, we extend our framework (described in Sec-
tion 3.1) to deal with syntax errors. The framework assumes
that the states of all characters in the CSV input have been
known. This is obviously an unrealistic assumption (except
for the first chunk) for a distributed parsing. In this sense,
the framework is only served as a theoretical tool to verify
whether a distributed parsing approach is error-detectable.

The extended framework defines the starting position of
each adjusted chunk as follows. The adjusted chunk of the
first chunk in the CSV input always starts with the beginning
of the chunk. For other chunks, if the chunk contains char-
acters at the R state, its adjusted chunk starts immediately
after the first character at the R state. Otherwise, its adjusted
chunk is either undefined if the chunk contains characters

Chunk 1:

A l i c e , " F " , " H i \n " \n B o b , " M " , " H

U U U U U F Q Q E F Q Q Q Q E R U U U F Q Q E F Q Q

Chunk 2:

e l l o \n " \n C h r i s , M " , " b y e " \n D a v e

Q Q Q Q Q E R U U U U U F U X X X X X X X X X X X X

Chunk 3:

, " M " , " M o r n i n g ! \n " \n

X X X X X X X X X X X X X X X X X

Figure 8: Example CSV input with errors (expected
starting position of adjusted chunks are marked gray)

at the X state, or empty if the chunk does not contain any
characters at the X state.
Once the starting position of an adjusted chunk is deter-

mined, the worker invokes the CSV parser to parse records
starting from this position. The parser scans the CSV input
until it encounters the first character at the R state after the
end of the chunk, or until it encounters a syntax error at
the X state. For the latter case, the worker reports the syntax
error to the master, which is responsible for reporting the
first syntax error in the CSV input to the application.
Figure 8 shows an example CSV input that is split into

three chunks. We also show the states in the FSM after read-
ing each character in the input. Note that the second chunk
contains a syntax error – the quote after “M” is not allowed
and results in the X state. As per the specification of the ex-
tended framework, the starting positions of adjusted chunks
are marked gray in the figure. The first adjusted chunk al-
ways starts from the beginning of the chunk. The second
adjusted chunk starts after the marked newline character,
which is the first character at the R state within the chunk.
The third chunk has no defined adjusted chunk as it contains
characters at the X state but no character at the R state.

According to Property 4, the extended framework is error-
detectable. The proof can be found in Appendix A.

Property 4. The extended framework is error-detectable.

5.3 Extending Two-Pass Approach
In this section, we adapt the two-pass approach to handle
syntax errors. In addition to the parsing results and the po-
sition of its adjusted chunk, each worker also returns the
error information to the master. If there are multiple detected
errors, the master is responsible for finding the first error in
the CSV input, and reporting the error to the application.
We now show that the two-pass approach follows the

extended framework and therefore is error-detectable. The
two-pass approach only differs from the extended frame-
work by how it determines the starting positions of adjusted
chunks. For this reason, we only need to demonstrate that
the starting positions of adjusted chunks determined by the

two-pass approach follows the specification of the extended
framework, which can be shown in three cases. Case 1: if the
chunk contains the X state but no R state, its adjusted chunk is
undefined according to the framework. Thus, the algorithm
does not violate the requirements of the framework, regard-
less of where the adjusted chunk is determined. Case 2: if the
chunk contains neither X nor R states, the adjusted chunk
is empty, following the specification of the extended frame-
work. Case 3: if the chunk contains the R state, then there is
no syntax error in the CSV input before the R state. Thus, the
algorithm can correctly determine the starting state of the
chunk with respect to whether the beginning of the chunk
is inside a quoted field, according to the number of quotes
in all previous chunks. Then, based on this information, the
algorithm can correctly select the first character at the R
state as the boundary, even though the chunk may contain
characters at the X state in the remaining of the chunk.
Consider the CSV input in Figure 8 as an example. In

the first pass of the two-pass approach, workers counts the
number of quotes in each chunk. According to these statistics,
the master infers that the second chunks is quoted. As a
result, the master determines that the second adjusted chunk
starts after the marked newline in Chunk 2, which is indeed
the first character at the R state in Chunk 2, as requested
by the extended framework. Starting from this position, the
CSV parser scans the second adjusted chunk and detects the
syntax error at “M"”. The master also (incorrectly) infers that
the third chunk is quoted, and treats the newline inside the
quoted field “Morning!\n” as the beginning of the adjusted
chunk. This results in an undesired syntax error at the first
“M” in Chunk 3. Nevertheless, this error is ignored by the
master due to the first syntax error found in Chunk 2.

