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Unsupervised 3D End-to-End Medical Image
Registration with Volume Tweening Network

Tingfung Lau†, Ji Luo†, Shengyu Zhao, Eric I-Chao Chang, Yan Xu∗

Abstract—3D medical image registration is of great clinical
importance. However, supervised learning methods require a
large amount of accurately annotated corresponding control
points (or morphing). The ground truth for 3D medical images
is very difficult to obtain. Unsupervised learning methods ease
the burden of manual annotation by exploiting unlabeled data
without supervision. In this paper, we propose a new unsuper-
vised learning method using convolutional neural networks under
an end-to-end framework, Volume Tweening Network (VTN), to
register 3D medical images. Three technical components amelio-
rate our unsupervised learning system for 3D end-to-end medical
image registration: (1) We cascade the registration subnetworks;
(2) We integrate affine registration into our network; and (3) We
incorporate an additional invertibility loss into the training
process. Experimental results demonstrate that our algorithm
is 880x faster (or 3.3x faster without GPU acceleration) than
traditional optimization-based methods and achieves state-of-the-
art performance in medical image registration.

Index Terms—Registration, unsupervised, convolutional neural
networks, end-to-end, medical image

I. INTRODUCTION

Image registration is the process of mapping images into the
same coordinate system by finding the spatial correspondence
between images (see Figure 1). It has a wide range of appli-
cations in medical image processing, such as aligning images
of one subject taken at different times. Another example is to
match an image of one subject to some predefined coordinate
system, such as an anatomical atlas [1].

There has not been an effective approach to generate
ground-truth flows for medical images. Widely used super-
vised methods require accurately labeled ground truth with a
vast number of instances. The quality of these labels directly
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Figure 1: Illustration of 3D medical image registration. Given a fixed image (a) and a
moving image (b), a deformation field (c) indicates the displacement of each voxel in the
fixed image to the moving image (represented by a grid skewed according to the field).
An image (d) similar to the fixed one can be produced by warping the moving image
with the flow. The images are rendered by mapping grayscale to white with transparency
(the more intense, the more opaque) and dimetrically projecting the volume.

affects the result of supervision, which entails much effort
in traditional tasks such as classification and segmentation.
But optical flows are dense and ambiguous quantities that are
almost impossible to be labeled manually, and moreover, auto-
matically generated dataset (e.g., the Flying Chairs dataset [2])
which deviates from the realistic demands is not appropriate.
Consequently, supervised methods are hardly applicable. In
contrast, unlabeled medical images are universally available,
and sufficient to advance the state of the art through our
unsupervised framework shown in this paper.

Previously, there has been much effort on automating image
registration. Tools like FAIR [3], ANTs [4] and Elastix [5]
have been developed for automated image registration [1].
Generally, these algorithms define a space of transformations
and a metric of alignment quality, and then find the optimal
transformation by iteratively updating the parameters. The
optimization process is highly time-consuming, rendering such
methods impractical for clinical applications.

There have been some works tackling medical image reg-
istration with CNNs [6]. Miao et al. [7] use CNN to perform
2D/3D registration, in which CNN regressors are used to
estimate transformation parameters. Their CNNs are trained
over synthetic data and the method is not end-to-end. Wu et
al. [8] propose an unsupervised method to train CNN to extract
features for 3D brain MRI registration. However, their method
is patch-based and needs a feature-based registration method,
thus is not end-to-end.

