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Unsupervised Learning for Cell-Level Visual
Representation in Histopathology Images With
Generative Adversarial Networks

Bo Hu, Ye Tang, Eric I-Chao Chang, Yubo Fan

Abstract—The visual attributes of cells, such as the nu-
clear morphology and chromatin openness, are critical for
histopathology image analysis. By learning cell-level vi-
sual representation, we can obtain a rich mix of features
that are highly reusable for various tasks, such as cell-
level classification, nuclei segmentation, and cell counting.
In this paper, we propose a unified generative adversarial
networks architecture with a new formulation of loss to
perform robust cell-level visual representation learning in
an unsupervised setting. Our model is not only label-free
and easily trained but also capable of cell-level unsuper-
vised classification with interpretable visualization, which
achieves promising results in the unsupervised classifica-
tion of bone marrow cellular components. Based on the
proposed cell-level visual representation learning, we fur-
ther develop a pipeline that exploits the varieties of cellular
elements to perform histopathology image classification,
the advantages of which are demonstrated on bone marrow
datasets.
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|. INTRODUCTION

ISTOPATHOLOGY images are considered to be the gold
H standard in the diagnosis of many diseases [1]. In many
situations, the cellular components are an important determi-
nant. For example, in the biopsy sections of bone marrow, the
abnormal cellular constitution indicates the presence of blood
disease [2]. Bone marrow is the key component of both the
hematopoietic system and the lymphatic system by producing
large amounts of blood cells. The cell lines undergoing matura-
tion in the marrow mostly include myeloid cells (granulocytes,
monocytes, megakaryocytes, and their precursors), erythroid
cells (normoblasts), and lymphoid cells (lymphocytes and their
precursors). Fig. 1 are examples of five main cellular compo-
nents in bone marrow. These components are significant to both
the systemic circulation and the immune system. Several kinds
of cancer are characterized by the cellular constitution in bone
marrow [2]. For instance, too many granulocytes precursors
such as myeloblasts indicate the presence of chronic myeloid
leukemia. Having large, abnormal lymphocytes heralds the pres-
ence of lymphoma. Fig. 2 shows the difference between normal
and abnormal bone marrow histopathology images from the
perspective of cells.

As described above, cell-level information is irreplaceable for
histopathology image analysis. Cell-level visual attributes such
as the morphological features of nuclei and the openness of
chromatin are helpful for various tasks such as cell-level classi-
fication and nuclei segmentation. We define cell-level images as
the output from nuclei segmentation. Each cell-level image con-
tains only one cell. We opt to perform representation learning on
these cell-level images, in which the visual attributes such as the
nuclei morphology and chromatin openness are distinguished.
The learned features are further utilized to assist tasks such as
cell counting to highlight the quantification of certain types of
cells.

To achieve this, the main obstacle is the labeling of cells.
There are massive amounts of cells in each histopathology
image, which makes manual labeling ambiguous and labo-
rious. Therefore, an unsupervised cell-level visual represen-
tation learning method based on unlabeled data is believed
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Fig. 1.  Examples of five types of cellular elements in bone marrow.
(a) Granulocytes precursors such as myeloblasts. (b) Cells with dark,
dense, and close phased nuclei, the candidates of which are most likely
lymphocytes and normoblasts. (c) Granulocytes such as neutrophils.
(d) Monocytes. (e) Megakaryocytes. Five types of cells can be distin-
guished by the chromatin openness, the density of nuclei, and if nuclei
show the appearance of being segmented. Megakaryocytes appear the
least often, as well are the most distinguished due to their massive
size.

Fig. 2. Examples of bone marrow images sliced from Whole Slide
Images (WSI). Too many myeloblasts in (a) indicate the presence of
blood disease. (a) Abnormal. (b) Normal.

to be more reasonable than fully supervised methods. Un-
supervised cell-level visual representation learning is known
to be difficult. First, geometrical and morphological appear-
ances of cells from the same category can have a distinct di-
versity due to factors such as cell cycles. Furthermore, the
staining conditions of histopathology images can be pretty di-
verse, resulting in inconsistent color characteristics of nuclei and
cytoplasm.

Recently, deep learning has been proven to be powerful in
histopathology image analysis such as classification [3], [4],
segmentation [5], [6], and detection [7], [8]. Generative Ad-
versarial Networks (GANs) [9] are a class of generative mod-
els that use unlabeled data to perform representation learning.
GAN is capable of transforming noise variables into visually
appealing image samples by learning a model distribution that
imitates the real data distribution. Several GAN architectures
such as Deep Convolutional Generative Adversarial Nets (DC-
GAN) [10] have proven their advantages in various natural im-
ages datasets. Recently, Wasserstein-GAN (WGAN) [11] and
WGAN with gradient penalty (WGAN-GP) [12] have greatly

improved the stability of training GAN. More complex network
structures such as residual networks [13] can now be fused into
GAN models.

Meanwhile, Information Maximizing Generative Adversarial
Networks (InfoGAN) [14] makes a modification that encourages
GAN to learn interpretable and meaningful representations. In-
foGAN maximizes the mutual information between the chosen
random variables and the observations to make variables repre-
sent interpretable semantic features. The problem is that Info-
GAN utilizes a DCGAN architecture, which requires meticulous
attention towards hyperparameters. For our problem, it suffers
a severe convergence problem.

Inspired by WGAN-GP and InfoGAN, we present an unsu-
pervised representation learning method for cell-level images
using a unified GAN architecture with a new formulation of
loss, which inherits the superiority from both WGAN-GP and
InfoGAN. We observe great improvements followed by the set-
ting of WGAN-GP. Introducing mutual information into our
formulation, we are capable of learning interpretable and dis-
entangled cell-level visual representations, as well as allocate
cells into different categories according to their most signif-
icant semantic features. Our method achieves promising re-
sults in the unsupervised classification of bone marrow cellular
components.