5.4 Extending Speculative Approach
Next, we extend the speculative approach to handle syntax
errors. In the speculative approach, each worker parses the
assigned chunk based on the predicted starting position of
its adjusted chunk, and reports encountered errors during
parsing to the master. Such errors may be misreported due
to a misprediction, but can be confirmed if all previous ad-
justed chunks are connected end to end and there are no
errors detected in all previous chunks. Algorithm 1 shows
the pseudocode for validating speculations by the master.
We then demonstrate that the speculative approach also

follows the extended framework. Let the k-th chunk in a
CSV input be the last chunk whose adjusted chunk contains
non-X states (the k-th chunk is the last chunk if there is no
syntax error). Then, if the first k adjusted chunks are not
connected end to end, we fall back to the two-pass approach,
which follows the extended framework. Otherwise, if the
first k adjusted chunks are indeed connected, according to

Algorithm 1 ValidateSpeculativeParsing(C)
Input: C: the sequence of chunks in the CSV input
1: R := ∅ ▷ initialize parsing results
2: for i := 0 to |C | do
3: if i = 0 or Ci .start = Ci−1.end + 1 then
4: if Ci .has_error = false then
5: R := R ∪Ci .parsinд_results ▷ speculation successes
6: else
7: throw exception on the error. ▷ confirmed error
8: else
9: Fall back to two-pass approach. ▷ speculation fails
10: return R

Property 1, all speculations on the first k chunks are success-
ful, meaning that the first k adjusted chunks all start after
the first character at the R state in each chunk. Thus, the
speculative approach follows the extended framework, and
is therefore error-detectable.

Nevertheless, syntax errors may increase the likelihood of
mispredictions in rare cases. Figure 8 shows such an example.
In the second chunk, we find an o-q pattern string “M"”, which
indicates that the chunk is unquoted. Consequently, we (in-
correctly) infer that the first record delimiter is the newline
after “ello”, which results in unconnected adjusted chunks
between the first and second chunks and introduces extra
cost in executing the fallback parsing solution. The funda-
mental problem behind this is that Property 2 and Property 3
do not hold for an ill-formed CSV input. Fortunately, this
issue does not occur when there are o-q or q-o pattern strings
appearing before the syntax error within the chunk. In this
case, the first record delimiter can be correctly determined
by the first pattern string. In general, it is uncommon to see
a syntax error before all pattern strings in a chunk, because
real-world datasets with syntax errors usually contains a
great number of pattern strings in each chunk.

6 APACHE SPARK INTEGRATION
In this section, we present our implementation of both the
two-pass and speculative approaches in Apache Spark. These
approaches are implemented based on the primitives pro-
vided by Spark without changing its architecture, and thus
inherit the fault-tolerance characteristics of Spark.
Apache Spark is built based on the RDD abstraction. A

RDD is an immutable, partitioned collection of data records.
A query in Spark is compiled into a series of RDD trans-
formations. Fault-tolerance is achieved by keeping track of
the lineage of RDDs so that they can be reproduced in case
of failure. For a query on raw CSV data, a scan operation
reads and parses CSV data and produces a RDD that can be
consumed by subsequent query processing operations.
For the two-pass approach, we implemented it as two

RDD transformations: each transformation corresponds to

one pass in the two-pass approach. The master first splits
the file into equal-sized chunks according to the parallelism
settings. The first transformation reads these chunks and pro-
duces the first RDD, according to the method we described in
Section 3.2. Each partition of the RDD contains the number
of quotes and the positions of record delimiter candidates
in the corresponding chunk. Based on this RDD, the master
computes a new RDD that include positions of all adjusted
chunks. Taking the new RDD as input, the second transfor-
mation parses adjusted chunks in parallel and creates the
result RDD that is then consumed by subsequent operations.

The speculative approach is implemented as a single RDD
transformation. Similar to the two-pass approach, the master
splits the file into equal-sized chunks and creates a RDD on
boundary information of these chunks. In the speculative
parsing transformation, each partition of the RDD is first
speculated using the speculation algorithms described in
Section 4; and its predicted adjusted chunk is then parsed
optimistically. The parsing results are stored in a RDD. In
addition to the parsing results, the transformation also needs
to send the positions of predicted adjusted chunks to the
master for validation purposes. We decide not to include
this information in the result RDD, as the result RDD is sup-
posed to be directly consumed by any subsequent operations.
Instead, the operation sends this information through the
Accumulatorsmechanism provided by Spark. Accumulators
are essentially write-only variables, and can be recovered
from failure automatically.
The master is responsible for validating speculations be-

fore feeding the result RDD to subsequent operations in the
query plan. We implemented the algorithm described in Sec-
tion 5.4 to validate the positions of predicted adjusted chunks.
If any speculation fails, the master discards the result RDD,
and creates a new query plan that includes the two-pass
approach as the parsing operation.

7 PERFORMANCE EVALUATION
We conducted all our experiments on Microsoft Azure cloud
computing platform. We deployed our modified version of
Apache Spark (version 2.2.2) on a cluster consisting of 1
master node and 8 worker nodes. Workers are deployed on
virtual machines with 4 vCPUs, 128GB RAM, and 2TB SSDs,
running Ubuntu 18.04. In our experiments, each worker is
configured to use 1 vCPU.
Datasets.We downloaded all CSV datasets from Kaggle

data science repository1. As of the time of our experiments,
there are more than 11, 000 well-formed CSV files, and 41
files with syntax errors. We study the parsing performance
on the ill-formed data in Section 7.6, and use the well-formed

1https://www.kaggle.com/

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

S
p
e
e
d

u
p
 o

v
e
r

tw
o

-p
a

s
s

File size (GB)