Optical flow prediction is a closely related problem that
aims to identify the correspondence of pixels in two images of
the same scene taken from different perspectives. FlowNet [2]
and its successor FlowNet 2.0 [9] are CNNs that predict optical
flow from input images using end-to-end fully convolutional
networks (FCN [10]), which are capable of regressing pixel-
level correspondence. FlowNet is trained on Flying Chairs,
a synthetic dataset that consists of pairs of realistic images
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Figure 2: Illustration of an overall structure of Volume Tweening Network (VTN) and how gradients back-propagate. Every registration subnetwork is responsible for finding the
deformation field between the fixed image and the current moving image. The moving image is repeatedly warped according to the deformation field and fed into the next level of
cascaded subnetworks. The current moving images are compared against the fixed image for a similarity loss function to guide training. There is also regularization loss, but not
drawn for the sake of cleanness. The number of cascaded subnetworks may vary; only two are illustrated here. In the figure, yellow (lighter) indicates the similarity loss between
the first warped image and the fixed image, and blue (darker) that between the second warped image and the fixed image. Solid bold arrows indicate how the loss is computed, and
dashed bold arrows indicate how gradients back-propagate. Note that the second loss will propagate gradients to the first subnetwork as a consequence of the first warped image
being a differentiable function of the first subnetwork.

generated using computer graphics algorithms and the ground-
truth flow. However, realistic medical images are hard to gen-
erate, which leaves us with the only option of using medical
images captured by sensors. The ground-truth flow between
medical images is very difficult to obtain, which impedes the
employment of supervised learning-based methods.

Spatial Transformer Networks (STN) [11] is a component
in neural networks that spatially transforms feature maps to
ease back-end tasks. It learns a localization net to produce
an appropriate transformation to “straighten” the input image.
The localization net is learnt without supervision, though
back-end task might be supervised. Given a sampling grid
and a transformation, STN applies the warping operation and
outputs the warped image for further consumption by deeper
networks. The warping operation deals with off-grid points
by multi-linear interpolation, hence is differentiable and can
back-propagate gradients.

Inspired by FlowNet and STN, we present a network
structure (see Figure 2), called Volume Tweening Network
(VTN), enabling unsupervised training of end-to-end CNNs
that perform voxel-level 3D medical image registration. Train-
ing does not require ground truth as FlowNet (2.0) does. The
moving image is registered and warped, and the warped image
is compared against the fixed image to form a similarity loss.
There is a rich body of research into similarity losses [12],
[13], [14]. The model is trained to minimize a combination
of regularization loss and similarity loss. As the method is
unsupervised, the performance potentially increases as it is
trained with more unlabeled data. The network consists of
several cascaded subnetworks, the number of which might
vary, and each subnetwork is responsible for producing a
transform that aligns the fixed image and the moving one.
Deeper layers register moving images warped according to
the output of previous layers with the initial fixed image. The
final prediction is the composition of all intermediate flows.
It turns out that network cascading significantly improves the

performance in the presence of large displacement between
the input images. While the idea of cascading subnetworks is
found in FlowNet 2.0, our approach does not include as much
artificial intervention of network structures as FlowNet 2.0
does. Instead, we employ a natural dichotomy in a subnetwork
structure consisting of affine and deformable registration pro-
cesses, which is also found in traditional methods, including
ANTs (affine and SyN for deformable) [4] and Elastix (affine
and B-spline for deformable) [5]. Besides these structural
innovations, we also introduce the invertibility loss, similar
to left-right disparity consistency loss in [15], to 3D medical
image registration. Compared with traditional optimization-
based algorithms, ours is 880x faster (or 3.3x faster without
GPU acceleration) and achieves state-of-the-art registration
accuracy.

To summarize, we present a new unsupervised end-to-
end learning system using convolutional neural networks for
deformation field prediction between 3D medical images. In
this framework, we develop 3 technical components: (1) We
cascade the registration subnetworks, which improves per-
formance for registering largely displaced images without
much slow-down; (2) We integrate affine registration into our
network, which proves to be effective and faster than using
a separate tool; (3) We incorporate an additional invertibility
loss into the training process, which improves registration per-
formance. The contributions of this work are closely related.
An unsupervised approach is very suitable for this problem,
as the images are abundant and the ground truth is costly
to acquire. The use of the warping operation is crucial to
our work, providing the backbone of unsupervision, network
cascading and invertibility loss. Network cascading further
allows us to plug in different subnetworks, and in this case,
the affine registration subnetwork and the deformable ones,
enabling us to adapt the natural structure of multiple stages
in image registration. The efficient implementation of our
algorithm gives a satisfactory speed.
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II. RELATED WORKS

A. Directly Related Works

Several existing works that are directly related to ours are
discussed below.

