
Automatic Task Completion Flows fromWeb APIs
Kyle Williams

Microsoft
Redmond, Washington, USA
kyle.williams@microsoft.com

Seyyed Hadi Hashemi∗
University of Amsterdam

Amsterdam, The Netherlands
hashemi@uva.nl

Imed Zitouni
Microsoft

Redmond, Washington, USA
izitouni@microsoft.com

ABSTRACT
The Web contains many APIs that could be combined in countless
ways to enable Intelligent Assistants to complete all sorts of tasks.
We propose a method to automatically produce task completion
flows from a collection of these APIs by combining them in a graph
and automatically extracting paths from the graph for task com-
pletion. These paths chain together API calls and use the output of
executed APIs as inputs to others. We automatically extract these
paths from an API graph in response to a user query and then rank
the paths by the likelihood of them leading to user satisfaction. We
apply our approach for task completion in the email and calendar
domains and show how it can be used to automatically create task
completion flows.

CCS CONCEPTS
• Information systems → Task models; • Computing method-
ologies → Natural language processing.

KEYWORDS
Task completion, intelligent assistant
ACM Reference Format:
Kyle Williams, Seyyed Hadi Hashemi, and Imed Zitouni. 2019. Automatic
Task Completion Flows from Web APIs. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’19), July 21–25, 2019, Paris, France. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3331184.3331318

1 INTRODUCTION
The Web contains thousands of APIs for performing a wide va-
riety of tasks, such as booking taxis, making hotel reservations,
and checking the weather. Intelligent Assistants (IAs) often make
use of these APIs to allow users to complete tasks by providing
a dialog frontend to these APIs. However, beyond the individual
API functions, these APIs can also be combined in countless ways
to create new and complex task completion flows. For instance,
an API for checking the location of an upcoming meeting could
be combined with an API for booking a taxi in order to provide
a user with a ride to their next meeting without them needing to
∗Work done while an intern at Microsoft

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331318

Figure 1: Overview of approach, including semantic API, ac-
tion search, and ranking.

explicitly specify the location since it would be returned by the
meeting API. Similarly, APIs for hotel and flight reservations could
be combined into a single vacation booking experience that share
the travel dates and location. Given the number of Web APIs that
exist, there are countless ways in which APIs can be combined to
create new task completion experiences and thus enable new levels
of assistance beyond simple single goal tasks.

In this paper we propose a method to automatically construct
complex task completion flows from APIs. To do this we view the
web as a collection of APIs that are indexed so that they can be
ranked by a search engine based on the action they perform. Our
goal is to chain these single APIs calls together. In our approach,
which is shown at a high level in Figure 1, we assume the existence
of a repository of APIs from which we create an API graph where
the outputs of APIs can be used as the inputs of others and we build
this graph by using semantic representations of the APIs. Given a
user query, we identify the APIs in the graph that, if executed, could
satisfy the user. We then extract paths from the graph that lead to
the execution of that API where these paths consist of multiple APIs
chained together with the outputs of one API being used as input for
another. We refer to these chained paths as task completion flows.
For example, in the taxi booking example, the location output from
the meeting API can be used as a destination for the taxi booking
API. We then rank these flows by the likelihood of them leading to
user satisfaction and then execute the highest ranked flow, chaining
the outputs and inputs across APIs.

Our approach does not rely on designers to define task comple-
tion flows but is instead completely automatic and data driven. We
utilize neural networks for identifying APIs for execution as well
as for ranking candidate task completion flows. We demonstrate
our approach on APIs from the email and calendar domains.

https://doi.org/10.1145/3331184.3331318
https://doi.org/10.1145/3331184.3331318

2 RELATEDWORK
Crook et al. [3] propose the idea of a dialog system that composes
functional dialog units for question answering. At each timestep,
a search is made over botlets that are available for execution and
a decision is made on which of those to execute using heuristics.
The system contains all components of a dialog system, such as
components for NLU, dialog state tracking, etc.

An area of related work involves the end-to-end training of
conversational systems using reinforcement learning [1]. These
systems are typically trained end-to-end to handle the whole dialog
[6, 7], including the components for natural language understand-
ing and generation, as well as dialog management. However, a
challenge with reinforcement learning approaches is that they of-
ten require large amounts of data to train end-to-end and/or the
existence of a robust and accurate user simulator [2]. In our ap-
proach we do not train the system end-to-end but rather train our
model to chain together high quality APIs.

Botea et al. [4] automatically generate dialog agents via auto-
mated planning. The input to their system consists of atomic dialog
actions, an initial dialog state, and a goal. They then use off the shelf
dialog planning tools to generate the dialog plan. They demonstrate
the usefulness of their approach in 3 domains. A key difference
between our work and existing work is that we specifically focus
on how we can combine the vast quantities of APIs that exist in
order to perform complex task completion.

