
A fork() in the road
Andrew Baumann

Microsoft Research
Jonathan Appavoo

Boston University
Orran Krieger
Boston University

Timothy Roscoe
ETH Zurich

ABSTRACT
The received wisdom suggests that Unix’s unusual combi-
nation of fork() and exec() for process creation was an
inspired design. In this paper, we argue that fork was a clever
hack for machines and programs of the 1970s that has long
outlived its usefulness and is now a liability. We catalog the
ways in which fork is a terrible abstraction for the mod-
ern programmer to use, describe how it compromises OS
implementations, and propose alternatives.

As the designers and implementers of operating systems,
we should acknowledge that fork’s continued existence as
a first-class OS primitive holds back systems research, and
deprecate it. As educators, we should teach fork as a histor-
ical artifact, and not the first process creation mechanism
students encounter.

ACM Reference Format:
Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy
Roscoe. 2019. A fork() in the road. InWorkshop on Hot Topics in
Operating Systems (HotOS ’19), May 13–15, 2019, Bertinoro, Italy.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3317550.
3321435

1 INTRODUCTION
When the designers of Unix needed a mechanism to create
processes, they added a peculiar new system call: fork(). As
every undergraduate now learns, fork creates a new process
identical to its parent (the caller of fork), with the exception
of the system call’s return value. The Unix idiom of fork()
followed by exec() to execute a different program in the
child is nowwell understood, but still stands in stark contrast
to process creation in systems developed independently of
Unix [e.g., 1, 30, 33, 54].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321435

50 years later, fork remains the default process creation
API on POSIX: Atlidakis et al. [8] found 1304 Ubuntu pack-
ages (7.2% of the total) calling fork, compared to only 41
uses of the more modern posix_spawn(). Fork is used by
almost every Unix shell, major web and database servers (e.g.,
Apache, PostgreSQL, and Oracle), Google Chrome, the Redis
key-value store, and even Node.js. The received wisdom ap-
pears to hold that fork is a good design. Every OS textbook
we reviewed [4, 7, 9, 35, 75, 78] covered fork in uncritical
or positive terms, often noting its “simplicity” compared to
alternatives. Students today are taught that “the fork system
call is one of Unix’s great ideas” [46] and “there are lots of
ways to design APIs for process creation; however, the com-
bination of fork() and exec() are simple and immensely
powerful . . . the Unix designers simply got it right” [7].
Our goal is to set the record straight. Fork is an anachro-

nism: a relic from another era that is out of place in modern
systems where it has a pernicious and detrimental impact.
As a community, our familiarity with fork can blind us to its
faults (§4). Generally acknowledged problems with fork in-
clude that it is not thread-safe, it is inefficient and unscalable,
and it introduces security concerns. Beyond these limitations,
fork has lost its classic simplicity; it today impacts all the
other operating system abstractions with which it was once
orthogonal. Moreover, a fundamental challenge with fork is
that, since it conflates the process and the address space in
which it runs, fork is hostile to user-mode implementation
of OS functionality, breaking everything from buffered IO
to kernel-bypass networking. Perhaps most problematically,
fork doesn’t compose—every layer of a system from the kernel
to the smallest user-mode library must support it.
We illustrate the havoc fork wreaks on OS implementa-

tions using our experiences with prior research systems (§5).
Fork limits the ability of OS researchers and developers to
innovate because any new abstraction must be special-cased
for it. Systems that support fork and exec efficiently are
forced to duplicate per-process state lazily. This encourages
the centralisation of state, a major problem for systems not
structured using monolithic kernels. On the other hand, re-
search systems that avoid implementing fork are unable to
run the enormous body of software that uses it.

We end with a discussion of alternatives (§6) and a call to
action (§7): fork should be removed as a first-class primitive
of our systems, and replaced with good-enough emulation
for legacy applications. It is not enough to add new primitives
to the OS—fork must be removed from the kernel.

1

https://doi.org/10.1145/3317550.3321435
https://doi.org/10.1145/3317550.3321435
https://doi.org/10.1145/3317550.3321435

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe

2 HISTORY: FORK BEGAN AS A HACK
Although the term originates with Conway, the first imple-
mentation of a fork operation is widely credited to the Project
Genie time-sharing system [61]. Ritchie and Thompson [70]
themselves claimed that Unix fork was present “essentially as
we implemented it” in Genie. However, the Genie monitor’s
fork call was more flexible than that of Unix: it permitted
the parent process to specify the address space and machine
context for the new child process [49, 71]. By default, the
child shared the address space of its parent (somewhat like
a modern thread); optionally, the child could be given an
entirely different address space of memory blocks to which
the user had access; presumably, in order to run a different
program. Crucially, however, there was no facility to copy
the address space, as was done unconditionally by Unix.
Ritchie [69] later noted that “it seems reasonable to sup-

pose that it exists in Unix mainly because of the ease with
which fork could be implemented without changing much
else.” He goes on to describe how the first fork was imple-
mented in 27 lines of PDP-7 assembly, and consisted of copy-
ing the current process out to swap and keeping the child
resident in memory.1 Ritchie also noted that a combined Unix
fork-exec “would have been considerably more complicated,
if only because exec as such did not exist; its function was
already performed, using explicit IO, by the shell.”
The TENEX operating system [18] yields a notable

counter-example to the Unix approach. It was also influ-
enced by Project Genie, but evolved independently of Unix.
Its designers also implemented a fork call for process cre-
ation, however, more similarly to Genie, the TENEX fork
either shared the address space between parent and child,
or else created the child with an empty address space [19].
There was no Unix-style copying of the address space, likely
because virtual memory hardware was available.2
Unix fork was not a necessary “inevitability” [61]. It was

an expedient PDP-7 implementation shortcut that, for 50
years, has pervaded modern OSes and applications.

3 ADVANTAGES OF THE FORK API
When Unix was rewritten for the PDP-11 (with memory
translation hardware permitting multiple processes to re-
main resident), copying the process’s entire memory only
to immediately discard it in exec was already, arguably, in-
efficient. We suspect that copying fork survived the early
years of Unix mainly because programs and memory were
small (eight 8 KiB pages on the PDP-11), memory access

1Sharing memory between parent and child (as in Genie) was impracti-
cal, because the PDP-7 lacked virtual memory hardware; instead, Unix
implemented multiprocessing by swapping full processes to disk.
2TENEX also supported copy-on-write memory, but this does not appear to
have been used by fork [20].

was fast relative to instruction execution, and it provided a
compelling abstraction. There are two main aspects to this:

Fork was simple. As well as being easy to implement,
fork simplified the Unix API. Most obviously, fork needs
no arguments, because it provides a simple default for all
the state of a new process: inherit it from the parent. In
stark contrast, the Windows CreateProcess() API takes
explicit parameters specifying every aspect of the child’s
kernel state—10 parameters and many optional flags.