FlowNet [2] is an end-to-end FCN [10] that predicts optical
flow between realistic images. The network has an encoder-
decoder structure that extracts features and predicts optical
flow at progressively refined scales, in which skip connec-
tions are added to combine high-level and low-level features.
FlowNet is trained in a supervised manner with Flying Chairs,
a synthetic dataset with ground-truth flow. In contrast, our
method is trained without any ground-truth flow, nor does it
require synthesizing training data.

FlowNet 2.0 [9], the successor of FlowNet, cascades several
carefully crafted versions of FlowNet into one large network.
The approach has proven helpful in improving accuracy of
estimation. All of the subnetworks in FlowNet 2.0 perform
deformable registration and each of them is carefully hand-
crafted. Handcrafting the architecture makes the method prone
to being task-specific. In contrast, we cascade two types
of subnetworks, one performing affine registration, the other
dense deformable, and we do not tweak the structure of our
subnetworks.

Spatial Transformer Network (STN) [11] is a neural network
that performs class-wise alignment. Spatial transformation
parameters can be learned by training STN to loss functions
without supervision. STN contains a differentiable layer that
warps feature maps. One can reconstruct the fixed image by
warping the moving one with the flow. STN itself does not
register images. We employ the warping operation in STN to
enable unsupervised training as well as network cascading.
Figure 3 compares STN and our subnetwork (unit of cascad-
ing). The localization net is comparable to the convolutional
part of our network, which produces the parameters (the flow
field). Our grid generator simply skews the lattice on which
input images are defined according to the field. The sampler,
also known as the warp operation, warps the moving image
into the warped image. Both nets are unsupervised. A key
difference is that our subnetwork takes two images as input
whereas STN takes only one. This difference is not only in
design but also philosophical, and adapts to the tasks for each
network. Our subnetwork takes one image (the fixed) as the
reference image, because the task is to align the other image
(the moving) to it. The training is guided by the alignment
between the warped image and the fixed image. In STN’s
settings, there is no such reference hence only one input image,
and the task is to adjust the image to ease whatever task the
back-end is to tackle. Its training is guided by the back-end
task, which forces it to improve its warping strategy if the
back-end network cannot solve the task well because working
with the warped image is too hard for it. Philosophically, STN
implicitly learns a reference “atlas” for the task at hand.

In an earlier work towards fast and accurate medical image
registration by Shan et al. [16], an unsupervised end-to-
end learning-based method for deformable medical image
registration is proposed. The method in [16] registers 2D
images. It is evaluated by registering corresponding sections

(a)
STN structure from [11]

(b)
fitting our subnetwork into STN parlance

Figure 3: Comparison between STN and a subnetwork in our model. Comparable
structures are similarly annotated. However, there is crucial difference between the two,
as explained in the article.

of MR brain images and CT liver scans. In contrast, our 3D
algorithm directly performs 3D registration, fully exploiting
information available from the 3D images. Moreover, we
cascade subnetworks to improve the performance. With the
help of cascaded subnetworks, affine registration is integrated
into our network, which is done out-of-band in [16].

VoxelMorph, proposed by a concurrent work by Balakr-
ishnan et al. [17], is an unsupervised learning-based method
for 3D medical image registration. VoxelMorph contains an
encoder-decoder structure, uses warping operation to produce
warped moving images and is trained to minimize the dis-
similarity between the warped image and the fixed image.
It is noticeable that both methods use the warp operation to
train networks without supervision. This paper exploits the
operation in a trio (namely enabling unsupervised training,
enabling cascading, and implementing invertibility loss, which
will be detailed later). Their method does not consider affine
registration and assumes the input images are already affinely
aligned, whereas ours embeds the process of affine registration
as an integrated part of the network. Furthermore, their algo-
rithm does not work well when large displacement between
the images is present, which is common for liver CT scans.
Finally, VoxelMorph is designed to take any two images as
input, but [17] only evaluates it in the atlas-based registration
scenario. Consider a clinical scenario where the brain of a
patient is captured before and after an operation. It would be
better, in terms of accuracy and convenience, to register these
two images, instead of registering both to an atlas. In this
paper, we present a more sophisticated and robust design that
works well in the presence or absence of large displacement,
and we evaluate the methods for general registration among
images.
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B. Traditional Algorithms