(a) Speedup of speculative over
two-pass with default parser

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

S
p
e
e
d

u
p
 o

v
e
r

tw
o

-p
a

s
s

File size (GB)

(b) Speedup of speculative over
two-pass with Mison parser

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

S
p
e
e
d
u

p
 o

v
e
r

id
e
a
l

File size (GB)

(c) Speedup of speculative over
ideal with default parser

Figure 9: Performance comparison among speculative, two-pass, and ideal approaches on individual files

data in the rest of evaluations. The size of these CSV files
ranges from 3 bytes to 11GB. All files are in UTF-8 encoding.
To evaluate the parsing performance, we run a simple

query “SELECT count(*) FROM FILE” on each CSV file to
minimize impacts of query processing on execution time.
For each file, we report the average execution time over 3
runs. Previous studies have shown that parsing dominates
(>80%) the end-to-end query execution time in Spark, when
querying raw data [19, 24].

Implementation.We implemented the two-pass and spec-
ulative approaches in Apache Spark. The detailed description
of our implementation can be found in Section 6. To serve as
a yardstick, we include a comparison with a baseline method
that sequentially parses CSV files. This is the current imple-
mentation in Spark when parsing a standard CSV file (by
enabling the “multiLine” option) rather than the simplified
format variation (where newlines are not allowed in quoted
fields). In the graphs below, the tag sequential refers to this
approach. The tag two-pass refers to the two-pass approach
we presented in Section 3.2. The tag speculative refers to
the speculative approach proposed in this paper. On each
worker, we use the pattern-based algorithm to examine the
ambiguity (Section 4.4). Unless otherwise stated, speculation
is performed on a 64KB prefix of each chunk.
We evaluated each approach with two CSV parsers: 1)

the CSV parser [6] used in Spark, and 2) the state-of-the-art
parser Mison [19]. Mison is originally designed for the JSON
format [19]. We adapted the Mison techniques to CSV format
and implemented a Mison CSV parser in C++. Spark invokes
this native Mison CSV parser through JNI mechanism. In the
graphs below, the tags default and mison refer to these two
parsers, respectively.

7.1 Experiment 1: Parsing Performance
We first compare the overall performance of the three dis-
tributed parsing approaches. Figure 10 shows the perfor-
mance of sequential, two-pass, and speculative approaches
with default and Mison parsers. For each approach, we show

 0

 5

 10

 15

 20

 25

w/ default parser w/ Mison parser

1.0X

6.1X
7.4X

4.5X

14.6X

22.9X

S
p

e
e

d
u

p
 o

v
e

r
s
e

q
u

e
n

ti
a

l+
d

e
fa

u
lt
 p

a
rs

e
r sequential

two-pass
speculative

Figure 10: Overall performance comparison among se-
quential, two-pass, and speculative approaches

the average speedup over the sequential approach with de-
fault parser on all CSV files that are larger than 1GB. The
execution time on a smaller file is usually dominated or
significantly impacted by other components in the total exe-
cution time such as scheduling, query optimization, query
compilation, and so on. We evaluate the impact of file sizes
in the next experiment.
When using the default parser, speculative approach is

20% faster than two-pass approach, and achieves a speedup
of 7.4X over sequential approach, which is close to the ideal
speedup of 8X. The improvement over two-pass approach
comes from eliminating the additional pass of scan in two-
pass approach that is used to identify record delimiters. Un-
like this conservative approach, speculative approach bets
on a speculation-based method by only looking at a small
portion (64KB) of data in each chunk and optimistically pars-
ing the data in the risks of mispredications. This strategy
wins because mispredictions rarely occur, as we will show in
Section 7.3. Eliminating this first pass of scan results in 20%
improvement, because the first pass of two-pass approach
only counts the number of quotes and thus is much faster
than the second pass on full parsing.

The right side of Figure 10 shows the performance of the
three approaches with Mison parser. Clearly, it is more ben-
eficial to use speculative approach than two-pass approach
with Mison: speculative approach is now 60% faster than

 0

 500

 1000

 1500

 2000

16B 4KB 1MB 256MB

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

Speculation size

Parsing
Reparsing

Speculation

Figure 11: Time breakdown of spec-
ulative approach

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

16B 256B 4KB 64KB 1MB

M
is

p
re

d
ic

ti
o
n
 r

a
ti
o

Speculation size

all
w/o quotes
w/ quotes

Figure 12: Misprediction ratio,
varying speculation size

10
-4

10
-3

10
-2

10
-1

10
0

16B 256B 4KB 64KB 1MB

A
m

b
ig

u
o
u
s
 c

h
u
n
k
 r

a
ti
o

Speculation size

all
w/o quotes
w/ quotes

Figure 13: Ambiguous-chunk ratio,
varying speculation size

two-pass approach. This is because, with Mison, the pars-
ing time is reduced by 4-5X and thus the time spent on the
first pass of two-pass approach accounts for a larger portion
of the total execution time, which in turn leads to a more
significant improvement of speculative approach.