Based on the cell-level visual representations, the quantifica-
tion of each cellular component can be obtained by the trained
model. Followed by this, cell proportions for each histopathol-
ogy image can then be calculated to assist image-level clas-
sification. We further develop a pipeline combining cell-level
unsupervised classification and nuclei segmentation to con-
duct image-level classification of histopathology images, which
shows its advantages via experimentations on bone marrow
datasets.

The contributions of this work include the following: (1) We
present an unsupervised framework to perform cell-level visual
representation learning using generative adversarial networks.
(2) A unified GAN architecture with a new formulation of loss is
proposed to generate representations that are both high-quality
and interpretable, which also endows our model the capability
of cell-level unsupervised classification. (3) A pipeline is devel-
oped that exploits the varieties of cell-level elements to perform
image-level classification of histopathology images.

Il. RELATED WORKS
A. Directly Related Works

1) Generative Adversarial Networks: Goodfellow et al. [9]
propose GANS, a class of unsupervised generative models con-
sisting of a generator neural network and an adversarial dis-
criminator neural network. While the generator is encouraged
to produce synthetic samples, the discriminator learns to dis-
criminate between generated and real samples. This process is
described as a minimax game. Radford et al. [10] propose one
of the most frequently used GAN architectures DCGAN.

Arjovsky et al. [11] propose WGAN, which modifies the
objective function, securing the training process to be more sta-
ble. For regular GANSs, the training process optimizes a lower
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bound of the Jensen-Shannon (JS) divergence between the gen-
erator distribution and the real data distribution. WGAN mod-
ifies this by optimizing an approximation of the Earth-Mover
(EM) distance. The only challenge is how to enforce the Lips-
chitz constraint on the discriminator. While Arjovsky et al. [11]
use weight-clipping, Gulrajani et al. [12] propose WGAN-GP,
which adds a gradient penalty on the discriminator. For our bone
marrow datasets, even if we have tried multiple hyperparame-
ters, DCGAN still suffers from a severe convergence difficulty.
While DCGAN leads to the failure for our datasets, WGAN-GP
greatly eases this problem.

Chen et al. [14] introduce mutual information into GAN ar-
chitecture. Mutual information describes the dependencies be-
tween two separate variables. Maximizing mutual information
between the chosen random variables and the generated sam-
ples, InfoGAN produces representations that are meaningful
and interpretable. To exploit the varieties of cellular compo-
nents, the superior ability of InfoGAN in learning disentangled
and discrete representations is what a regular GAN lacks.

Therefore, we propose a unified GAN architecture with a
new formulation of loss, which inherits the superiority of both
WGAN-GP and InfoGAN. The outstanding stability of WGAN-
GP eases the difficulty in tuning the complicated hyperparam-
eters of InfoGAN. Introducing mutual information into our
model, we are capable of learning interpretable cell-level visual
representations, as well as allocate cells into different categories
according to their most significant semantic features.

2) Classification of Blood Disease: Nazlibilek et al. [15]
propose a system to help automatically diagnose acute lympho-
cytic leukemia. This system consists of several stages: nuclei
segmentation, feature extraction, cell-level classification, and
cell counting. In their future work, they claim that the result of
cell counting can be used for further diagnosis of acute lympho-
cytic leukemia.

In our work, we design a similar workflow which consists of
nuclei segmentation, cell-level classification, and image-level
classification. Our advantages lie in the novelty of an unsuper-
vised setting and the convincing performance of image-level
classification based on the calculated cell proportions.

B. Cell-level Representation

The representation of individual cells can be used for a variety
of tasks such as cell classification. Traditional cell-level visual
representation for classification tasks can be categorized into
four categories [16]: morphological [17], texture [18], [19], in-
tensity [20], and cytology features [21]. These traditional meth-
ods have been employed in the representation of white blood
cells [22]-[24]. However, the features used above need to be
manually designed by experienced experts according to the char-
acteristics of different types of cells. While images suffer from a
distinct variance, discovering, characterizing and selecting good
handcraft features can be extremely difficult.

To remedy the limitations of manual features in cell classi-
fication, Convolutional Neural Network (CNN) learns higher-
level latent features, whose convolution layer can act as a fea-
ture extractor [25]. Xie et al. [26] propose Deep Embedding

Clustering (DEC) that simultaneously learns feature represen-
tations and cluster assignments using deep neural networks.

Variational Autoencoder (VAE) [27] serves as a convincing
unsupervised strategy in cell-level visual representation learn-
ing [28]-[30]. However, how to use VAE to learn categorical
and discrete latent variables is still under investigation. Dilok-
thanakul et al. [31] and Jiang et al. [32] design models com-
bining VAE with Gaussian Mixture Model (GMM). But they
demonstrate their experiment on one-dimensional datasets such
as MNIST. To perform clustering and embedding on a higher-
dimensional dataset, their methods still need a feature extractor.

GANSs such as Categorical GAN [33] can merge categorical
variables into the model with little effort, which makes learned
representations disentangled and interpretable. This ability is
critical in medical image analysis where accountability is espe-
cially needed.

C. Cell-level Histopathology Image Analysis

1) Classification: Cell classification has been performed in
diverse histopathology related works such as breast cancer [34],
acute lymphocytes leukemia [35], [36], and colon cancer [37].

Based on the result of cell classification, some approaches
have been proposed to determine the presence or location of
cancer [21], [38]. In prostate cancer, Nguyen ef al. [21] innova-
tively employ cell classification for automatic cancer detection
and grading. They distinguish the cancer nuclei and normal nu-
clei, which are combined with textural features to classify the
image as normal or cancerous and then detect and grade the can-
cer regions. In the diagnosis of Glioma, Hou et al. [38] apply
CNN to the classification of morphological attributes of nuclei.
They also claim that the nuclei classification result provides
clinical information for diagnosing and classifying glioma into
subtypes and grades. Zhang et al. [39]-[41] and Shi et al. [42]
use either supervised or semi-supervised hashing models for
cell-level analysis.

All of these works require a large amount of accurately anno-
tated data. Obtaining such annotated data is time-consuming and
labor-intensive while GAN can optimally leverage the wealth
of unlabeled data.