Over recent decades, many traditional algorithms have been
developed and studied to register medical images [18], [19],
[4], [5]. Most of them define a hypothesis space of possible
transforms, often described by a set of parameters, and a metric
of the quality of such a transform, and then find the optimum
by iteratively updating the parameters.

Selecting an informative metric is crucial to registration
quality. The metrics, also called loss functions, often consist
of two parts, one measuring the level of correspondence
between the input images implied by the transform, the other
regularizing the transform itself. Examples of the former part
include photo-metric difference, correlation coefficient and
mutual information [13], [14] among others [12]. Some of
these measures, notably mutual information, require binning
or quantizing, which makes gradients vanish thus continuous
optimization techniques such as gradient descent inapplicable.

The transformation space can be either parametric or non-
parametric. Affine transforms can be described by only a few
real numbers, whereas a free-form dense deformable field
specifies the displacement for each grid point. Though the
latter contains all possible transforms, it is common to apply
a multi-stage approach to the problem. For example, ANTs
[4] registers the input images with a rigid transform, then a
general affine transform, and finally a deformable transform
modeled by SyN. In this paper, we also have components for
affine/deformable registration, which are modeled by neural
networks.

Traditional methods have achieved good performance on
several datasets, and are state-of-the-art, but their registration
speed is barely practical for clinical applications. These meth-
ods do not exploit the patterns that exist in the registration
task. In contrast, learning-based methods are generally faster.
Computationally, they do not need to iterate over and over
before producing the result. Conceptually, they learn those
patterns represented by the parameters of the underlying
learning model. The trained model is an efficient replacement
of the optimization procedure.

C. Supervised Learning Methods

Lee et al. [20] employ Support Vector Machines (SVM) to
learn the similarity measure for multi-modal image registration
for brain scans. The training process of their algorithm requires
pre-aligned image pairs thus the method is supervised. Sokooti
et al. [21] develop a patch-based CNN to register chest
CT scans and trains it with synthetic data. FlowNet [2],
developed by Dosovitskiy et al., is an FCN [10] for optical
flow prediction. The network is trained with synthetic data
and estimates pixel-level correspondence.

While supervised learning methods achieve good perfor-
mance, either abundant groud-truth alignment must be avail-
able, or synthetic data are used. Generation of synthetic
data has to be carefully designed so that the generated data
resemble the real ones.

D. Unsupervised Learning Methods

Obtaining the ground truth for registration between 3D med-
ical images is very difficult. To work around this, unsupervised
methods are to help.

Both inspired by FlowNet [2], Ren et al. [22] and Yu et
al. [23] use STN to warp images according to the optical flow
produced by CNN. They use Charbonnier penalty of fixed and
warped images to guide the optimization of CNN, eliminating
the need for ground-truth flow. Targeting another task, single
view depth estimation, Garg et al. [24] develop an FCN that
predicts depth from one photo, and use the depth field to
reconstruct an image from another perspective, which is then
compared against the other photo. The reconstruction loss is
used to train CNN without annotated depth data. The method
gains a boost in performance with a left-right consistency
check [15].

III. METHOD

A. Problem Formulation

The input of an image registration problem consists of two
images I1,2, both of which are functions Ω→ Rc, where Ω is a
region of Rn and c denotes the number of channels. Since this
work focuses on 3D medical image registration, we confine
ourselves to the case where Ω is a cuboid and c = 1 (grayscale
image). Specifically, this means Ω ⊆ R3 and each image is a
function Ω→ R. The objective of image registration is to find
a displacement field (or flow field) f12 : Ω→ R3 so that

I1 (x) ≈ I2 (x+ f (x)) , (1)

where the precise meaning of “≈” depends on specific ap-
plication. The field f12 is called the flow from I1 to I2
since it tells where each voxel in I1 is in I2. We define
warp (I2, f) as the image I2 warped according to f , i.e.,
warp (I2, f) (x) = I2 (x+ f (x)). The above objective can
be rephrased as finding f maximizing the similarity between
I1 and warp (I2, f).