Next, we analyze the performance improvement of specu-
lative approach on individual files. Figure 9(a) and Figure 9(b)
plot the speedup of speculative approach over two-pass ap-
proach on all files that are larger than 128MB, using default
andMison parsers respectively. For smaller files, the variance
of speedup is very high, because the execution time is signif-
icantly impacted by other components in Spark (e.g., query
optimization, query compilation, scheduling) other than pars-
ing. As the file size increases, we see that the speedup gener-
ally increases and the variance reduces. For some large files,
speculative approach achieves a speedup of 1.5X over two-
pass approach with default parser. With Mison, speculative
approach is up to 2.4X faster than two-pass approach.
Furthermore, it is interesting to ask how close the per-

formance of speculative approach is to an ideal case, where
there is an oracle to determine chunk boundaries without
incurring additional cost. To simulate such an ideal parallel
parser, we configured unmodified Spark to look for newlines
(rather than actual record delimiters) to determine chunk
boundaries by disabling the option “multiLine”. This, of
course, results in a lot of parsing errors on CSV files that
contain newlines within quoted fields. Therefore, in order
to avoid interference caused by handling exceptions, we run
experiments on a subset of files where there are no quoted
fields. It is worth noting that on this set of files, specula-
tive approach is expected to show the worst performance
on speculation, because a chunk without quotes is always
ambiguous due to the lack of q-o and o-q patterns (according
to Property 2). Nevertheless, as can be seen from Figure 9(c),
the speculative approach achieves similar performance to
the ideal approach, even though this set of files do not favor
speculation. This is because, even in these cases, the over-
head associated with speculative parsing is quite negligible.
We will continue to analyze the overhead in the next section.

7.2 Experiment 2: Speculation Overhead
This section examines the overhead of speculative approach.
The overhead comes from two sources: 1) the speculation
process which is to scan a portion of a chunk to determine the
chunk boundary; and 2) reparsing in case of mispredictions.
Figure 11 shows the time breakdown for three components:
basic parsing time, speculation time, and reparsing time.
Each bar in the figure represents the overall running time on
all files larger than 128MB using a specific speculation size,
i.e. the size of data accessed by the speculation algorithm in
each chunk.

As can be seen from the figure, the basic parsing time re-
mains unaffected by varying speculation size. The reparsing
time, however, decreases dramatically as the speculation size
increases. This is because, when the speculation is unrea-
sonably small (e.g., 16 bytes or 256 bytes), the speculation
algorithm may look at a string that is completely inside a
quoted field and thus it is inherently impossible to distinguish
between a quoted string and an unquoted string. However,
when the speculation size is greater than 4KB, the reparsing
time is reduced to zero, meaning that speculations on all
these files are successful. On the other hand, the speculation
time increases as the speculation size increases, because that
the speculation algorithm needs to scan a larger region to
determine the ambiguity or make a speculation.

Figure 11 illustrates the tradeoff between speculation and
reparsing time, and shows that the speculative approach
achieves the best performance when the speculation size is
64KB. At this speculation size, speculation time and reparsing
time account for 0%, and <1% of the total execution time,
respectively. The overhead of speculation is negligible.

7.3 Experiment 3: Speculation Accuracy
This experiment measures the speculation accuracy of our
speculation algorithm. As we have shown in the previous
section, there are no mispredictions when the speculation
size is greater than 4KB, showing a 100% speculation accu-
racy. However, this number is not statistically meaningful,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

S
lo

w
d
o
w

n
 o

v
e
r

tw
o
-p

a
s
s

File size (GB)

Figure 14: Performance comparison between spec-
ulative and two-pass in worst cases

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Number of workers

Two-pass+Default
Speculative+Default

Two-pass+Mison
Speculative+Mison

Figure 15: Throughput varying the number of
workers

due to the insufficient number of speculations performed.
This is because each file is split into only 8 chunks, according
to the number of workers. In this experiment, in order to get
a high-precision speculation accuracy, we generate many
more chunks by splitting each file into chunks whose length
equals to the speculation size. In this way, we can generate a
large number of chunks. For example, when the speculation
size is 64KB, we produce more than 9.6 million chunks.
Figure 12 plots the misprediction ratio by varying the

speculation size from 16 bytes to 1MB. As the speculation
size increases, the overall misprediction ratio (labeled “all”
in the figure) drops to as low as 2.6 × 10−8. At the default
speculation size of 64KB, the misprediction ratio is 1.0×10−7,
meaning that the method mispredicts less than once in ten
million chunks.