More significantly, creating a process with fork is orthog-
onal to starting a new program, and the space between fork
and exec serves a useful purpose. Since fork duplicates the
parent, the same system calls that permit a process to modify
its kernel state can be reused in the child prior to exec: the
shell opens, closes, and remaps file descriptors prior to com-
mand execution, and programs can reduce permissions or
alter the namespace of a child to run it in restricted context.

Fork eased concurrency. In the days before threads or
asynchronous IO, fork without exec provided an effective
form of concurrency. In the days before shared libraries,
it enabled a simple form of code reuse. A program could
initialise, parse its configuration files, and then fork multiple
copies of itself that ran either different functions from the
same binary or processed different inputs. This design lives
on in pre-forking servers; we return to it in §6.

4 FORK IN THE MODERN ERA
At first glance, fork still seems simple. We argue that this
is a deceptive myth, and that fork’s effects cause modern
applications more harm than good.

Fork is no longer simple. Fork’s semantics have in-
fected the design of each new API that creates process
state. The POSIX specification now lists 25 special cases
in how the parent’s state is copied to the child [63]: file locks,
timers, asynchronous IO operations, tracing, etc. In addi-
tion, numerous system call flags control fork’s behaviour
with respect to memory mappings (Linux madvise() flags
MADV_DONTFORK/DOFORK/WIPEONFORK, etc.), file descriptors
(O_CLOEXEC, FD_CLOEXEC) and threads (pthread_atfork()).
Any non-trivial OS facility must document its behaviour
across a fork, and user-mode libraries must be prepared for
their state to be forked at any time. The simplicity and or-
thogonality of fork is now a myth.

Fork doesn’t compose. Because fork duplicates an entire
address space, it is a poor fit for OS abstractions implemented
in user-mode. Buffered IO is a classic example: a user must
explicitly flush IO prior to fork, lest output be duplicated [73].

Fork isn’t thread-safe. Unix processes today support
threads, but a child created by fork has only a single thread
(a copy of the calling thread). Unless the parent serialises fork
with respect to its other threads, the child address space may

2

A fork() in the road HotOS ’19, May 13–15, 2019, Bertinoro, Italy

Parent process size (MiB)

0 50 100 150 200 250

T
im

e
(m

s)

0

5

10

15

20

25

fork+exec (fragmented)
fork+exec (dirty)
spawn

Figure 1: Cost of fork()+ exec() vs. posix_spawn()

end up as an inconsistent snapshot of the parent. A simple
but common case is one thread doing memory allocation
and holding a heap lock, while another thread forks. Any
attempt to allocate memory in the child (and thus acquire the
same lock) will immediately deadlock waiting for an unlock
operation that will never happen.
Programming guides advise not using fork in a multi-

threaded process, or calling exec immediately afterwards [64,
76, 77]. POSIX only guarantees that a small list of “async-
signal-safe” functions can be used between fork and exec,
notably excluding malloc() and anything else in standard
libraries that may allocate memory or acquire locks. Real
multi-threaded programs that fork are plagued by bugs aris-
ing from the practice [24–26, 66].
It is hard to imagine a new proposed syscall with these

properties being accepted by any sane kernel maintainer.
Fork is insecure. By default, a forked child inherits ev-

erything from its parent, and the programmer is responsible
for explicitly removing state that the child does not need by:
closing file descriptors (or marking them as close-on-exec),
scrubbing secrets from memory, isolating namespaces using
unshare() [52], etc. From a security perspective, the inherit-
by-default behaviour of fork violates the principle of least
privilege. Furthermore, programs that fork but don’t exec
render address-space layout randomisation ineffective, since
each process has the same memory layout [17].

Fork is slow. In the decades since Thompson first im-
plemented fork, memory size and relative access cost have
grown continuously. Even by 1979 (when the third BSD Unix
introduced vfork() [15]) fork was seen as a performance
problem, and only copy-on-write techniques [3, 72] kept its
performance acceptable. Today, even the time to establish
copy-on-write mappings is a problem: Chrome experiences
delays of up to 100ms in fork [28], and Node.js applications
can be blocked for seconds while forking prior to exec [56].

Fork is now such a performance liability that C libraries
carefully avoid its use in posix_spawn() [34, 38], and Solaris
implements spawn as a native system call [32]. However, as
long as applications continue to call fork directly, they pay a
high price. Figure 1 plots the time to fork and exec from a
process of varying size under Ubuntu 16.04.3 on an Intel i7-
6850K CPU at 3.6 GHz. The dirty line shows the cost of fork-
ing a process with dirty pages, which must be downgraded
to read-only for copy-on-write mappings. In the fragmented
case, the parent dirties only its stack, but simulates mem-
ory layout in a complex application using shared libraries,
address space randomisation, and just-in-time compilation,
by allocating alternating read-only and read-write pages.
By contrast, posix_spawn() takes the same time (around
0.5ms) regardless of the parent’s size or memory layout.

Fork doesn’t scale. In Linux, the memory management
operations needed to setup fork’s copy-on-write mappings
are known to hurt scalability [22, 82], but the true problem
lies deeper: as Clements et al. [29] observed, the mere spec-
ification of the fork API introduces a bottleneck, because
(unlike spawn) it fails to commute with other operations on
the process. Other factors further impede a scalable imple-
mentation of fork. Intuitively, the way to make a system scale
is to avoid needless sharing. A forked process starts sharing
everything with its parent. Since fork duplicates every aspect
of a process’s OS state, it encourages centralisation of that
state in a monolithic kernel where it is cheap to copy and/or
reference count. This then makes it hard to implement, e.g.,
kernel compartmentalisation for security or reliability.