The image I1 is also called the fixed image, and I2 the
moving one. The term “moving” suggests that the image is
transformed during the registration process.

Consider warping an image twice, first with g1 then with
g2. What this procedure produces is

warp (warp (I, g1) , g2) (x)

= warp (I, g1) (x+ g2 (x))

= I (x+ g2 (x) + g1 (x+ g2 (x)))

= warp (I, g2 + warp (g1, g2)) (x) . (2)

This motivates the definition of the composition of two flows.
If we define the composition of the flow fields g1, g2 to be

g1 ? g2 = g2 + warp (g1, g2) , (3)

Equation (2) can be restated as

warp (warp (I, g1) , g2) = warp (I, g1 ? g2) . (4)

It is noticeable that the warp operation in the above formula-
tion should be further specified in practice. Real images as well
as flow fields are only defined on lattice points. We continuate
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them onto the enclosing cuboid by trilinear interpolation as
done in [25]. Furthermore, we deal with out-of-bound indices
by nearest-point interpolation. That is, to evaluate a function
defined on lattice points at any point x, we first move x to
the nearest in the enclosing cuboid of those lattice points, then
interpolate the value from the 8 nearest lattice points.

B. Unsupervised End-to-End Registration Network

Our network, called Volume Tweening Network (VTN),
consists of several cascaded registration subnetworks, after
each of which the moving image is warped. The unsupervised
training of network parameters is guided by the dissimilarity
between the fixed image and each of the warped images,
with the regularization losses on the flows predicted by the
subnetworks.

The warping operation, also known as the sampler in STN
[25], is differentiable due to the trilinear interpolation. The
warping operation back-propagates gradients to both the input
image and the input flow field, which is critical for training
our cascaded networks. These subnetworks are trained to work
cooperatively in a way that the moving image is successively
and gradually aligned.

For better performance, it is common to apply an initial
rigid transformation as a global alignment before predicting
the dense flow field. Instead of prepending a time-consuming
preprocessing stage with a tool like ANTs [4] as what is done
in VoxelMorph [17], we integrate this procedure as a top-level
subnetwork. The integrated affine registration subnetwork not
only works in negligible running time, but also outperforms
the traditional affine stage.

C. Loss Functions

To train our model in an unsupervised manner, we measure
the (dis)similarity between the moving images warped by the
spatial transformer and the fixed image. There is a rich body
of research in similarity metrics suitable for medical image
registration [26], [12]. Furthermore, regularization losses are
introduced to prevent the flow fields from being unrealistic or
overfitting. In the following paragraphs, Ω denotes the cuboid
(or grid) on which the input images are defined. We will
introduce the loss functions that we use in the experiments.
Extended discussion of other possible loss functions is avail-
able in the appendices.

a) Correlation Coefficient: The covariance between I1
and I2 is defined as

Cov [I1, I2] =
1

|Ω|
∑
x∈Ω

I1 (x) I2 (x)− 1

|Ω|2
∑
x∈Ω

I1 (x)
∑
y∈Ω

I2 (y),

(5)
and their correlation coefficient is defined as

CorrCoef [I1, I2] =
Cov [I1, I2]√

Cov [I1, I1] Cov [I2, I2]
. (6)

The images are regarded as random variables whose sample
space is the points on which voxel values are available. The
range of correlation coefficient is [−1, 1], it measures how
much the two images are linear related, and attains ±1 if and

only if the two are linear function of each other. Applying
a non-degenerate linear function to any of the images does
not change their correlation coefficient, therefore, this measure
is more robust than L2 loss. For real-world images, the
correlation coefficient should be non-negative (unless one of
the images is a negative film). The correlation coefficient loss
is defined as