In order to gain a better understanding of the speculation
accuracy, we distinguish two cases: chunks without quotes,
and chunks with quotes. As discussed in Section 4.5, the
speculation algorithm always predicts that a chunk without
any quotes is unquoted. This prediction is obviously wrong
for a chunk that fits in a quoted field. As a result, the mis-
prediction ratio for chunks without quotes is fairly high for
smaller speculation size. As the speculation size increases,
the misprediction ratio decreases significantly because fewer
quoted fields are larger than the speculation size. When the
speculation size is 4KB, the misprediction ratio is reduced
to 0% as no quoted fields are larger than 4KB. For chunks
with quotes, the speculation algorithm may also make in-
correct speculations. However, this type of misprediction
accounts for a tiny portion of all mispredictions when the
speculation size is smaller than 4KB. As the speculation size
grows beyond 4KB, all mispredictions come from chunks
with quotes. When the speculation size is greater than 16KB,
the speculative approach makes only one mispredication on
all tested chunks. In these cases, the misprediction ratio goes
up simply because there are fewer chunks as the speculation
size (and chunk size) increases.
Next, we plot the ratio of ambiguous chunks by varying

the speculation size in Figure 13. Surprisingly, a majority of
chunks are ambiguous. This is mainly because around 70%

of chunks contain no quotes, and thus must be ambiguous
(according to Property 2). Other than chunks without quotes,
less than 1% of chunks are ambiguous.

7.4 Experiment 4: Worst Case Analysis
In this section, we aim to show the worst-case performance
of the speculative approach (i.e., the performance when spec-
ulation fails). In order to generate a larger set of workloads
that make our speculation algorithm mispredict, we inten-
tionally set the speculation size to an unsatisfactory value –
256 bytes. By doing so, we collect 201 files that are used as
the datasets for this experiment.

Figure 14 plots the slowdown of the speculative approach
over the two-pass approach on these “worst-case” datasets.
Similar to the results we showed previously, the variance is
high when files are small. For files that are larger than 1GB,
the average slowdown factor is 2.1X. This number is consis-
tent with the fact that we have to run both the speculative
approach and the two-pass approach in these worst cases.

7.5 Experiment 5: Scalability Evaluation
Figure 15 shows the throughput of two-pass and speculative
approaches with default and Mison parsers on all files larger
than 1GB, when varying the number of workers from 1 to
8. The dashed lines represent ideal throughputs with linear
scalability for each configuration. With the default parser,
both two-pass and speculative approaches achieve nearly
linear scalability. When using 8 workers, the two-pass ap-
proach achieves a speedup of 6.8X, whereas the speculative
approach achieves a speedup of 7.4X. However, with the
Mison parser, both approaches start to deviate from linear
scalability when there are 4 or more workers. This is because
Mison is so fast that the parsing time is remarkably reduced
and accounts for a smaller portion of the execution time.
Even for the largest file (11GB), the execution time with 8
workers is expected to be only around 2 seconds. At this
scale of time, many factors may affect the execution time. To
confirm this suspicions, we generated a larger file by dupli-
cating a 11GB file 5 times. On this large file, both two-pass
and speculative approaches achieve nearly linear scalability.

7.6 Experiment 6: Error Handling
Finally, we evaluate the speculative approach on the 41 ill-
formed CSV files we downloaded from Kaggle. These syn-
tax errors can be categorized into three classes: 37 files in-
clude unescaped quotes within quoted fields; 2 files have
unmatched quotes; and 2 files use incorrect characters to
escape quotes within quoted fields. Not surprisingly, the spec-
ulative approach successfully detects errors in all ill-formed
CSV files and correctly reports the first error in each file.

Furthermore, we observe that all speculations are success-
ful on these ill-formed files, meaning that the speculation al-
gorithm successfully predicts the starting state of each chunk
even when the chunk contains errors. As we discussed in
Section 5.4, a syntax error causes a misprediction only when
this error happens to be the first (o-q or q-o) pattern string in
a chunk and therefore misguides the speculation algorithm.
This result is in line with our analysis that these cases are
fairly rare in practice.

8 RELATEDWORK
Our work is closely related to the body of work in loading
and processing raw data in database systems [7–9, 14, 15, 17,
18, 23]. In particular, NoDB [8, 9, 17, 18] is a pioneering work
that builds structural index on raw CSV files, and adaptively
and incrementally uses the index to load the raw data. Many
systems have been built to meet this growing demand in
industry. In AWS, for example, both Amazon Athena [1] and
Amazon Redshift Spectrum [2] enable users directly query
raw data in Amazon S3 using standard SQL, without complex
and expensive ETL tasks to prepare and load data. Apache
Spark [11, 26] is another prominent example of big data sys-
tems that support access to raw, unparsed data. Nevertheless,
to the best of our knowledge, none of these systems are able
to efficiently parallelize CSV parsing. These systems either
impose additional constraints on CSV format (e.g., newlines
are not allowed within quoted fields), or simply use sequen-
tial parsing. Our proposed distributed parsing approach is
applicable to all these systems.
There have been extensive literature on parallel pars-

ing [10, 13, 16, 20, 22, 27]. These prior work focus on either
general context-free gramma [16, 22], or a specific language
such as arithmetic expression [13], XML [20], HTML [27].
Our FSM-based algorithm for determining ambiguity (see
Section 4.3) is based on Fisher’s algorithm [16], which laid
the foundation on parallel parsing. For a chunk of input, the
algorithm uses a number of sequential parsers for all possible
starting states in the FSM. This general approach, however,
suffers from efficiency problems because it has to simultane-
ously run multiple parsers. Due to this reason, we propose
our pattern-based algorithm for determining ambiguity (Sec-
tion 4.4), which is customized for CSV format. In general,