Fork encourages memory overcommit. The imple-
menter of fork faces a difficult choice when accounting for
memory used by copy-on-write page mappings. Each such
page represents a potential allocation—if any copy of the
page is modified, a new page of physical memory will be
needed to resolve the page fault. A conservative implemen-
tation therefore fails the fork call unless there is sufficient
backing store to satisfy all potential copy-on-write faults [55].
However, when a large process performs fork and exec, many
copy-on-write page mappings are created but never modi-
fied, particularly if the exec’ed child is small, and having fork
fail because the worst-case allocation (double the virtual size
of the process) could not be satisfied is undesirable.
An alternative approach, and the default on Linux, is to

overcommit virtual memory: operations that establish vir-
tual address mappings, which includes fork’s copy-on-write
clone of an address space, succeed immediately regardless of
whether sufficient backing store exists. A subsequent page
fault (e.g. a write to a forked page) can fail to allocate required
memory, invoking the heuristic-based “out-of-memory killer”
to terminate processes and free up memory.
To be clear, Unix does not require overcommit, but we

argue that the widespread use of copy-on-write fork (rather
3

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe

than a spawn-like facility) strongly encourages it. Real appli-
cations are unprepared to handle apparently-spurious out-of-
memory errors in fork [27, 37, 57]. Redis, which uses fork for
persistence, explicitly advises against disablingmemory over-
commit [67]; otherwise, Redis would have to be restricted to
only half the total virtual memory to avoid the risk of being
killed in an out-of-memory situation.

Summary. Fork today is a convenient API for a single-
threaded process with a small memory footprint and simple
memory layout that requires fine-grained control over the
execution environment of its children but does not need
to be strongly isolated from them. In other words, a shell.
It’s no surprise that the Unix shell was the first program to
fork [69], nor that defenders of fork point to shells as the
prime example of its elegance [4, 7]. However, most modern
programs are not shells. Is it still a good idea to optimise the
OS API for the shell’s convenience?

5 IMPLEMENTING FORK
While it is hard to quantify the cost of implementing fork on
existing systems, there is clear evidence that supporting fork
limits changes in OS architecture, and restricts the ability of
OSes to adapt with hardware evolution.

Fork is incompatible with a single address space.
Many modern contexts restrict execution to a single address
space, including picoprocesses [42], unikernels [53], and en-
claves [14]. Despite the fact that a much larger community of
OS researchers work with and on Unix systems, researchers
working with systems not based on fork have had a much
easier time adapting them to these environments.
For example, the Drawbridge libOS [65] implements a

binary-compatible Windows runtime environment within
an isolated user-mode address space, known as a picoprocess.
Drawbridge supports multiple “virtual processes” within
the same shared address space; CreateProcess() is imple-
mented by loading the new binary and libraries in a different
portion of the address space, and then creating a separate
thread to begin execution of the child, while ensuring cross-
process system calls function as expected. Needless to say,
there is no security isolation between these processes—the
meaningful security boundary is the host picoprocess. How-
ever, this model has been used, for example, to support a
full multi-process Windows environment inside an SGX en-
clave [14], enabling complex applications that involve multi-
ple processes and programs to be deployed in an enclave.
In contrast, fork is unimplementable within a single ad-

dress space [23] without complex compiler and linker mod-
ifications [81]. As a result, Unikernels derived from Unix
systems do not support internal multi-process environ-
ments [44, 45] and running multi-process Linux applica-
tions in an enclave is much more complicated. SCONE and

SGX-LKL support only single-process applications [6, 50].
Graphene-SGX [79] implements fork by creating a new en-
clave in a new host process, then copying the parent’s mem-
ory over an encrypted RPC stream; this can take seconds.

Fork is incompatible with heterogeneous hardware.
Fork conflates the abstraction of a process with the hardware
address space that contains it. In effect, fork restricts the
definition of a process to a single address space and (as we
saw earlier) a single thread running on some core.
Modern hardware, and the programs that run on it, just

don’t look like this. Hardware is increasingly heteroge-
neous, and a process using, say, DPDK with a kernel-bypass
NIC [12], or OpenCL with a GPU, cannot safely fork since
the OS cannot duplicate the process state on the NIC/GPU.
This appears to have been a continuing source of bafflement
among GPU programmers for a decade at least [58–60, 74].
As future systems-on-chip incorporate more and more state-
ful accelerators, this is only going to get worse.

Fork infects an entire system. The mere choice to sup-
port fork places significant constraints on the system’s de-
sign and runtime environment. An efficient fork at any layer
requires a fork-based implementation at all layers below it.
For example, Cygwin is a POSIX compatibility environment
for Windows; it implements fork in order to run Linux appli-
cations. Since the Win32 API lacks fork, Cygwin emulates
it on top of CreateProcess() [31, 47]: it creates a new pro-
cess running the same program as the parent and copies all
writable pages (data sections, heap, stack, etc.) before resum-
ing the child. This is neither fast nor reliable and can fail for
many reasons, most often when memory addresses in parent
and child differ due to address-space layout randomisation.

Ironically, the NT kernel natively supports fork; only the
Win32 API on which Cygwin depends does not (user-mode
libraries and system services are not fork-aware, so a forked
Win32 process crashes). As an abstraction, fork fails to com-
pose: unless every layer supports fork, it cannot be used.

Fork in a research OS: the K42 experience
Many research operating systems have faced the dilemma of
whether (and if so, how) to implement fork, with the authors
having direct experience of six [13, 36, 41, 48, 51, 80]. This
choice has significant implications. Implementing fork opens
the door to a large class of Unix-derived applications, first
among them shells and build tools that ease the construction
of a complete system. However, it also ties the researchers’
hands: we conjecture that a system that implements fork,
particularly one that attempts to do so efficiently, or early in
its life, inexorably converges to a Unix-like design.
K42 [48] built on our experience with Tornado [36] that

demonstrated the value of a multi-processor-friendly object-
oriented approach, per-application customisable objects, and
microkernel architecture [5] to enable pervasive locality and

4

A fork() in the road HotOS ’19, May 13–15, 2019, Bertinoro, Italy

concurrency optimisations. Our goal was to construct a fully-
fledged general-purpose OS supporting a wide range of appli-
cations using multiple OS personalities on (potentially) very
large multiprocessors. In the end, K42 was POSIX compli-
ant and Linux ABI compatible, but the quest to make fork
perform for the Linux personality caused fork semantics to
subvert the OS design to the detriment of other personalities.

We initially assumed that we would be able to implement
fork much like Cygwin: as a user-level library function that
would create a child copy of the existing process by appro-
priately constructing the necessary new object instances.
This by itself was not necessarily problematic. Rather, it was
the choice to allow any process at any point to be forkable,
and to do so efficiently in the quest of competitive perfor-
mance, that proved our undoing—the attendant complexity
may very well have been key to us abandoning all but our
support for Unix and our native personalities.
In particular, the following problems permeated almost

every aspect of the system:
Anti-modularity: Each object implementation, of any

type that may back a running process, needed to define its be-
haviour when the process forked. This greatly increased the
complexity of implementing specialised components whose
sole purpose might simply be to introduce a locality opti-
misation for a long-lived parallel scientific computation or
server that has no real reason to fork.