LCorr (I1, I2) = 1− CorrCoef [I1, I2] . (7)

b) Orthogonality Loss: For the specific task discussed in
this paper (medical image registration), it is usually the case
that the input images need only a small scaling and a rotation
before they are affinely aligned. We would like to penalize
the network for producing overly non-rigid transform. To this
end, we introduce a loss on the non-orthogonality of I + A,
where A denotes the transform matrix produced by the affine
registration network (see Section IV-B for more details). Let
λ1,2,3 be the singular values of I + A, the orthogonality loss
is

Lortho = −6 +

3∑
i=1

(
λ2
i + λ−2

i

)
. (8)

The more deviant I + A is from being an orthogonal matrix,
the larger its orthogonality loss. If I + A is orthogonal, the
value will be zero.

c) Determinant Loss: We assume images are taken with
the same chirality, therefore, an affine transform involving
reflection is not allowed. This imposes the requirement that
det (I +A) > 0. Together with the orthogonality requirement,
we set the determinant loss to be

Ldet = (−1 + det (A+ I))
2
. (9)

d) Total Variation Loss (Smooth Term): For a dense flow
field, we regularize it with the following loss that discourages
discontinuity:

LTV =
1

3|Ω|
∑
x

3∑
i=1

(f(x+ ei)− f(x))2, (10)

where e1,2,3 form the natural basis of R3. This is also known
as the L2 smooth term.

IV. NETWORK ARCHITECTURE

A. Cascading

Each subnetwork is responsible for aligning the fixed image
and the current moving image. Following each subnetwork,
the moving image is warped with the predicted flow, and
the warped image is fed into the next cascaded subnetwork.
The flow fields are composed to produce the final estimation.
Figure 2 illustrates how the networks are cascaded, how the
images are transformed and how each part contributes to the
loss. All layers being differentiable, the gradient will back-
propagate so that the subnetworks can be trained.

It might be tempting to compare our scheme with that of
FlowNet 2.0 [9]. FlowNet 2.0 stacks subnetworks in a different
way than our method. It performs two separate lines of flow
estimations (large/small displacement flows) and fuses them
into the final estimation. Each of its intermediate subnetworks
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has inputs of not only the warped moving image and the
fixed image, but also the initial moving image, the current
flow, and the brightness error. Its subnetworks are carefully
crafted, having similar yet different structures and expected
to solve specific problems (e.g., large/small displacement) in
flow estimation. In contrast, our method does not involve two
separate lines of registration, i.e., each subnetwork works on
the fixed image and the warped moving image produced by
the previous one, and intermediate subnetworks do not get
more input than the initial one. We do not interfere much
with the structures of subnetworks. Despite the initial affine
subnetwork, we do not assign specific tasks to the remaining
subnetworks since they share the same structure.

B. Affine and Dense Deformable Subnetworks

Figure 4: Affine registration subnetwork. The number of channels is annotated above the
layer. A smaller canvas means lower spatial resolution.

Figure 5: Dense deformable registration subnetwork. Number of channels is annotated
above the layer. Curved arrows represent skip paths (layers connected by an arrow
are concatenated before transposed convolution). Smaller canvas means lower spatial
resolution.

The affine registration subnetwork aims to align the input
image with an affine transform. It is only used as our first
subnetwork. Its structure, as illustrated in Figure 4, does not
resemble an auto-encoder suggested by the sandglass shape in
Figure 2. This type of subnetwork progressively downsamples
the input by doing strided 3D convolution, after which a fully-
connected layer is applied to produce 12 numeric parameters,
which represents a 3 × 3 transform matrix A and a 3-
dimensional displacement vector b. As a common practice,
the number of channels doubles as the length of resolution
halves. The flow field produced by this subnetwork is defined
as

f (x) = Ax+ b. (11)

The dense deformable registration subnetwork is used as all
subsequent subnetworks, each of which refines the registration
based on the output of the subnetwork preceeding it. Its
structure, illustrated in Figure 5, is an auto-encoder and similar

to FlowNet [2]. We use strided 3D convolution to progres-
sively downsample the image, and then use deconvolution
(transposed convolution) [10] to recover spatial resolution.
As suggested in [2], skip paths connecting the deconvolution
layer to the convolution layer with the same spatial resolution
are added to help localizing estimation, which results in a
structure similar to U-Net [27]. The subnetwork will output
the dense flow field, a volume feature map with 3 channels
(x, y, z displacements) of the same size as the input.