existing parallel parsing techniques developed for general
context-free gramma or a specific language are unsuitable
for CSV parsing. The simplicity of the CSV specification in-
troduces opportunities for a more efficient parallelization
approach. In this work, we develop speculation-based pars-
ing approach customized for CSV parsing.
Recent years have seen some increasing interest in op-

timizing parsing for data analytics, driven by the demand
for providing SQL query capability on raw data in big data
systems. Many techniques [19, 23, 24] has been developed to
accelerate data parsing. In particular, Mühlbauer et al. pro-
posed to exploit SIMD parallelism to accelerate CSV parsing
and data deserialization [23]. Mison [19] is a fast JSON parser
particularly designed for data analytics applications. It al-
lows analytical engines to push down query operations, e.g.,
projections and filters of analytical queries, into the parser,
and thus avoids a great deal of wasted work by only pars-
ing fields that are relevant to the query. It also exploits the
parallelism available in modern processors to avoid pitfalls
in traditional FSM-based parsing approach. Sparser [24] is a
parsing technique applicable to both plain-text and binary
formats such as CSV, JSON, and Avro [3]. Sparser can fil-
ter records without having to parse the input data. This is
achieved by searching for records that may satisfy the filter
predicates of the query, in the raw, unparsed input data. A
matched record may be a false-positive result and must be
validated using a standard parser. All these work is actually
complementary to our speculative parsing approach, which
can leverage these innovations to achieve the best parsing
performance in each worker.

9 CONCLUSION AND FUTUREWORK
With the growing demand for querying raw data in big data
systems, there is a strong need for efficient distributed pars-
ing techniques. This paper proposes a speculation-based
distributed parsing approach for CSV data. At the core of
this solution is an algorithm that can speculatively determine
record boundaries in individual chunks of CSV data, even
when the CSV data is ill-formed. Our experimental results on
a large number of real-world datasets demonstrate that the
approach mispredicts in less than once in ten million chunks.
Due to the near-perfect speculation accuracy, our parallel
parser performs almost as well as an ideal parallel parser and
achieves up to 2.4X speedup over existing methods.

For future work, we plan to extend our solution for other
common data formats such as JSON and XML. Furthermore,
in addition to parsing, the speculative approach for finding
record delimiters could be used for many other applications,
such as skipping syntax errors in CSV data, and sampling
CSV data for machine learning applications.

REFERENCES
[1] Amazon Athena. https://aws.amazon.com/athena/.
[2] Amazon Redshift. https://aws.amazon.com/redshift/.
[3] Apache Avro. https://avro.apache.org/.
[4] Google BigQuery. https://cloud.google.com/bigquery/.
[5] ParaText. https://github.com/wiseio/paratext.
[6] Univocity Parsers. https://github.com/uniVocity/univocity-parsers.
[7] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible loading: access-

driven data transfer from raw files into database systems. In EDBT,
2013.

[8] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB:
efficient query execution on raw data files. In SIGMOD, 2012.

[9] I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, and A. Ailamaki.
Nodb: efficient query execution on raw data files. Commun. ACM,
58(12):112–121, 2015.

[10] H. Alblas, R. op den Akker, P. O. Luttighuis, and K. Sikkel. A bibliog-
raphy on parallel parsing. SIGPLAN Notices, 29(1):54–65, 1994.

[11] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL:
relational data processing in spark. In SIGMOD, 2015.

[12] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The landscape of parallel computing research: A view
from berkeley. Technical report, Technial Report, UC Berkeley, 2006.

[13] F. Baccelli and T. Fleury. On parsing arithmetic expressions in a
multiprocessing environment. Acta Inf., 17:287–310, 1982.

[14] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel data
analysis directly on scientific file formats. In International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, pages 385–396, 2014.

[15] Y. Cheng and F. Rusu. Parallel in-situ data processing with speculative
loading. In SIGMOD, 2014.

[16] C. N. Fischer. On parsing context free languages in parallel environ-
ments. Technical report, Ithaca, NY, USA, 1975.

[17] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my data
files. here are my queries. where are my results? In CIDR, 2011.

[18] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive
query processing on RAW data. PVLDB, 7(12):1119–1130, 2014.

[19] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and D. Koss-
mann. Mison: A fast JSON parser for data analytics. PVLDB,
10(10):1118–1129, 2017.

[20] W. Lu, K. Chiu, and Y. Pan. A parallel approach to XML parsing. In
IEEE/ACM GRID, pages 223–230, 2006.

[21] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: Interactive analysis of web-scale datasets.
PVLDB, 3(1):330–339, 2010.

[22] M. D. Mickunas and R. M. Schell. Parallel compilation in a multiproces-
sor environment (extended abstract). In Proceedings of the 1978 Annual
Conference, ACM ’78, pages 241–246, New York, NY, USA, 1978. ACM.

[23] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper, and T. Neu-
mann. Instant loading for main memory databases. PVLDB, 6(14):1702–
1713, 2013.

[24] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia. Filter before you parse:
Faster analytics on raw data with sparser. PVLDB, 11(11):1576–1589,
2018.