Inherent need for laziness: Given that every core re-
source, frommemory regions and files to personality-specific
abstractions like file descriptors and signal handlers, all re-
quired fork support, we were driven to implement lazy copy-
on-write-like behaviour to mitigate poor performance. Not
only did this induce complexity within individual objects,
it required object interactions to maintain the hierarchical
relationships created by fork. This was counter to our aim
of limiting sharing and synchronisation, harming locality.

Centralisation: OS scalability is helped by avoiding cen-
tralised policies and using mechanisms that eschew exact
global knowledge [11]. Decomposing state and functionality
across object instances and servers thus became our core
philosophy. However, despite fork being coordinated in li-
brary code, it required communication with every server and
object a process may be connected to.

Poor scalability: Besides violating our core scalability
principles, fork in a NUMA system must either access mem-
ory at the parent’s location or schedule its children in con-
tended parts of the system; these are inherent issues we spent
much effort addressing.

In hindsight, we made a mistake in not carefully assessing
the real use-cases for fork. Had we special-cased K42’s fork
to single-threaded processes (e.g., shells), we could have
avoided burdening core objects with its complexity.

6 REPLACING FORK
Given all the problems with fork, what should replace it?
Creating a new process leads to a messy API design problem,
as any option must, implicitly or explicitly, specify the initial
state of every OS resource belonging to the new process.
Fork has an easy answer: everything is copied, which as
we’ve seen becomes its undoing. In its place, we propose a
combination of a high-level spawn API and a lower-level
microkernel-like API to setup a new process prior to execu-
tion. We then discuss alternatives to fork without exec.

High-level: Spawn. In our opinion, most uses of fork and
exec would be best served by a spawn API. The refactoring
required to make this change can be tricky, particularly when
fork and exec are not proximate in code, but as we showed
in §4 there are significant performance and reliability advan-
tages, not to mention portability. Notably, major applications
that fork (e.g., Apache, Chrome, PostgreSQL) have Windows
ports that don’t, so fork is clearly not essential.

The posix_spawn()API can ease such refactoring. Rather
than requiring that all parameters affecting a new pro-
cess be provided at a single call-site (as is the case for
CreateProcess()), spawn attributes are set by extensibly-
defined helper functions. A post-fork close(), for example,
can be replaced by a pre-spawn call that records a “close
action” to occur in the child. Unfortunately, this means that
the API is specified as if it were implemented by fork and
exec, although it is not actually required [32].
The main drawback of posix_spawn() is that it is not a

complete replacement for fork and exec. Some less-common
operations, such as setting terminal attributes or switching
to an isolated namespace, are not yet supported. It also lacks
an effective error-reporting mechanism: failures occurring in
the context of the child before it begins execution (such as in-
valid file descriptor parameters) are reported asynchronously
and are indistinguishable from the child’s termination. These
shortcomings can and should be corrected.

Alternative: vfork(). This widely-implemented fork
variant was introduced by BSD as an optimisation [15]; it cre-
ates a new process that shares the parent’s address space until
the child calls exec, more like the original Genie fork [71].
To enable the child to use the parent’s stack, it blocks exe-
cution of the parent until exec. This permits a similar style
of programming to fork in which a new process modifies its
kernel state prior to exec. However, because of the shared ad-
dress space, vfork() is difficult to use safely [34]. Although
vfork() avoids the cost of cloning the address space, and
may help to replace fork where refactoring to use spawn is
impractical, in most cases it is better avoided.

Low-level: Cross-process operations. While a spawn-
like API is preferred for most instances of starting a new
program, for full generality it requires a flag, parameter, or

5

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe

helper function controlling every possible aspect of process
state. It is infeasible for a single OS API to give complete
control over the initial state of a new process. In Unix today,
the only fallback for advanced use-cases remains code ex-
ecuted after fork, but clean-slate designs [e.g., 40, 43] have
demonstrated an alternative model where system calls that
modify per-process state are not constrained to merely the
current process, but rather can manipulate any process to
which the caller has access. This yields the flexibility and
orthogonality of the fork/exec model, without most of its
drawbacks: a new process starts as an empty address space,
and an advanced user may manipulate it in a piecemeal fash-
ion, populating its address-space and kernel context prior to
execution, without needing to clone the parent nor run code
in the context of the child. ExOS [43] implemented fork in
user-mode atop such a primitive. Retrofitting cross-process
APIs into Unix seems at first glance challenging, but may
also be productive for future research.

Alternative: clone(). This syscall underlies all process
and thread creation on Linux. Like Plan 9’s rfork() which
preceded it, it takes separate flags controlling the child’s
kernel state: address space, file descriptor table, namespaces,
etc. This avoids one problem of fork: that its behaviour is
implicit or undefined for many abstractions. However, for
each resource there are two options: either share the resource
between parent and child, or else copy it. As a result, clone
suffers most of the same problems as fork (§4–5).

Fork-only use-cases. There exist special cases where fork is
not followed by exec, that rely on duplicating the parent.

Multi-process servers. Traditionally the standard way
to build a concurrent server was to fork off processes. How-
ever, the reasons that motivated multi-process servers are
long gone: OS libraries are thread-safe, and the scalability bot-
tlenecks that plagued early threaded or event-driven servers
are fixed [10]. While process boundaries may have value
from a fault isolation perspective, we believe that it makes
more sense to use a spawn API to start those processes. The
performance advantage of the shared initial state created by
fork is less relevant when most concurrency is handled by
threads, and modern operating systems deduplicate memory.
Finally, with fork, all processes share the same address-space
layout and are vulnerable to Blind ROP attacks [17].

Copy-on-write memory. Modern implementations of
fork use copy-on-write to reduce the overhead of copying
memory that is often soon discarded [72]. A number of ap-
plications have since taken a dependency on fork merely to
gain access to copy-on-write memory. One common pattern
involves forking from a pre-initialised process, to reduce
startup overhead and memory footprint of a worker process,
as in the Android Zygote [39, 62] and Chrome site isolation

on Linux [4]. Another pattern uses fork to capture a consis-
tent snapshot of a running process’s address space, allowing
the parent to continue execution; this includes persistence
support in Redis [68], and some reverse debuggers [21].

POSIX would benefit from an API for using copy-on-write
memory independently of forking a new process. Bittau [16]
proposed checkpoint() and resume() calls to take copy-on-
write snapshots of an address space, thus reducing the over-
head of security isolation. More recently, Xu et al. [82] ob-
served that fork time dominates the performance of fuzzing
tools, and proposed a similar snapshot()API. These designs
are not yet general enough to cover all the use-cases outlined
above, but perhaps can serve as a starting point. We note
that any new copy-on-write memory API must tackle the
issue of memory overcommit described in §4, but decoupling
this problem from fork should make it much simpler.