2) Segmentation: Nuclei segmentation is of great impor-
tance for cell-level classification. Nuclei segmentation methods
can be roughly categorized as follows: intensity thresholding
[43], [44], morphology operation [45], [46], deformable mod-
els [47], watershed transform [48], clustering [49], [50], and
graph-based methods [51], [52]. The methods above have been
broadly applied to the segmentation of white blood cells.

D. Generative Adversarial Networks in Medical Images

Recently, several works involving GAN have gathered great
attention in medical image analysis.

In medical image synthesizing, Nie et al. [53] estimate the
CT image from its corresponding MR image with context-aware
GAN. In medical image reconstruction, Li et al. [54] use GAN
to reconstruct medical images with the thinner sliced thick-
ness from regular thick-slice images. Mahapatra et al. [55] pro-
pose a super resolution method that takes a low-resolution input
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fundus image to generate a high-resolution super-resolved im- Discriminator(D)
age. Wolterink et al. [56] employ GAN to reduce the noise ! downsample 1
in low-dose CT images. All these recent works demonstrate BINININEE I
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I1l. METHODS

In this section, we first introduce an unsupervised method for
cell-level visual representation learning using GAN. Then we
present the details of how image-level classification is performed
on histopathology images based on cell-level representation.

A. Cell-level Visual Representation Learning

Given cell-level images that come from nuclei segmentation
as the real data, we define a generator network G, a discrimi-
nator network D, and an auxiliary network Q. The architecture
of these networks are shown in Fig. 3. In the training pro-
cess, we learn a generator distribution that matches the real
data distribution by playing a minimax game between G and D
by optimizing an approximation of the Earth-Mover (EM) dis-
tance. Meanwhile, we maximize mutual information between
the chosen random variables and the generated samples using
an auxiliary network Q. In the test process, the generator gen-
erates the representations for each category of cells according
to different values of the chosen random variables. Cell images
can be allocated to the corresponding categories by the auxiliary
network Q.

1) Training Process: Given cell-level images sampled from
the real data distribution x ~ P, the first goal is to learn a gen-
erator distribution PP, that matches the real data distribution P,.

We first define a random noise variable z. The input noise z is
transformed by the generator into a sample ¥ = G(z), z ~ p(2).
X can be viewed as following the generator distribution P,.
Inspired by WGAN [11], we optimize networks through the
WGAN objective W(P,, Py):

W(P,, Py) = u ;ﬁlp Ep, [f(0)] = Ezp,[f(2)].

(D

W(P,, P,) is an efficient approximation of the EM distance,
which is constructed using the Kantorovich-Rubinstein dual-
ity [11]. The EM distance measures how close the generator
distribution and the data distribution are. To distinguish two
distributions P, and P,, the adversarial discriminator network
D is trained to learn the function f that maximizes W (P,, P,).
To make P, approach IP,, the generator instead is trained to
minimize W (P,, IP;). The value function V (D, G) is written as
follows:

VD, G) = Exwp, [D(X)] = Eorpy [D(G(2))]. 2

This minimax game between the generator and the discriminator

is written as:
minmax V(D, G).
G DeD

3)

Followed by the work of WGAN-GP [12], a gradient penalty
is added on the discriminator to enforce the Lipschitz constraint
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Fig. 3. Network architecture of our cell-level visual representation
learning. (a) Training process. (b) Test process. (c) The architecture
of residual blocks (written as resblock in (a) and (b)). (a) Training pro-
cess. Random variables are composed of Gaussian variables z and the
discrete variable c. Besides playing the minimax game between the gen-
erator (G) and the discriminator (D) through the EM distance, we also
minimize the negative Log-likelihood between ¢ and the output of the
auxiliary network (Q(c|G(c, z)) to maximize mutual information, (b) Test
process. Real samples are classified into five categories by the auxil-
iary network Q. At the same time, fake samples are generated by giving
noises with the chosen ¢ for each class. In the example of generated
samples (fake), one row contains five samples from the same category
in ¢, and a column shows the generated images for 5 possible categories
in ¢ with z fixed. (c) lllustration of residual blocks (resblocks) in the ar-
chitecture. There are three different types of residual blocks considering
whether they include nearest-neighbor upsampling or mean pooling for
downsampling. Batch normalization layers are used in our generator to
help stabilize training.

to make sure that the discriminator lies within the space of 1-
Lipschitz functions D € D. The loss of the discriminator with
a hyperparameter A, is written as:

Lp = ]EZ"’[’(Z)[D(G(Z))] - EXNIP’,.[D(X)]

+ MEzep, [l Vi D@, — 177, )
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(a) Unsupervised nuclei segmentation
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(d) Generate intepretable representations

Fig. 4.

Overview of our pipeline as follows. (a) Nuclei segmentation is performed on histopathology images. (b) Using the trained GAN architecture,

Cell-level clustering is performed using the learned auxiliary network Q. Cell proportions are then calculated for each histopathology image.
(c) Image-level prediction is given based on cell proportions. (d) For visualization, the generator G can generate the interpretable representation for

each category of cells by changing the noises.

where P; is defined sampling uniformly along straight lines
between pairs of points sampled from the data distribution P,
and the generator distribution P,.

In this way, our model is capable of generating visually ap-
pealing cell-level images. But still, it fails to exploit information
of categories of cells since the noise variable z doesn’t corre-
spond to any interpretable feature. Motivated by this, our second
goal is to make the chosen variables represent meaningful and
interpretable semantic features of cells. Inspired by InfoGAN
[14], we introduce mutual information into our model:

1(X;Y) = H(X) — H(X|Y) = HY) — HY|X). (5)

I(X;Y) describes the dependencies between two separate
variables X and Y. It measures the different aspects of the as-
sociation between two random variables. If the chosen random
variables correspond to certain semantic features, it’s reasonable
to assume that mutual information between generated samples
and random variables should be high.