3 APPROACH
We now provide a high level overview of our approach and then
provide details on the different components. Figure 1 shows an
overview of our approach. We begin with a set of Web APIs, which
are semantified and added to a semantic API graph. Given a user
utterance, we identify a node in the semantic API graph that, if
executed, will satisfy the user’s goal. We refer to this selected API
as the target action. Given the target action, we extract a set of
candidate execution flows from the graph. This set of candidate
flows is then ranked by the likelihood of them leading to user
satisfaction and we then execute the highest ranked flow.

3.1 Semantic API Graph
3.1.1 Semantic APIs. Semantic APIs are API descriptions where
the inputs and outputs have semantic types. For instance, a cre-
ate_email API might take the parameters address, subject and mes-
sage, with semantic types person.email_address, email_subject, and
email_message, respectively, and return an email semantic object.
We assume that a repository of semantic APIs exists for building
task completion flows. The source of the APIs in this repository
might be internal to an organization, from the public Web, etc.

3.1.2 Semantic API Graph Construction. Given a semantic API
repository, we automatically construct a directed semantic API
graph G where the nodes in the graph are API endpoints, input
parameters, and output values. We mark the API endpoint nodes
with a flag indicating that they are executable to differentiate them
from the input parameters and output values. We then create edges
between each API endpoint and its input parameters and outputs.
For instance, for the create_email API endpoint described above,

Figure 2: A simple example of a semantic graph

we create 1 node for the executable create_email endpoint, 3 nodes
corresponding to the input parameters, and 1 node corresponding
to the output. If the type of an output o of one API matches the type
of an input i of another API, then we create an edge (o, i), indicating
thato is able to provide a value for i . We depict this visually in Figure
2, which shows a simple semantic graph. The nodes corresponding
to executable APIs are represented by rectangles while the nodes
representing entities are represented by ovals. In this semantic
graph, the send_email node requires a parameter with type email.
As the graph shows, there are two ways this entity can be provided.
The first is via the bot_create_email API, which asks the user a series
of questions and then outputs an email object. The other option is
via the create_email API. This API requires a person.email_address,
email.subject, and email.message as input, which it then uses to
form an email object. The person.email_address entity can either be
provided by prompting the user or by looking it up in an address
book. The address_lookupAPI requires an input of type person.name,
which is not shown for space reasons. Similarly, there are various
ways of producing the email.subject and email.message entities,
which are also not shown for space reasons. A key take away from
this graph is that there are multiple execution flows that can be used
for sending an email and in this paper we present a way to extract
these flows and rank them by the likelihood of them leading to user
satisfaction. Also note, a feature of this graph is that it can easily
be expanded. For instance, imagine a new API for creating a email
object called copy_email. This API could easily be inserted into
the graph with an edge connecting it to the email entity, thereby
enabling additional execution flows.

3.2 Action Search
Given a user utterance, we identify one or more target API endpoint
nodes in the semantic graph that captures the user’s goal. For in-
stance, for the user utterance "send an email to John", the send_email
node would be considered the target API endpoint. Similarly, for
the utterance "get me a taxi to my next meeting", the API nodes for
getting the next meeting and booking a taxi would be considered
target endpoints. This approach is equivalent to intent detection in
intelligent assistants [6].

We cast the action search problem as a sequence classification
problem, where we treat the user utterance as the sequence and the
executable nodes in the semantic API graph as the target. We use a

bidirectional LSTM-based classifier that operates on the sequence
of words that appear in the user utterance.

For a given sequence of wordsW = w1,w2, ...,wn , we define the
following:

• Word embedding: ew for eachw ∈W
• Word LSTM: ϕWf ,ϕ

W
b ,

where ϕWf ,ϕ
W
b refer to the forward and backward word LSTMs.

The model computes context sensitive word representations as:

fWi = ϕWf (vi , fWi−1),∀i = 1...n (1)

bWi = ϕWb (vi ,bWi+1),∀i = n...1 (2)

The states of the forward and backward LSTMs are concatenated
for the n-th word:

r = fWn ⊕ bWn . (3)

We add a feed forward layer д, which takes r as input and then take
the softmax of the the output of д to produce probabilities of of the
different executable nodes.

As part of the action search we want to allow for new executable
nodes to be easily added to the Semantic API graph without needing
to retrain the entire action search. If we have n executable nodes in
our semantic API graph, we set the output dimensionality of д to
m ≥ n. During training and prediction we apply a mask f to each
of the i = 1, 2, ...,m outputs of g:

f (дi) =
{
дi : i ≤ n
0 : otherwise .