7 GET THE FORK OUT OF MY OS!
We’ve described how fork is a relic of the past that harms
applications and OS design. There are three things we must
do to rectify the situation.

Deprecate fork. Thanks to the success of Unix, future
systems will be stuck supporting fork for a long time; never-
theless, an implementation hack of 50 years ago should not
be permitted to dictate the design of future OSes. We should
therefore strongly discourage the use of fork in new code,
and seek to remove it from existing apps. Once fork is gone
from performance-critical paths, it can be removed from the
core of the OS and reimplemented on top as needed. If future
systems supported fork only in limited cases, such as a single-
threaded process [2], it would remain possible to run legacy
software without needless implementation complexity.

Improve the alternatives. For too long, fork has been
the generic process creation mechanism on Unix-like sys-
tems, with other abstractions layered on top. Thankfully, this
has begun to change [32, 38], but there is more to do (§6).

Fix our teaching. Clearly, students need to learn about
fork, however at present most text books (and we presume
instructors) introduce process creation with fork [7, 35, 78].
This not only perpetuates fork’s use, it is counterproductive—
the API is far from intuitive. Just as a programming course
would not today begin with goto, we suggest teaching either
posix_spawn() or CreateProcess(), and then introducing
fork as a special case with its historic context (§2).

ACKNOWLEDGEMENTS
We thank all who provided feedback, including: Tom Ander-
son, Remzi Arpaci-Dusseau, Marc Auslander, Bill Bolosky,
Ulrich Drepper, Chris Hawblitzel, Eddie Kohler, Petros Ma-
niatis, Mathias Payer, Michael Stumm, Robbert Van Renesse,
and the anonymous reviewers.

6

A fork() in the road HotOS ’19, May 13–15, 2019, Bertinoro, Italy

REFERENCES
[1] The BeBook: The Kernel Kit: load_image(). ACCESS Co., 1.0 edition,

March 2008. URL https://www.haiku-os.org/legacy-docs/bebook/
TheKernelKit_Images.html#load_image.

[2] The BeBook: Threads and Teams. ACCESS Co., 1.0 edition, March 2008.
URL https://www.haiku-os.org/legacy-docs/bebook/TheKernelKit_
ThreadsAndTeams_Overview.html.

[3] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for UNIX development. In USENIX Summer Conference,
pages 93–113, June 1986.

[4] Thomas Anderson and Michael Dahlin. Operating Systems: Principles
and Practice. Recursive Books, 2nd edition, 2014. ISBN 978-0-9856735-
2-9.

[5] Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Marc Auslander,
Michal Ostrowski, Bryan Rosenburg, Amos Waterland, Robert W.
Wisniewski, Jimi Xenidis, Michael Stumm, and Livio Soares. Ex-
perience distributing objects in an SMMP OS. ACM Transactions
on Computer Systems, 25(3), August 2007. ISSN 0734-2071. doi:
10.1145/1275517.1275518.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux
containers with Intel SGX. In 12th USENIX Symposium on Operating
Systems Design and Implementation, pages 689–703. USENIX Associ-
ation, 2016. ISBN 978-1-931971-33-1. URL https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov.

[7] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating
Systems: Three Easy Pieces, chapter 5. Arpaci-Dusseau Books, 1.00
edition, March 2018. URL http://www.ostep.org/.

[8] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris
Mitropoulos, and Jason Nieh. POSIX abstractions in modern oper-
ating systems: The old, the new, and the missing. In EuroSys Con-
ference, pages 19:1–19:17. ACM, 2016. ISBN 978-1-4503-4240-7. doi:
10.1145/2901318.2901350.

[9] Jean Bacon and Tim Harris. Operating Systems: Concurrent and Dis-
tributed Software Design. Addison Wesley, 2003. ISBN 0-321-11789-1.

[10] Gaurav Banga and Jeffrey C. Mogul. Scalable kernel performance for
Internet servers under realistic loads. In 1998 USENIX Annual Technical
Conference. USENIX Association, 1998. URL https://www.usenix.org/
legacy/publications/library/proceedings/usenix98/banga.html.

[11] Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX
Distributed Operating System: Load Balancing for UNIX. Springer-
Verlag Berlin Heidelberg, 1993. doi: 10.1007/3-540-56663-5.

[12] Dotan Barak. Libibverbs Programmer’s Manual: ibv_fork_init(3), Octo-
ber 2006. URL https://github.com/linux-rdma/rdma-core/blob/master/
libibverbs/man/ibv_fork_init.3.md.

[13] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schuepbach,
and Akhilesh Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In 22nd ACM Symposium on Operating
Systems Principles. ACM, October 2009. doi: 10.1145/1629575.1629579.

[14] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applica-
tions from an untrusted cloud with Haven. In 11th USENIX Symposium
on Operating Systems Design and Implementation, pages 267–283, Oc-
tober 2014. ISBN 978-1-931971-16-4. URL https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/baumann.

[15] 2.9.1 BSD System Calls Manual: vfork(2). Berkeley Software Distribu-
tion, Berkeley, CA, USA, 1983. URL https://www.freebsd.org/cgi/man.
cgi?query=vfork&manpath=2.9.1+BSD.

[16] Andrea Bittau. Toward Least-Privilege Isolation for Software. PhD
thesis, Department of Computer Science, University College London,
November 2009. URL http://www.scs.stanford.edu/~sorbo/bittau-phd.
pdf.

[17] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan
Boneh. Hacking blind. In IEEE Symposium on Security and Privacy,
pages 227–242. IEEE Computer Society, 2014. ISBN 978-1-4799-4686-0.
doi: 10.1109/SP.2014.22.

[18] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L.Murphy, and Raymond S.
Tomlinson. TENEX, a paged time sharing system for the PDP-10. In
3rd ACM Symposium on Operating Systems Principles. ACM, 1971. doi:
10.1145/800212.806492.

[19] TENEX JSYS Manual. Bolt Beranek and Newman, Cambridge, MA,
USA, 2nd edition, September 1973. URL http://www.bitsavers.org/pdf/
bbn/tenex/TenexJSYSMan_Sep73.pdf.

[20] TENEX 1.33 source code, CFORK system call. Bolt Beranek and Newman,
1975. URL https://github.com/PDP-10/tenex/blob/master/133-tenex/
forks.mac#L208.