[25] Y. Shafranovich. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180, Oct. 2005.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In NSDI,
2012.

[27] Z. Zhao, M. Bebenita, D. Herman, J. Sun, and X. Shen. Hpar: A practical
parallel parser for html-tamingHTML complexities for parallel parsing.
TACO, 10(4):44:1–44:25, 2013.

A THEOREMS AND PROOFS
Property 1. A speculation on the k-th chunk is successful if

the first k predicted adjusted chunks are connected end to end.

Proof. This property can be proved easily by induction.
Base case: when k = 1, the first adjusted chunk always starts
from the beginning of the CSV input and ends at a record
delimiter, and thus is considered to be successful. Induction
step: let n ∈ N be given and suppose the property holds
for k = n. We now show that the property also holds for
k = n+1. If the first n+1 adjusted chunks are connected end
to end, the first n adjusted chunks are also connected end
to end. Thus, by induction hypothesis, the speculation on
the n-th chunk is successful, meaning that the n-th adjusted
chunk ends at a record delimiter. Since the (n+1)-th adjusted
chunk is connected to then-th adjusted chunk end to end, the
(n + 1)-th adjusted chunk starts immediately after a record
delimiter. As the parser starts the parsing immediately after a
record delimiter, it is able to correctly find a record delimiter
as the end of the (n + 1)-th adjusted chunk. As a result, the
speculation on the (n + 1)-th chunk is successful and the
property holds for k = n + 1. By the principle of induction,
we have proved that the property folds for all k ∈ N. □

Property 2. A chunk that contains q-o pattern string(s) or
o-q pattern string(s) must be unambiguous.

Proof. For the string following either q-o or o-q patterns,
the FSM transits all possible starting states to a single output
state (Q for q-o pattern, and E for o-q pattern) by reading
the string, as shown in Figure 6. Suppose that the end of
the pattern is at the i-th character of the chunk. According
to the state of the i-th character, we can find all possible
states of the (i − 1)-th character in the chunk, based on the
transition table of the FSM. It is clear to see that all possible
states of the (i −1)-th character are all either unquoted states
or quoted state, because states in the same category (quoted
or unquoted) always produce the same output state whereas
states in different categories never transit into the same
output state for any input character (as shown in Figure 4).
Continuing this process, we know that all possible states
of any character appearing before the i-th character are all
either unquoted states or quoted state. This implies that the
valid starting states of the chunk are all either unquoted
states or quoted state. Then, by the algorithm described in
Section 4.3, we know that the chunk is unambiguous. □

Property 3. An unambiguous chunk must contain q-o pat-
tern string(s) or o-q pattern string(s).

https://aws.amazon.com/athena/
https://aws.amazon.com/redshift/
https://avro.apache.org/
https://cloud.google.com/bigquery/
https://github.com/wiseio/paratext
https://github.com/uniVocity/univocity-parsers

Proof. Consider an unambiguous chunk that contains
neither q-o nor o-q pattern strings. We now show that the
valid starting states of the chunk must contain the states R, F,
and Q. First, as these three states never transit to an invalid
state by reading the next character (as shown in Figure 4),
transitions of the FSM starting from these three states must
be valid after reading the first character. Now, suppose that
there is an invalid transition at the i-th character after the
first character, i.e., i >= 2. Then, according to the transition
table of the FSM, it much be one of the two cases: case 1) the
state before reading the (i − 1)-th character is Q and the next
two characters are a q-o pattern string (Q

quote
−−−−→ E

other
−−−−→ -);

or case 2) the state before reading the (i−1)-th character is in
{R, F, U} and the next two characters are a o-q pattern string
({R, F, U}

other
−−−−→ U

quote
−−−−→ -). This means that the string at the

(i − 1)-th and i-th characters must be either a q-o pattern
string or a o-q pattern string. Since we have a contradiction
here, it must be that all transitions of the FSM are valid after
the first character. Then, we know that the states R, F, and
Q must be valid starting states, according to the FSM-based
algorithm. Because the R and F states are unquoted states
whereas the Q state is the quoted state. By definition, the
chunk is an ambiguous chunk. This completes the proof by
contraposition. □

Property 4. The extended framework is error-detectable.

Proof. Let thek-th chunk in a CSV input be the last chunk
whose adjusted chunk contains non-X states (the k-th chunk
is the last chunk if there is no syntax error). By definition, the
adjusted chunks of the first k chunks are connected end to
end, meaning that any character in the input that appearing
before the first syntax error is contained in one and only
one adjusted chunk. As per the extended framework, the
adjusted chunk of each of the first k chunks always starts
with the first character after the first R state within the chunk.
Since R is the initial state of the FSM, the FSM that starts
from this position produces exactly same transitions on the
subsequent characters as the FSM that starts from the begin-
ning of the input. As a result, each character before the first
X state is processed correctly, meaning that no error can be
detected before the first actual syntax error. Due to the same
reason, the first syntax error must be detected using the FSM.
The master then collects all errors detected by workers and
reports the first one, which must be the first actual syntax
error, as no errors can be detected before the first actual
syntax error. □

B DISCUSSIONS
B.1 Supporting Multi-Byte Encodings
The parsing approaches presented in this paper are in gen-
eral independent to the character encoding of the CSV input.