We define a latent variable ¢ sampled from a fixed noise dis-
tribution p(c). The concatenation of the random noise variable
z and the latent variable c is then transformed by the generator
G into a sample G(z, ¢). Since we encourage the latent variable
to correspond with meaningful semantic features, there should
be high mutual information between ¢ and G(z, ¢). Therefore,
the next step is to maximize mutual information /(c; G(z, ¢)),
which can be written as:

I(c;G(z,c)) = H(c) — H(c|G(z, c)). (6)
Followed by this, a lower bound L, is given by:
Li(G, Q) = Epi)e~piollog Qc|G(z, N+ H(e),  (7)

where H(c) is the entropy of the variable sampled from a fixed
noise distribution. Maximizing this lower bound, we maximize
mutual information /(c; G(z, ¢)). The proof can be found in
InfoGAN [14].

Since we introduce the latent variable ¢ into the model, the
value function V (D, G) is replaced by:

V(D,G) < Exvp, [D(X)] = Eonpi),cmpo)[P(G(z, 0))]. (8)

As we combine the adversarial process with the process of
maximizing mutual information, this information-regularized
minimax game with a hyperparameter A, can be written as
follows:

Igigrgg% V(D, G) — 2L i(G, Q). )
The loss of D can be replaced by:
Lp < Eivp)epe)[D(G(z, )] — Exup, [D(x)]
+aEep, [|IV: D@1, — 117, (10)

Since H(c) can be viewed as a constant, the loss of the auxiliary
network Q can be written as the negative log-likelihood between
Q(c|G(c, z)) and the discrete variable c¢. The losses of G and Q
can be interpreted as below:

Lg = (11)

12)

_EZNp(z),ch(c)[D(G(Z, o)l,
_)"ZEZNP(Z),CNp(c)[IOg 0(c|G(z, 0)].

Lo

Fig. 5 shows how noises are transformed into interpretable sam-
ples during the training process.

2) Test Process: In the training process, a generator distri-
bution is learned to imitate the real data distribution. An auxil-
iary distribution is learned to maximize the lower bound. Espe-
cially if ¢ is sampled from a categorical distribution, a softmax
function is applied as the final layer of Q. Under this circum-
stance, Q can act as a classifier in the test process, since the
posterior Q(c|x) is discrete. Assuming that each category in
¢ corresponds to a type of cells, the auxiliary network Q can
divide cell-level images into different categories while the gen-
erator G can generate the interpretable representation for each
category of cells.

B. Image-level Classification

Based on the cell-level visual representation learning, we pro-
pose a pipeline combining nuclei segmentation and cell-level vi-
sual representation to highlight the varieties of cellular elements.
Image-level classification is performed using the calculated cell
proportions. The illustration of this pipeline is shown in Fig. 4.
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Fig. 5. Example of how a set of noise vectors are transformed
into interpretable image samples over generator iterations. We use a
5-dimensional categorical variable ¢ and 32 Gaussian noise variables
z as input. Different rows correspond to different values of z. Different
columns correspond to different values of ¢. The value of ¢ largely cor-
responds to cell types.

Fig. 6.

Overview of segementation process. (a) The cropped image.
(b) The normalized image. (c) The separated hematoxylin stain image
using color deconvolution. (d) The binary image generated by intensity
thresholding. (e) The labeled image after postprocessing where different
grayscale values stand for different segmented instances. (f) The final
segmentation image.

1) Nuclei Segmentation: An unsupervised nuclei segmenta-
tion approach is ultilized consisting of four stages: normaliza-
tion, unsupervised color deconvolution, intensity thresholding
and postprocessing to segment nuclei from the background.
Fig. 6 is an overview of our segmentation pipeline.

Color Normalization: We employ Reinhard color normal-
ization [57] to convert the color characteristics of all images
into the desired standard by computing the mean and standard
deviations of a target image in LAB space.

Color Deconvolution: Using the PCA-based ‘Macenko’
method [58], unsupervised color deconvolution is performed
to separate the normalized image into two stains. We project
pixels onto a best-fit plane, wherein it selects the stain vectors
as percentiles in the ‘angle distribution’ of the corresponding
plane. With the correct stain matrix for color deconvolution, the
normalized image can be separated into hematoxylin stain and
eosin stain.

Intensity Thresholding: To sufficiently segment cells, we
apply intensity thresholding in the hematoxylin stain image
where the intensity distribution of cells is consistently distinct
from the background. By converting the hematoxylin stain im-
age into a binary image with a constant global threshold, the
cells are roughly segmented.

Postprocessing: In image postprocessing, objects with fewer
pixels than the minimum area threshold will be removed from
the binary image. Then we employ the method in [44] to re-
move thin protrusions from cells. Furthermore, we use opening
operation to separate a few touched cells.

2) Classification: We utilize the model distribution trained in
our unsupervised representation learning as the cell-level classi-
fier. Assuming that we use a k-dimensional categorical variable
as the chosen variable in the training process, the real data (cell-
level images) distribution is allocated into & dimensions. In the

test process, cell-level images are unsupervised classified into k
corresponding categories.

For each histopathology image, we count the numbers of
cell-level instances in each category as the representation of
its cellular constitution, denoted as {X;, X», X3, ..., X;}. For
cellular element i, the ratio of the number of this cellular element
to the total number of the cellular constitution in this image is
calculated by P; = ka"x . We define P; as the cell proportion
of cellular element /.

Given cell proportions {P;, P, P3, ..., P;} as the feature
vector of histopathology images, we utilize either k-means or
SVM to give image-level predictions.

IV. EXPERIMENTS AND RESULTS
A. Dataset

All our experiments are conducted on bone marrow
histopathology images stained with hematoxylin and eosin. As
described before, the cellular constitution in bone marrow is a
determinant in diagnoses of blood disease.

Dataset A: Publicly available dataset [59] which consists
of eleven images of healthy bone marrow with a resolution of
1200 x 1200 pixels. Each image contains around 200 cells. The
whole dataset includes 1995 cell-level images in total. We la-
bel all cell-level images into four categories: 34 neutrophils,
751 myeloblasts, 495 monocytes, and 715 lymphocytes. Images
are carefully labeled by two pathologists. When the two pathol-
ogists disagree on a particular image, a senior pathologist makes
a decision over the discord.