This has the effect of zeroing out outputs from д that do not
correspond to valid actions. When a new action is added to the
graph, we set its output to дn+1 and set n = n + 1 so that the mask
f continues to zero-out outputs from д that do not correspond to
valid actions. To train the model we minimize the cross entropy
loss:

Losstag = −
∑
i
p logq, (4)

where p is the distribution of the true labels and q is the distribution
of the predicted labels.

3.3 Task Flow Extractor
Given a user goal and a corresponding target API that satisfies that
goal based on the action search, we extract flows from the semantic
graph that lead to that target API. For instance, for the send_email
API in Figure 2 we might extract two flows, e.g., one that prompts
the user for an email recipient and one that performs an address
lookup. For each candidate flow all of the inputs to the target action
must be satisfied. For instance, in Figure 2 the send_email flow
must contain a way to provide the email entity. Similarly, if a flow
contains the create_email API, then the flowmust also include ways
for satisfying the 3 parameters of that API. When extracting flows
we make use of heuristics for excluding flows that are unlikely to
lead to successful execution. For instance, we apply a heuristic that
excludes flows that require the user to enter complex data types
and a heuristic that excludes flows that have the same entity types
produced multiple times in a path.

3.4 Task Flow Ranker
The flow ranker assigns a score to each of the candidate flows. The
flow ranker model is similar to the action search model; however,
instead of computing a probability distribution over all executable
APIs, it instead assigns a score to each flow. Following the same
process as in Equation 3, it produces the following encodings:

rU An encoding of the user utterance produced the same way
as in Equations 1-3.

rE An encoding of the entities that exist in a candidate flow (e.g.,
the inputs and outputs to the executable APIs). Produced
the same way as in Equations 1-3; however, operating on a
sequence of entities rather than a sequence of words.

rA An encoding of the executable APIs in a candidate flow. Pro-
duced the same way as in Equations 1-3; however, operating
on a sequence of actions rather than a sequence of words.

Given these encodings, the model then produces an entity and
action sensitive flow representation: rF =W · (rE ⊕ rA) + b).

Finally, we combine the flow representation with the user ut-
terance representation to produce a score for the path: ŷ = W ·
(rF ⊕ rU) + b). To train the model we minimize the mean square
error (MSE) of the k candidate flows generated for a user utterance,

where the target y values are path scores:MSE =
1
n

∑k
i (yi − ŷ)

4 EXPERIMENTS
We conduct our experiments using Web APIs in the calendar and
email domains. We empirically find good hyperparameters for the
network and set the word embedding size and word LSTM number
of units to 100 for both the action search and the utterance encoder
rU of the path ranking LSTM. We set the size of entity and action
encodings, as well as the number of units in the entity and action
LSTM encoders rE and rA to 500. We use the Adam optimizer to
minimize the losses. Furthermore, we use cross validation in all of
our experiments and report the average for each metric.

4.1 Semantic API Graph
We build the Semantic API graph using Web APIs focused on the
calendar and email domains. The APIs include executable actions
for sending emails, checking email, checking for reminders, creat-
ing a calendar entry, etc. Furthermore, there are helper APIs for
performing entity extraction from queries, such as extracting times
and dates, people names, locations, etc. There are also utility APIs
for performing address book lookups, etc. In total, the graph con-
tains 21 executable nodes as well as multiple nodes corresponding
to input and output entities for each executable node.

4.2 Action Search
4.2.1 Data. To test our action search we gather query and intent
pairs from a commercial Intelligent Assistant. The queries were
received as spoken query and then converted to text using a produc-
tion quality speech to text system. The text representations of the
queries were labeled by expert judges as part of the data pipeline
of the Intelligent Assistant. We used approximately 8,500 queries
belonging to 9 intents. These 9 intents correspond to executable
actions for email and calendar in our semantic API graph but do
not include the helper API actions, such as entity extraction.

Table 1: Precision@1 for Action Search

Approach P@1

Baseline LM 0.6400
LSTM Classifier (Ours) 0.8756

4.2.2 Baseline. We compare our proposed sequence classification
method to a language model based baseline [5]. We first create lan-
guage models for queries and for executable API functions, where
the executable API function is based on action descriptions, e.g.,
for the send_mail action, the description might be: "Sends a mes-
sage specified by the request body. The message is saved to the Sent
Mail folder." For this baseline, we select the action with the lowest

KL-divergence to the query: D(p | |q) = ∑
x p(x) log

p(x)
q(x)

4.2.3 Results. The results for our action search are shown in Table
1. We use Precision@1 as our metric since it corresponds to picking
the correct action given the user goal. As can be seen from the table,
our proposed method for action search outperforms the language
model baseline. The results indicate that, using our sequence clas-
sification model, we are able to correctly predict the user’s goal
87.56% of the time.

4.3 Task Flow Ranking
Our goal for task flow ranking is to assign a relevance score to each
candidate task flow given the user query.