These approaches rely on the decoder of the input to convert
the encoded byte stream into (multi-byte) characters, and
apply algorithms on the decoded characters. However, for
common encodings such as UTF-8 and UTF-16, our algo-
rithms can process an encoded byte stream as a sequence of
single-byte characters, without having to decode the multi-
byte characters.
In this section, we focus our discussion on the UTF-8

encoding, the dominant encoding of big data applications.
UTF-8 is a variable-length character encoding that represents
Unicode characters using one to four bytes. Figure 16 shows
the structure of the UTF-8 encoding. For an ASCII character,
i.e., an Unicode character whose code is in the range of
0 ∼ 127, UTF-8 maps it to a single byte with the same value as
the ASCII character. Non-ASCII characters are encoded with
multiple bytes, each of which is guaranteed to be different
from any ASCII byte. This means that an ASCII byte in an
UTF-8 byte stream must represent an ASCII character rather
than a byte in a multi-byte character.

Character 1st Byte 2nd Byte 3rd Byte 4th ByteLength
1 byte 0xxxxxxx
2 bytes 110xxxxx 10xxxxxx
3 bytes 1110xxxx 10xxxxxx 10xxxxxx
4 bytes 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Figure 16: The structure ofUTF-8 Encoding (the x char-
acters represent actual code of an Unicode character)

With this property, our parsing algorithms can process an
UTF-8 byte stream as a sequence of single-byte characters,
without having to decode the multi-byte characters. This is
because our speculative parsing algorithms only examine if
each input character is one of the three structural charac-
ters: quote, comma, or newline (see Figure 4). Quote, comma,
and newline are all ASCII characters, meaning that a byte
in the input byte stream represents a quote/comma/newline
character if and only if its byte value is identical to the
quote/comma/newline character. All other bytes, including
other ASCII bytes or bytes in multi-byte characters, are then
treated as “other” characters. Thus, a multi-byte character is
treated as a sequence of up to 4 “other” bytes. Interestingly,
this simplification does not impact the outcome of the algo-
rithm to determine the ambiguity (Section 4.4): if the input
contains q-o (or o-q) pattern characters, it must also con-
tain q-o (or o-q) pattern bytes, and vice versa. However, this
approach may impact the speculation accuracy of the specu-
lation algorithm (Section 4.5), as it may change the number
of “characters”. Nevertheless, according to our experiments
on a large number of real-world datasets, we found that this
impact is negligible.

B.2 Boundary Handling
In the framework described in Section 3.1, we assume that
workers can access any fragments of a file. In this section, we
relax this assumption and extend the proposed approaches to
handle records at chunk boundaries, without having workers
access subsequent chunks.

We first extend the framework to handle records at chunk
boundaries. In the extended framework, each worker finds
the first and last record delimiters in the chunk that is as-
signed to the worker. The region between the two record
delimiters is considered to be the adjusted chunk. Following
the terminology of previous work [23], the incomplete record
before the first record delimiter in the chunk is called the
widow record of the chunk, whereas the incomplete record af-
ter the last record delimiter in the chunk is called the orphan

record of the chunk. A worker is responsible for parsing
records in its adjusted chunk, and sending the parsing re-
sults along with the widow and orphan records to the master.
For each chunk, the master needs to concatenate the orphan
record of the chunk and the widow record of the next chunk,
and parse the concatenated record.
In the speculative approach, the master is responsible

for validating whether or not the concatenated record at
each chunk boundary is a complete and valid CSV record.
If this is true, all adjusted chunks and concatenated records
are connected end to end, meaning that speculations are
successful. If any concatenated record is incomplete, at least
one speculationmade in chunks fails. In this case, we fall back
on the two-pass approach to recover from the mispredication.

	Abstract
	1 Introduction
	1.1 Example
	1.2 Contributions

	2 Background on CSV Format
	3 Distributed Parsing
	3.1 Framework
	3.2 Two-Pass Approach
	3.3 Speculative Approach

	4 Speculative Parsing on Chunks
	4.1 Overview
	4.2 Finite-State Machine for CSV
	4.3 Determining Ambiguity using a FSM
	4.4 Determining Ambiguity using Patterns
	4.5 Speculation

	5 Syntax Error Handling
	5.1 Problem Definition
	5.2 Extending Framework
	5.3 Extending Two-Pass Approach
	5.4 Extending Speculative Approach

	6 Apache Spark Integration
	7 Performance Evaluation
	7.1 Experiment 1: Parsing Performance
	7.2 Experiment 2: Speculation Overhead
	7.3 Experiment 3: Speculation Accuracy
	7.4 Experiment 4: Worst Case Analysis
	7.5 Experiment 5: Scalability Evaluation
	7.6 Experiment 6: Error Handling

	8 Related Work
	9 Conclusion and Future Work
	References
	A Theorems and Proofs
	B Discussions
	B.1 Supporting Multi-Byte Encodings
	B.2 Boundary Handling