[21] Bob Boothe. Efficient algorithms for bidirectional debugging. In
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 299–310. ACM, 2000. ISBN 1-58113-199-2. doi:
10.1145/349299.349339.

[22] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. OpLog: a library for scaling update-heavy data structures.
Technical Report MIT-CSAIL-TR-2014-019, MIT CSAIL, September
2014. URL http://hdl.handle.net/1721.1/89653.

[23] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and protection in a single-address-space operat-
ing system. ACM Transactions on Computer Systems, 12(4):271–307,
November 1994. ISSN 0734-2071. doi: 10.1145/195792.195795.

[24] Chromium Project. Bug 36678, 2010. URL https://crbug.com/36678.
[25] Chromium Project. Bug 56596, 2010. URL https://crbug.com/56596.
[26] Chromium Project. Bug 177218, 2013. URL https://crbug.com/177218.
[27] Chromium Project. Bug 856535, 2018. URL https://crbug.com/856535.
[28] Chromium Project. Bug 819228, 2018. URL https://crbug.com/819228.
[29] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T.

Morris, and Eddie Kohler. The scalable commutativity rule: Designing
scalable software for multicore processors. ACM Transactions on Com-
puter Systems, 32(4):10:1–10:47, January 2015. ISSN 0734-2071. doi:
10.1145/2699681.

[30] OpenVMS System Services Reference Manual: $CREPRC. Com-
paq Computer Corporation, Houston, TX, USA, April 2001.
URL http://h30266.www3.hpe.com/odl/vax/opsys/vmsos73/vmsos73/
4527/4527pro_018.html#jun_147. Document number ZK4527.

[31] Cygwin 2.11 User’s Guide. Cygwin, November 2018. URL https://
cygwin.com/cygwin-ug-net/highlights.html#ov-hi-process.

[32] Casper Dik. posix_spawn() as an actual system call. Oracle So-
laris Blog, February 2018. URL https://blogs.oracle.com/solaris/posix_
spawn-as-an-actual-system-call.

[33] D. Eastlake, R. Greenblatt, J. Holloway, T. Knight, and S. Nelson. ITS 1.5
Refereence Manual. MIT Artificial Intelligence Laboratory, Cambridge,
MA, USA, July 1969. URL https://hdl.handle.net/1721.1/6165. Memo
number AIM-161A.

[34] Rich Felker. vfork considered dangerous. October 2012. URL https:
//ewontfix.com/7.

[35] Greg Gagne, Abraham Silberschatz, and Peter B. Galvin. Operating
Systems Concepts. John Wiley & Sons, 9th edition, 2012. ISBN 978-1-
118-06333-0.

[36] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm.
Tornado: Maximizing locality and concurrency in a shared mem-
ory multiprocessor operating system. In 3rd USENIX Symposium on
Operating Systems Design and Implementation, February 1999. URL
https://www.usenix.org/legacy/events/osdi99/gamsa.html.7

https://www.haiku-os.org/legacy-docs/bebook/TheKernelKit_Images.html#load_image
https://www.haiku-os.org/legacy-docs/bebook/TheKernelKit_Images.html#load_image
https://www.haiku-os.org/legacy-docs/bebook/TheKernelKit_ThreadsAndTeams_Overview.html
https://www.haiku-os.org/legacy-docs/bebook/TheKernelKit_ThreadsAndTeams_Overview.html
https://doi.org/10.1145/1275517.1275518
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
http://www.ostep.org/
https://doi.org/10.1145/2901318.2901350
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/banga.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix98/banga.html
https://doi.org/10.1007/3-540-56663-5
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_fork_init.3.md
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_fork_init.3.md
https://doi.org/10.1145/1629575.1629579
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.freebsd.org/cgi/man.cgi?query=vfork&manpath=2.9.1+BSD
https://www.freebsd.org/cgi/man.cgi?query=vfork&manpath=2.9.1+BSD
http://www.scs.stanford.edu/~sorbo/bittau-phd.pdf
http://www.scs.stanford.edu/~sorbo/bittau-phd.pdf
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/800212.806492
http://www.bitsavers.org/pdf/bbn/tenex/TenexJSYSMan_Sep73.pdf
http://www.bitsavers.org/pdf/bbn/tenex/TenexJSYSMan_Sep73.pdf
https://github.com/PDP-10/tenex/blob/master/133-tenex/forks.mac#L208
https://github.com/PDP-10/tenex/blob/master/133-tenex/forks.mac#L208
https://doi.org/10.1145/349299.349339
http://hdl.handle.net/1721.1/89653
https://doi.org/10.1145/195792.195795
https://crbug.com/36678
https://crbug.com/56596
https://crbug.com/177218
https://crbug.com/856535
https://crbug.com/819228
https://doi.org/10.1145/2699681
http://h30266.www3.hpe.com/odl/vax/opsys/vmsos73/vmsos73/4527/4527pro_018.html#jun_147
http://h30266.www3.hpe.com/odl/vax/opsys/vmsos73/vmsos73/4527/4527pro_018.html#jun_147
https://cygwin.com/cygwin-ug-net/highlights.html#ov-hi-process
https://cygwin.com/cygwin-ug-net/highlights.html#ov-hi-process
https://blogs.oracle.com/solaris/posix_spawn-as-an-actual-system-call
https://blogs.oracle.com/solaris/posix_spawn-as-an-actual-system-call
https://hdl.handle.net/1721.1/6165
https://ewontfix.com/7
https://ewontfix.com/7
https://www.usenix.org/legacy/events/osdi99/gamsa.html

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe

[37] GNOME Project. Merge request 95, 2018. URL https://gitlab.gnome.
org/GNOME/glib/merge_requests/95.

[38] GNU C Library. Bug 10354, 2016. URL https://sourceware.org/bugzilla/
show_bug.cgi?id=10354.

[39] Android Developer Documentation: Overview of memory management.
Google, 2018. URL https://developer.android.com/topic/performance/
memory-overview#SharingRAM.

[40] Gernot Heiser and Kevin Elphinstone. L4 microkernels: The lessons
from 20 years of research and deployment. ACM Transactions on
Computer Systems, 34(1):1:1–1:29, April 2016. ISSN 0734-2071. doi:
10.1145/2893177.

[41] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell,
and Jochen Liedtke. The Mungi single-address-space operating system.
Software, Practice and Experience, 28(9):901–928, 1998.

[42] JonHowell, Bryan Parno, and John R. Douceur. How to run POSIX apps
in a minimal picoprocess. In 2013 USENIX Annual Technical Conference,
pages 321–332. USENIX Association, 2013. URL https://www.usenix.
org/conference/atc13/technical-sessions/presentation/howell.