4.3.1 Data. To gather data for task flow ranking, we extract task
flows from the Semantic API Graph for each executable API that
matches a user goal using themethod described in Section 3.3. These
flows consist of chains of actions leading up to the execution of the
API that corresponds to the user goal. We also extract user queries
with intents corresponding to the user goals from the data pipeline
of an intelligent assistant. We then create training pairs consisting
of user queries and execution flows, where each user query may
be paired with multiple execution flows. We then presented these
pairs to expert assessors and asked them to rate the likelihood of an
execution flow leading to user satisfaction given the user query. The
expert assessors rated the execution flows on a 5-point scale, with
5 indicating that the flow would be very effective and 1 indicating
that the flow was ineffective. A rating of 5 was used when a flow
took all information in the user query into consideration (e.g., did
not ask the user for a parameter if it was present in the query),
while a rating of 1 was used when a flow would not allow the
user to complete their task. In total, our expert assessors assigned
relevance scores to just under 1,000 query-execution flow pairs.

4.3.2 Baselines. We compared our proposed method for ranking
execution flows to two baselines:

Shortest Path Candidate execution flows are ranked by the
number of executable actions they include.

Language Model The same language model approach as used
for action search, with the profile of each flow based on a
concatenation of the descriptions of actions in that flow.

Table 2: Metrics for Path Ranking

Approach P@1 NDCG NDCG@5

Shortest Path 0 0.4031 0.2402
Language Model 0.1336 0.6813 0.6363
LSTM Ranker (Ours) 0.9752 0.7127 0.6740

4.3.3 Results. For the flow ranking we consider both P@1 as well
as NDCG. The results of our experiment are shown in Table 2.

As can be seen from the table, the shortest path method is the
worst performing overall. In many cases, the shortest path only
contained a single action, e.g., the API action corresponding to the
user’s goal. However, in most cases each API requires several param-
eters and the shortest path flows required users to enter complex
types whereas the flows ranked highest by other methods would
generally prompt the user for each value separately. In general, our
approach greatly outperforms the language modeling baseline for
Precision@1. For the proposed method, the P@1 is 0.9752, which in-
dicates that, in most cases, the path that it ranks the highest among
all candidates will lead to user satisfaction. For the language model
that is only the case for about 1 in 10 queries. The performance on
the language model and our proposed approach are closer for the
NDCGmetrics, indicating that the language model is still capable of
ranking some paths that lead to user satisfaction highly; however,
not the highest. The results show that our approach, which jointly
encodes the user query as well as the entities and actions along
each path leads to the best performance overall.

5 DISCUSSION AND CONCLUSIONS
The Web contains many APIs that can be combined in countless
ways to produce task completion flows. We proposed one way of
doing this where we represent the APIs using a semantic graph
from which we automatically extract candidate flows and rank
them by their likelihood of leading to user satisfaction. Doing this
effectively enables many possibilities for task completion flows and
also allows for flow possibilities to easily be expanded when new
APIs are added to the graph. One potential limitation of this work
is that it relies on a set of annotated execution flows, which can be
costly to label. A potential area of research for future work would
be to apply reinforcement learning on the graph.

REFERENCES
[1] Antoine Bordes, Y-Lan Boureau, and Jason Weston. 2016. Learning end-to-end

goal-oriented dialog. arXiv preprint arXiv:1605.07683 (2016).
[2] Paul Crook and Alex Marin. 2017. Sequence to Sequence Modeling for User

Simulation in Dialog Systems. In Interspeech ’17.
[3] Paul A. Crook, Alex Marin, Vipul Agarwal, Samantha Anderson, Ohyoung Jang,

Aliasgar Lanewala, Karthik Tangirala, and Imed Zitouni. 2018. Conversational
Semantic Search: Looking Beyond Web Search, Q&A and Dialog Systems. In
WSDM ’18.

[4] Adi Botea et al. 2019. Generating Dialogue Agents Via Automated Planning. In
DEEPDIAL ’10.

[5] John Lafferty and Chengxiang Zhai. 2001. Document language models, query
models, and risk minimization for information retrieval. In SIGIR ’01.

[6] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. 2017.
Investigation of Language Understanding Impact for Reinforcement Learning
Based Dialogue Systems. arXiv preprint arXiv:1703.07055 (2017).

[7] Jason DWilliams, Kavosh Asadi, and Geoffrey Zweig. 2017. Hybrid Code Networks:
practical and efficient end-to-end dialog control with supervised and reinforcement
learning. In ACL ’17.

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Semantic API Graph
	3.2 Action Search
	3.3 Task Flow Extractor
	3.4 Task Flow Ranker

	4 Experiments
	4.1 Semantic API Graph
	4.2 Action Search
	4.3 Task Flow Ranking

	5 Discussion and Conclusions
	References