Dataset B: Dataset provided by the First Affiliated Hospital
of Zhejiang University which contains whole slides of bone mar-
row from 24 patients with blood diseases. Each patient matchs
with one whole slide. We randomly crop 29 images with a res-
olution of 1500 x 800 pixels from all whole slides. Dataset B
contains around 12000 cells in total. For this dataset, we la-
bel 600 cell-level images into three categories for evaluation:
200 myeloblasts, 200 monocytes, and 200 lymphocytes. The
labeling process is conducted in the same manner as Dataset A.

Dataset C: Combination of Datasets A and B, which results
in 29 abnormal and 11 normal histopathology images.

Dataset D: Dataset includes whole slides from 28 patients
with bone marrow hematopoietic tissue hyperplasia (negative)
and 56 patients with leukemia (positive). Each patient matchs
with one whole slide. We randomly crop images with a reso-
lution of 1500 x 800 pixels from all whole slides. This results
in 72 negative and 132 positive images. After segmentation,
Dataset D contains around 80000 cells in total.

B. Implementation

Network Parameters: Our generator G, discriminator D
and auxiliary network Q all have the structures of residual
networks. In the training process, all three networks are up-
dated by Adam optimizer (o = 0.0001, 8; = 0.5, 8, =0.9,
Ir = 2 x 107*)[60] with a batch size of 64. All our experiments
use hyperparameters A; = 10 and A, = 1. For each training it-
eration, we update D, G and Q in turn. One training iteration
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consists of five discriminator iterations, one generator iteration,
and one auxiliary network iteration. For each training process,
we augment the training set by rotating images with angles 90°,
180°, 270°. We train ten epochs for our model in each experi-
ment.

Noise Sources: The noise fed into the network is the combi-
nation of a 5-dimensional categorical variable and 32 Gaussian
noise variables for the training of Dataset A or Dataset B. We
use the combination of a 5-dimensional categorical variable and
64 Gaussian noise variables for Dataset C.

Segmentation Parameters: The mean value of the standard
image in three channels is [8.98 £ 0.64,0.08 £ 0.11, 0.02 &+
0.03] for color normalization. Vectors for color deconvolution
are picked from 1% to 99% angle distribution while the mag-
nitude below 16 is excluded from the computation. We use the
threshold value of 120 for intensity thresholding. In the post-
process, objects with pixels smaller than 200 will be removed.
An opening operation with 7 x 7 kernel size is performed to
separate touched cells. When the edge of the bounding box of
a cell-level image is larger than 32 pixels, we rescale the image
to make the larger edge match to 32. Each cell is centered in a
32 x 32 pixel image where blank is filled with [255, 255, 255].

Bounding Box: To prevent the color and texture contrast
from troubling the feature extraction process, we use instances
without segmentation for baseline methods. If we depose the
nuclei in the center with the loose bounding box in the same
manner as our previous experiments, cells will suffer from se-
vere overlapping. Thus, we crop the minimum bounding box
region along each segmented instance, and then resize it into
32 x 32 pixels as our dataset.

Software: We implement our experiments on framework Py-
torch for deep learning models and framework HistomicsTK
for nuclei segmentation. Our model is compared with multiple
sources of baselines. Three main types of baselines are claimed
to be relevant as follows: (1) feature extractors including man-
ual features, HOG and DNN extractor; (2) supervised classifiers
including SVM and DNN; (3) clustering algorithms including
DEC and K-means. The rich mix of different sources of base-
lines, including deep learning algorithms, provides a stronger
demonstration to our experiments. We utilize k-means++ [61]
to choose the initial values when using k-means to perform clus-
tering. The feature code! is Python implementation in all these
algorithms.

Hardware: For hardware, we use one pair of Tesla K80 GPU
for parallel training and testing of neural network models. Other
baseline experiments are conducted on Intel(R) Xeon(R) CPU
E5-2690 v3 @ 2.60GHz. For our model, with a batch size of
64, using one pair of K80 GPU for parallel computation, each
generator iteration costs 3.2 seconds in the training process when
each batch costs 0.18 seconds in the test process.

C. Cell-level Classification Using Various Features

To demonstrate the quality of our representation learning, we
apply the trained model as a feature extractor. The experiment

Implementation details can be found at https://github.com/bohu615/nu_gan

COQeoense
AT ICXEREY K

Fig. 7. Visualization of cell-level classification performed on Dataset
A: (up) correctly classified samples and (down) misclassified samples.
misclassified samples can be illegible for pathologists either.

TABLE |
PERFORMANCE OF CELL-LEVEL CLASSIFICATION USING VARIOUS FEATURES
Methods Precision Recall F-score
w/ Seg w/o Seg w/ Seg w/o Seg w/ Seg w/o Seg
MF 0.821 0.837 0.803 0.847 0.811 0.842
DNN 0.838 0.760 0.817 0.769 0.827 0.764
Our Method 0.865 / 0.848 / 0.857 /

is conducted on Dataset A. In this experiment, 1596 cell-level
images are used for training; 399 cell-level images are used for
testing.

Comparison: (1) MF: 188-dimensional manual feature com-
bined of SIFT [62], LBP [63], and L x a x b color histogram.
(2) DNN: DNN+k-means: DNN features extracted by ResNet-
50 trained on Imagenet-1K, on top of which k-means is per-
formed. (3) Our Method: We downsample the features after
each residual block of the discriminator into a 4 x 4 spatial grid
using max pooling. These features are flattened and concate-
nated to form an 8192-dimensional vector. On top of the feature
vectors, an L2-SVM is trained to perform classification.

Different processing strategies are used as follows: (1) w/Seg:
using the output generated by nuclei segmentation; (2) w/o Seg:
using the minimum bounding box along each cell-level instance.