[43] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M.
Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert
Grimm, John Jannotti, and Kenneth Mackenzie. Application perfor-
mance and flexibility on exokernel systems. In 16th ACM Symposium
on Operating Systems Principles, pages 52–65, 1997. ISBN 0-89791-916-5.
doi: 10.1145/268998.266644.

[44] Antti Kantee. On rump kernels and the Rumprun uniker-
nel, August 2015. URL https://xenproject.org/2015/08/06/
on-rump-kernels-and-the-rumprun-unikernel/.

[45] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. OSv—optimizing the operating system for
virtual machines. In 2014 USENIX Annual Technical Conference, pages
61–72, 2014. ISBN 978-1-931971-10-2. URL https://www.usenix.org/
conference/atc14/technical-sessions/presentation/kivity.

[46] Eddie Kohler. Harvard University CS 61 problem set 4: WeensyOS,
October 2018. URL https://cs61.seas.harvard.edu/site/2018/WeensyOS/.
See also https://twitter.com/xexd/status/951977086331359232.

[47] David G. Korn. Porting UNIX to Windows NT. In 1997 USENIX Annual
Technical Conference, January 1997. URL https://www.usenix.org/
legacy/publications/library/proceedings/ana97/korn.html.

[48] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wis-
niewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan
Appavoo, Maria Butrico, Mark Mergen, Amos Waterland, and Volk-
mar Uhlig. K42: Building a complete operating system. In EuroSys
Conference, pages 133–145. ACM, 2006. ISBN 1-59593-322-0. doi:
10.1145/1217935.1217949.

[49] Butler W. Lampson. SDS 940 lectures. June 1966. URL
http://archive.computerhistory.org/resources/text/SDS/sds.lampson.
SDS_940_lectures.1966.102634499.pdf.

[50] SGX-LKL. Large-Scale Data & Systems Group, Imperial College Lon-
don, 2018. URL https://github.com/lsds/sgx-lkl.

[51] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The design
and implementation of an operating system to support distributed mul-
timedia applications. IEEE Journal on Selected Areas in Communications,
14(7):1280–1297, September 1996. doi: 10.1109/49.536480.

[52] Linux Programmer’s Manual: unshare(2). Linux man-pages project,
March 2019. URL http://man7.org/linux/man-pages/man2/unshare.2.
html.

[53] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library operating systems for the
cloud. In 18th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 461–472. ACM,

2013. ISBN 978-1-4503-1870-9. doi: 10.1145/2451116.2451167.
[54] Windows API: CreateProcessW function. Microsoft, April 2018.

URL https://docs.microsoft.com/en-us/windows/desktop/api/
processthreadsapi/nf-processthreadsapi-createprocessw.

[55] Greg Nakhimovsky. Minimizing memory usage for creat-
ing application subprocesses. Sun Microsystems, May 2006.
URL https://www.oracle.com/technetwork/server-storage/solaris10/
subprocess-136439.html.

[56] Node.js. Issue 14917, 2018. URL https://github.com/nodejs/node/issues/
14917.

[57] Node.js. Issue 25382, 2019. URL https://github.com/nodejs/node/issues/
25382.

[58] Nvidia Developer Forum. CUDA and fork(), December
2007. URL https://devtalk.nvidia.com/default/topic/382954/
cuda-programming-and-performance/cuda-and-fork-/.

[59] Nvidia Developer Forum. Linux fork() and CUDA OOM possible bug,
March 2009. URL https://devtalk.nvidia.com/default/topic/453458/
linux-fork-and-cuda-oom-possible-bug-/.

[60] Nvidia Developer Forum. (CUDA8.0 BUG?) Child process forked
after cuInit() get CUDA_ERROR_NOT_INITIALIZED on cuInit(),
October 2016. URL https://devtalk.nvidia.com/default/topic/973477/
-cuda8-0-bug-child-process-forked-after-cuinit-get-cuda_error_
not_initialized-on-cuinit-/.

[61] Linus Nyman and Mikael Laakso. Notes on the history of fork and
join. IEEE Annals of the History of Computing, 38(3):84–87, July 2016.
ISSN 1058-6180. doi: 10.1109/MAHC.2016.34.

[62] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid task
provisioning with serverless-optimized containers. In 2018 USENIX
Annual Technical Conference, pages 57–70, 2018. ISBN 978-1-931971-44-
7. URL https://www.usenix.org/conference/atc18/presentation/oakes.

[63] Base Specifications POSIX.1-2017. The Open Group, San Francisco, CA,
USA, 2018. URL http://pubs.opengroup.org/onlinepubs/9699919799/
functions/fork.html. IEEE Std 1003.1-2017.

[64] Damian Pietras. Threads and fork(): think twice before mixing
them. June 2009. URL https://www.linuxprogrammingblog.com/
threads-and-fork-think-twice-before-using-them.

[65] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. Rethinking the library OS from the top down. In
16th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 291–304. ACM, 2011. ISBN
978-1-4503-0266-1. doi: 10.1145/1950365.1950399.

[66] Python Project. Issue 27126, 2016. URL https://bugs.python.org/
issue27126.

[67] Redis FAQ: Background saving fails with a fork() error under Linux.
Redis, 2018. URL https://redis.io/topics/faq.

[68] Redis Persistence. Redis, 2018. URL https://redis.io/topics/persistence.
[69] Dennis M. Ritchie. The evolution of the Unix time-sharing system. In

Jeffrey M. Tobias, editor, Language Design and Programming Method-
ology, volume 79 of Lecture Notes in Computer Science, pages 25–35.
Springer, 1980. ISBN 978-3-540-38579-0. doi: 10.1007/3-540-09745-7_2.

[70] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system.
Communications of the ACM, 17(7):365–375, July 1974. ISSN 0001-0782.
doi: 10.1145/361011.361061.

[71] SDS 940 Time-Sharing System Technical Manual. Scien-
tific Data Systems, Santa Monica, CA, USA, November
1967. URL http://bitsavers.org/pdf/sds/9xx/940/901116A_940_
TimesharingTechMan_Nov67.pdf. Publication number 90 11 16A.

[72] Jonathan M. Smith and Gerald Q. Maguire, Jr. Effects of copy-on-
write memory management on the response time of UNIX fork oper-
ations. Computing Systems: The Journal of the USENIX Association, 1
(3):255–278, 1988. URL https://www.usenix.org/legacy/publications/

8

https://gitlab.gnome.org/GNOME/glib/merge_requests/95
https://gitlab.gnome.org/GNOME/glib/merge_requests/95
https://sourceware.org/bugzilla/show_bug.cgi?id=10354
https://sourceware.org/bugzilla/show_bug.cgi?id=10354
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://doi.org/10.1145/2893177
https://www.usenix.org/conference/atc13/technical-sessions/presentation/howell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/howell
https://doi.org/10.1145/268998.266644
https://xenproject.org/2015/08/06/on-rump-kernels-and-the-rumprun-unikernel/
https://xenproject.org/2015/08/06/on-rump-kernels-and-the-rumprun-unikernel/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://cs61.seas.harvard.edu/site/2018/WeensyOS/
https://twitter.com/xexd/status/951977086331359232
https://www.usenix.org/legacy/publications/library/proceedings/ana97/korn.html
https://www.usenix.org/legacy/publications/library/proceedings/ana97/korn.html
https://doi.org/10.1145/1217935.1217949
http://archive.computerhistory.org/resources/text/SDS/sds.lampson.SDS_940_lectures.1966.102634499.pdf
http://archive.computerhistory.org/resources/text/SDS/sds.lampson.SDS_940_lectures.1966.102634499.pdf
https://github.com/lsds/sgx-lkl
https://doi.org/10.1109/49.536480
http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man2/unshare.2.html
https://doi.org/10.1145/2451116.2451167
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://www.oracle.com/technetwork/server-storage/solaris10/subprocess-136439.html
https://www.oracle.com/technetwork/server-storage/solaris10/subprocess-136439.html
https://github.com/nodejs/node/issues/14917
https://github.com/nodejs/node/issues/14917
https://github.com/nodejs/node/issues/25382
https://github.com/nodejs/node/issues/25382
https://devtalk.nvidia.com/default/topic/382954/cuda-programming-and-performance/cuda-and-fork-/
https://devtalk.nvidia.com/default/topic/382954/cuda-programming-and-performance/cuda-and-fork-/
https://devtalk.nvidia.com/default/topic/453458/linux-fork-and-cuda-oom-possible-bug-/
https://devtalk.nvidia.com/default/topic/453458/linux-fork-and-cuda-oom-possible-bug-/
https://devtalk.nvidia.com/default/topic/973477/-cuda8-0-bug-child-process-forked-after-cuinit-get-cuda_error_not_initialized-on-cuinit-/
https://devtalk.nvidia.com/default/topic/973477/-cuda8-0-bug-child-process-forked-after-cuinit-get-cuda_error_not_initialized-on-cuinit-/
https://devtalk.nvidia.com/default/topic/973477/-cuda8-0-bug-child-process-forked-after-cuinit-get-cuda_error_not_initialized-on-cuinit-/
https://doi.org/10.1109/MAHC.2016.34
https://www.usenix.org/conference/atc18/presentation/oakes
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://doi.org/10.1145/1950365.1950399
https://bugs.python.org/issue27126
https://bugs.python.org/issue27126
https://redis.io/topics/faq
https://redis.io/topics/persistence
https://doi.org/10.1007/3-540-09745-7_2
https://doi.org/10.1145/361011.361061
http://bitsavers.org/pdf/sds/9xx/940/901116A_940_TimesharingTechMan_Nov67.pdf
http://bitsavers.org/pdf/sds/9xx/940/901116A_940_TimesharingTechMan_Nov67.pdf
https://www.usenix.org/legacy/publications/compsystems/1988/sum_smith.pdf
https://www.usenix.org/legacy/publications/compsystems/1988/sum_smith.pdf

A fork() in the road HotOS ’19, May 13–15, 2019, Bertinoro, Italy

compsystems/1988/sum_smith.pdf.
[73] Stack Overflow. printf anomaly after fork(), March 2010. URL https:

//stackoverflow.com/questions/2530663/printf-anomaly-after-fork.
[74] Stack Overflow. CUDA initialization error after fork, April

2014. URL https://stackoverflow.com/questions/22950047/
cuda-initialization-error-after-fork.

[75] William Stallings. Operating Systems: Internals and Design Principles.
Pearson, 6th edition, 2009. ISBN 978-0-13-603337-0.

[76] W. Richard Stevens and Stephen A. Rago. Advanced Programming
in the UNIX Environment. Addison Wesley, 3rd edition, 2013. ISBN
978-0-321-63773-4.

[77] Multithreaded Programming Guide. Sun Microsystems, Santa Clara,
CA, USA, 2002. URL https://docs.oracle.com/cd/E19683-01/806-6867/.
Part number 806-6867-11.

[78] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems.
Pearson, 4th edition, 2015. ISBN 978-0-13-359162-0.

[79] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In 2017

USENIX Annual Technical Conference, pages 645–658. USENIX Asso-
ciation, 2017. ISBN 978-1-931971-38-6. URL https://www.usenix.org/
conference/atc17/technical-sessions/presentation/tsai.

[80] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, andMichael Stumm.
Experiences with locking in a NUMAmultiprocessor operating system
kernel. In 1st USENIX Symposium on Operating Systems Design and
Implementation, November 1994. URL https://www.usenix.org/legacy/
publications/library/proceedings/osdi/unrau.html.

[81] TimWilkinson, Ashley Saulsbury, Tom Stiemerling, and Kevin Murray.
Compiling for a 64-bit single address space architecture. Technical
Report TCU/SARC/1993/1, Systems Architecture Research Centre, City
University, London, UK, 1993.

[82] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-
signing new operating primitives to improve fuzzing performance.
In 2017 ACM Conference on Computer and Communications Secu-
rity, pages 2313–2328. ACM, 2017. ISBN 978-1-4503-4946-8. doi:
10.1145/3133956.3134046.

9

https://www.usenix.org/legacy/publications/compsystems/1988/sum_smith.pdf
https://stackoverflow.com/questions/2530663/printf-anomaly-after-fork
https://stackoverflow.com/questions/2530663/printf-anomaly-after-fork
https://stackoverflow.com/questions/22950047/cuda-initialization-error-after-fork
https://stackoverflow.com/questions/22950047/cuda-initialization-error-after-fork
https://docs.oracle.com/cd/E19683-01/806-6867/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/legacy/publications/library/proceedings/osdi/unrau.html
https://www.usenix.org/legacy/publications/library/proceedings/osdi/unrau.html
https://doi.org/10.1145/3133956.3134046

	Abstract
	1 Introduction
	2 History: fork began as a hack
	3 Advantages of the fork API
	4 Fork in the modern era
	5 Implementing fork
	Fork in a research OS: the K42 experience

	6 Replacing fork
	7 Get the fork out of my OS!
	Acknowledgements
	References