Evaluation: For each class, we denote the number of true
positives T P, the number of false positives F' P and the number
of false negatives F'N. The precision, recall and F-score (F;)
for each class are defined as follows:

.. TP
precision = ———,
TP+ FP
TP
recall = ————,
TP+ FN
2 - precision - recall
F==2 (13)

precision + recall

The average precision, recall and F-socre are calculated
weighted by support (the number of true instances of each class).

Results: We randomly choose correctly classified and mis-
classified samples displayed in Fig. 7. The comparison of results
is shown as Table I, which proves the advantages of our rep-
resentation learning method. The manual feature extractor can
generate a better result based on the bounding box regions, but
its performance is still lower than ours. The color of the back-
ground can provide useful information for the color histogram
channel in manual features but is viewed as noise for the DNN
based extractor. Though the dimensions of the feature vectors
of our method are higher, the clustering ability of our model en-
sures further unsupervised applications. Furthermore, we apply
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mean pooling on top of feature maps to prove that using less
dimensional features can also generate a comparable result. In
this manner, we achieve 0.850 F-score using 2048 dimensional
features and 0.840 F-score using 512 dimensional features.

D. Cell-level Clustering

As the priority of image-level classification of histopathology
images, cell-level clustering is performed using the trained aux-
iliary network Q. We conduct experiments on the three datasets
described in Section I'V-A.

Comparison: (1) MF+k-means: Manual features with
k-means. (2) DNN+k-means: DNN features extracted by
ResNet-50 trained on Imagenet-1K, on top of which k-means is
performed. (3) HOG+DEC: Deep Embedded Clustering (DEC)
[26] on 2048-dimensional HOG features. (4) Our Method: Cell
images are unsupervised allocated to five clusters by the auxil-
iary network Q. We also test models such as Categorical GAN
(CatGAN) [33], InfoGAN (under DCGAN architecture), and
Gaussian Mixture VAE (GMVAE) [31] on our datasets under
different hyperparameters, but find them fail to converge.

The following processing strategies are also used: (1) w/Seg:
using the output generated by nuclei segmentation; (2) w/o Seg:
using the minimum bounding box along each cell-level instance.

Evaluation: We evaluate the performance of clustering using
the average F-score, purity, and entropy. For the set of clus-
ters {wy, s, ..., wg} and the set of classes {ci,cp, ..., ¢y},
we assume that each cluster wy is assigned to only one class
argmax ;(lwx N ¢;[). The F-score for class ¢; is then given by
Equation 13. The average F-score is given calculated by the
number of true instances in each class.

Purity and Entropy are also used as evaluation metrics, which
are written as follows:

) 1
purity = N Zk:mjax | Ncjl,

o |

-~ (14)

1
entropy = N Z |wy | log
k

Larger purity and smaller entropy indicate better clustering
results.

For nuclei segmentation, we use Intersection over Union
(IoU) and the F-score as evaluation metrics. A segmented in-
stance (I) is matched with the ground truth (G) only if they
intersect at least 50% (i.e., |[I N G| > 0.5G). For each matched
instance and its ground truth, the overlapping pixels are counted
as true positive (T P). The pixels of instance remain unmatched
are counted as false positive (F P) while the pixels of ground
truth remaining unmatched are counted as false negative (F N).
The F-score is then calculated using Equation 13.

For k-means based methods, the average F-score is approxi-
mately the same (£0.02) using either four, five, or six clusters.

Annotations: To evaluate the capability of nuclei segmen-
tation, We randomly choose 20 patches from Dataset C with
a resolution of 200 x 200 pixels. The ground truth is carefully
labeled by two pathologists. When the two pathologists disagree
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TABLE Il
PERFORMANCE OF CELL-LEVEL CLUSTERING
Dataset Methods Purity Entropy F-score

w/ Seg w/o Seg w/ Seg w/o Seg w/ Seg w/o Seg
MF+k-means | 0579 | 0442 | 1.376 | 1.598 | 0.603 | 0.510
A DNN+k-means | 0.667 | 0470 | 1.256 | 1.552 | 0.677 | 0501
HOG+DEC 0729 | 0.637 | 1.086 | 1.167 | 0.737 | 0.664

Our Method | 0.855 / 0.750 / 0.863 /
MF+k-means | 0.392 | 0421 | 1.561 | 1.545 | 0409 | 0454
B DNN+k-means | 0.719 | 0406 | 0.844 | 1.557 | 0.760 | 0.435
HOG+DEC 0771 | 0.681 | 0.697 | 1.161 | 0.812 | 0.693

Our Method | 0.874 / 0.431 / 0.841 /
MF+k-means | 0459 | 0446 | 1533 | 1.597 | 0484 | 0514
c DNN+k-means | 0.578 | 0458 | 1.377 | 1.575 | 0.601 | 0.485
HOG+DEC 0.667 | 0.602 | 1217 | 1334 | 0.682 | 0.621

Our Method | 0.769 / 0.977 / 0.777 /

on a particular image, a senior pathologist makes a decision over
the discord.

Results: For nuclei segmentation, our method achieves 0.56
mean IoU and 0.70 F-score.

For cell-level clustering, the comparison shown as Table II
shows the superiority of our method. To explicitly reveal the se-
mantic features our model has captured, we randomly choose 60
samples from each of the five clusters displayed in Fig. 8, which
shows a distinct consistency within each cluster. Reasonable in-
terpretations can be given. Cells are clustered according to the
semantic features such as the chromatin openness, the darkness
and density of nuclei, and if nuclei show the appearance of being
segmented.

When it comes to unsupervised classification, none of the
baseline methods can benefit from the bounding box. We ob-
serve that the color context of the background can be disturbing
when the classification is under the fully unsupervised manner.

Especially for Dataset A, Fig. 9(a) shows the convergence
of V(D, G) (see Equation (8)) and L, (see Equation (12)).
V(D, G) is used to evaluate how well the generator distribution
matches the real data distribution [12]. L, approaching zero
indicates that mutual information is maximized [14]. Fig. 9(b)
shows how the purity of clustering increases in the training
process.

Impacts of the Number of Clusters: For our method, it is
easy to change the number of clusters by sampling the categor-
ical noise from a different dimension. We compare the results
of choosing different numbers of clusters shown in Table III,
which shows there is no distinct difference between choosing
four and five clusters. We choose five clusters (a 5-dimensional
categorical random variable) in change for a slightly better per-
formance.

Impacts of Uninformative Representations: The uninfor-
mative representations such as the staining color and rotations
can be interference factors in the process of classification. Be-
sides using color normalization and data augmentation to ease
this problem, we also demonstrate that these features are more
likely to be latent encoded in Gaussian random variables which
do not influence the classification task. As is shown in Fig. 10,
we fix the value of the chosen categorical variable ¢ while walk-
ing through the random space of the Gaussian noise variable z.
The result shows that uninformative representations tend to be
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Fig. 8. Visualization of clustering. We randomly select 60 samples from each one of five clusters, displayed as (a) to (e). Instances in the same
cluster have a distinct consistency. In (b), cells in marrow with dark, dense, and close phased nuclei tend to be lymphocytes or erythroid precursors.
In (c) and (e), cells with dispersed chromatin are most likely granulocytes precursors such as myeloblasts.
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Fig. 9. Visualization of cell-level clustering performed on Dataset A. in Gaussian noise variables z. Different columns share the same value

(a) Training losses converge as the network trains. (b) The purity in-

h - of the chosen categorical variable ¢. A random walk is performed be-
creases gradually over generator iterations.

tween two points in the space of z. It can be seen that (a) the staining
color and (b) the rotation are both latent encoded in the Gaussian noise

TABLE Ill variables.

PERFORMANCE WHEN CHOOSING DIFFERENT NUMBERS OF CLUSTERS

[Clusters | 4 [ 5 [ 6 |

[Fescore | 0831 | 0863 | 0789 | E. Image-level Classification

We perform image-level classification experiments on
Dataset C and Dataset D respectively. Dataset C includes
29 positive and 11 negative images. Dataset D includes 132
positive and 72 negative images. Each dataset is randomly split

encoded in noise variables through the process of maximizing
the mutual information.
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TABLE IV
PERFORMANCE OF IMAGE-LEVEL CLASSIFICATION
Datasets Methods Precision Recall F-score

DNN (cell-level based) 0.539 0.598 0.688 0.524 0.711 0.723 0.734 0.678 0.636 0.678 0.701 0.621

c DNN (image-level based) 0.906 0913 0.901 0.921 0.969 0.958 0.943 0.965 0.933 0.929 0.924 0.937
Our Method (w/ k-means) 0.936 0.945 0.939 0.937 0.933 0.944 0.946 0.938 0.931 0.941 0.948 0.939

Our Method (w/ SVM) 0.950 0.948 0.940 0.946 0.969 0.968 0.950 0.966 0.950 0.949 0.940 0.949

DNN (cell-level based) 0.469 0.579 0.498 0.581 0.697 0.654 0.643 0.665 0.558 0.612 0.583 0.621

D DNN (image-level based) 0.863 0.900 0.887 0.869 0.863 0.886 0.871 0.865 0.863 0.888 0.879 0.866
Our Method (w/ k-means) 0.858 0.879 0.881 0.868 0.857 0.868 0.873 0.865 0.862 0.870 0.875 0.867

Our Method (w/ SVM) 0.864 0.897 0.901 0.882 0.858 0.892 0.898 0.878 0.863 0.891 0.902 0.880

Each experiment is repeated for four times with different random split for cross-validation. The scores are reported four times to show confidence intervals.

PCA of cell proportions
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Fig. 11.  Visualization of unsupervised classification using cell propor-
tions. It can be observed that the points representing normal and abnor-
mal samples are distinctly distributed in two different clusters.

into four folds for the 4-fold cross-validation. Each score is
reported averagely. Each experiment is repeated for four times
with different random split for cross-validation. The scores are
reported four times to show confidence intervals.

Comparison: (1) DNN (cell-level based): We use ResNet-
50 features extracted from cell-level instances to perform
cell-level clustering. Then we train an L2-SVM on top of
the cell proportions to perform image-level classification. (2)
DNN (image-level based): We use ResNet-50 pre-trained on
Imagenet-1K as an image-level feature extractor. Images with
a resolution of 1500 x 800 are normalized and center cropped
to 800 x 800 pixels, then resized into 224 x 224 pixels. An
L2-SVM is trained on the feature vectors. We observe this
produces a better result than fine-tuning or directly training
a ResNet-50 without pre-train. (3) Our method (w/k-means):
We first train our GAN architecture on the training set, then
conduct the cell-level clustering on both the training set and
test set using the trained model. Cluster centers are calculated
given cell proportions of each sample in the training set. The
predict label is given by the closest cluster that each sample in
the test set belongs to. (4) Our method (w/SVM): An L2-SVM
instead of k-means is used as the final classifier.

Evaluation: We use the precision, recall and F-score
for evaluation, the details of which have been described in
Equation 13. The difference is that the labels are binary in this
experiment.

Results: Following the proposed pipeline, the GAN architec-
ture is trained on the segmentation output of the split train-
ing set. For cell-level clustering task, we achieve 0.791 F-
score trained on 12000 training instances of Dataset C and

TABLE V
PERFORMANCE WHEN CHANGING THE SEGMENTATION PARAMETERS
Intensity threshold 60 80 100 120 140 160 180
Missing Instances 127 48 21 7 14 64 184
False Alarms 3 4 15 5 20 30 35
Segmentation F-score 0.315 0.413 0.602 0.701 0.656 0.534 0.218
Classification F-score 0.579 0.814 0.932 0.950 0.941 0.901 0.576

0.771 F-score trained on 60000 training instances of Dataset
D, both evaluated by labeled cells of Dataset A.

Given the cell proportions, when using k-means to perform
image-level unsupervised classification, we achieve 0.931 F-
score on Dataset C and 0.875 F-score on Dataset D, which is
comparative to the DNN method with 0.933 and 0.888 F-score.
The advantage is that our model is interpretable. The proportion
of which category of cells is irregular is recognizable.

Since there are a large number of cell-level images on both
Dataset C and D, it is difficult to test our method under full-
supervision with a similar pipeline. We instead train an L2-SVM
on cell proportions, taking image-level labels of histopathology
images as targets. As the comparison shown in Table IV, our
method achieves 0.950 F-score on Dataset C and 0.902 F-score
on Dataset D.

On Dataset C, we use Principal Components Analysis (PCA)
to perform a dimensionality reduction, cell proportions of each
histopathology image are projected onto a two-dimension plane
to show that there is a distinct difference between normal and
abnormal images, shown in Fig. 11.

Impacts of the Segmentation Parameters: To validate the
impacts of the segmentation performance on the image-level
classification result, we change the value of intensity threshold
in the segmentation process of experiments on Dataset C. We
randomly choose 20 patches with a resolution of 200 x 200 pix-
els in Dataset C for evaluation, which includes 335 nuclei as
counted. We use missing instances (nuclei that are missing in
outputs), false alarms (mis-segmented background instances),
and the F-score for evaluation.

Asis shown in Table V, both results of segmentation and clas-
sification are the highest when the intensity threshold remains
120. Followed by the decreasing of segmentation performance,
the classification performance will stay within an acceptable
range. Too bad segmentation performance will worsen the clas-
sification result since the quality and quantity of the segmenta-
tion outputs are not enough to reveal the distinct representation
of each image-level instance.

Impacts of the Number of Clusters: For image-level classi-
fication of Dataset C, we conduct experiments choosing different
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TABLE VI
PERFORMANCE WHEN CHOOSING DIFFERENT NUMBERS OF CLUSTERS
Clusters 4 5 6 7
Cell-level Classification F-score 0.711 0.791 0.762 0.710
Image-level Classification F-score 0.897 0.950 0.944 0.899

Fig. 12.  Example of the failed samples. Too many erythroid precursors
indicate the presence of blood disease. The overlap of nuclei and the
lousy staining condition add to the difficulties of cell-level classification.

number of clusters. Table VI shows that there is no distinct dif-
ference of performance between choosing five and six clusters.
We still choose five clusters for a better performance.

Patch-level Classification: We perform classification based
on patches. Using a sliding window with a window size of
224 and a stride of 224, we separately transfer the normalized
images from the training set and test set from Dataset C into
labeled image patches. This results in 588 positive and 288
negative patches for training, 224 positive and 108 negative
patches for testing. If 50% of the patches of an image-level
instance are positive, we will consider this instance as positive.
In this manner, we achieve 0.851 F-score using DNN feature
extractor with SVM and 0.831 F-score using our method, which
is not comparative to our image-level classification results.

Discussion: Analyzing the results, we find that the cell pro-
portions { Py, P,, ..., Ps} can indicate the presence of blood
diseases.

For our experiment, cell-level clustering shows that { Py, P4}
correspond to myeloblasts, { Ps} corresponds to lymphocytes
and erythroid precursors, and { P,, P; } correspond to monocytes
and glanulocytes. For all normal images, P; and P; are relatively
lower. This matches the constitution in normal bone marrow
where the lymphocytes, glanulocytes and erythroid precursors
are in the majority when the percentage of cells with open phased
nuclei (such as myeloblasts, under some circumstances plasma
cells) is relatively lower (less than 10%). In Fig. 11, abnormal
images that are confidently discriminated are reflected in the
numerous presence of the supposed minority myeloblasts or
plasma cells, which in turn is reflected in the sharp increase of
P 1 and P, 4.

However, there are three abnormal images that are excep-
tional. To analyze what causes the failure, we display the exam-
ple image in Fig. 12.

In these images, the irregular proportion of erythroid pre-
cursors indicates the presence of blood disease. We find that
our model does not correctly classify these cells. The reason
could be that the staining condition of these cells is not as
good as expected. A typical erythroid precursor should have a

co00v0ed STUGDTPUY
(a) (b)

o000 00e0oe fOa®0®POD
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Fig. 13. Variance of staining conditions. (a) and (b) are erythroid pre-
cursors and myeloblasts randomly chosen from failed images. (c) and
(d) are samples selected from correctly predicted images. Our model
mistakes erythroid precursors for myeloblasts particularly in failed
images.

close phased, dark-staining nucleus that appears almost black.
As Fig. 13 shows, the color of nuclei segmented from these
images differ from the rest of the dataset. Particularly in these
images, our model is still not robust enough to capture the most
significant semantic variance in an unsupervised setting. There-
fore, acquiring high-quality histopathology images is still a
priority.

V. CONCLUSION

In this paper, we introduce a unified GAN architecture with a
new formulation of the loss function into cell-level visual repre-
sentation learning of histopathology images. Cell-level unsuper-
vised classification with interpretable visualization is performed
by maximizing mutual information. Based on this model, we ex-
ploit cell-level information by calculating the cell proportions
of histopathology images. Followed by this, we propose a novel
pipeline combining cell-level visual representation learning and
nuclei segmentation to highlight the varieties of cellular ele-
ments, which achieves promising results when tested on bone
marrow datasets.

In future work, some improvements can be made to our
method. First, the segmentation method and the computational
time can be further improved. The gradient penalty added on
the network architecture requires the computation of the sec-
ond order derivative, which is time-consuming in the training
process. Secondly, in addition to cell proportions, other in-
formation about the patients should be carefully considered,
such as clinical trials and gene expression data. By allocating
and annotating the relevant genetic variants, the risk can be
re-evaluated. In clinical practice, doctors need to consolidate
more critical information to make a confident diagnosis. For
example, bone marrow cells of children might not be as varied
as those of adults’. To classify cells in a more fine-grained
manner, the peculiar distribution information such as ery-
throid cells more likely form clusters (erythroid islands) can be
considered.
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