C. Invertibility

Given two images I1,2, going from a voxel in I1 to the
corresponding voxel in I2 then back to I1 should give zero
displacement. Otherwise stated, the registration should be
round-trip. In Figure 6, we demonstrate the possible situations.
The pair of solid arrows exemplifies round-trip registration,
whereas the pair of dashed arrows exemplifies non-round-trip
registration. If we have computed two flow fields (back and
forth), f12 and f21, the composed fields exhibit the round-
trip behavior of the registration, as illustrated by the magenta
straight arrow in Figure 6. Ideally, round-trip registration
should satisfy the equations f12 ? f21 = f21 ? f12 = 0.
We capture the round-tripness for a pair of images with the
invertibility loss, namely

Linv = ‖f12 ? f21‖22 + ‖f21 ? f12‖22. (12)

The larger the invertibility loss, the less round-trip the regis-
tration. For perfectly round-trip registration, the invertibility
loss is zero. We come up with, formulate, and implement the
invertibility loss independently of [15]. We use L2 invertibility
loss whereas [15] uses L1 left-right disparity consistency loss,
which is just a matter of choice. We are the first to incorporate
the invertibility loss into 3D images to boost performance on
medical image tasks.

Figure 6: Illustration of how invertibility loss enforces round-trip registration. Green
(darker) and yellow (lighter) curves represent two images. Curved arrows: flow fields.
Solid curved arrows: flow inversion. Dashed arrows: failure of flow inverseion. Straight
arrow (magenta, very dark): example vector in the composed flow green → yellow →
green, which is non-zero because the voxel fails to trip back. Best viewed in color.

V. EXPERIMENT

We evaluate our algorithm with extensive experiments on
liver CT datasets and brain MRI datasets. We compare our
algorithm against state-of-the-art traditional registration algo-
rithms including ANTs [4] and Elastix [5], as well as Vox-
elMorph [17]. Our algorithm achieves state-of-the-art perfor-
mance while being much faster. Our experiments prove that the
performance of our unsupervised method is improved as more
unlabeled data are used in training. We show that cascading
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subnetworks significantly improves the performance, and that
integrating affine registration into the method is effective.

We evaluate the performance of algorithms with the follow-
ing metrics:

• Seg. IoU is the Jaccard coefficient between the warped
liver segmentation and the ground truth. We warp the
segmentation of the moving image by the predicted
deformable field, and compute the Jaccard coefficient of
the warped segmentation with the ground-truth segmen-
tation of the fixed image. “IoU” means “intersection over
union”, i.e., |A∩B||A∪B| , where A,B are the set of voxels the
organ consists of.

• Lm. Dist. is the average distance between warped land-
marks (points of anatomical interest) and the ground
truth.

• Time is the average time taken for each pair of images
to be registered. Some methods are implemented with
GPU acceleration, therefore there are two versions of this
metric (with or without GPU acceleration).

Our model is defined and trained using TensorFlow [28]. We
accelerate training with nVIDIA TITAN Xp and CUDA 8.0.
We use the Adam optimizer [29] with the default parameters in
TensorFlow 1.4. The batch size is 8 pairs per batch. The initial
learning rate is 10−4 and halves every epoch after the 4th

epoch. Each epoch consists of 20000 batches and the number
of epochs is 5. Performance evaluation uses the same GPU
model. Traditional methods work on CPU. We also test neural-
network-based methods with GPU acceleration disabled for a
fairer comparison of speed. The CPU model used is Intel R©

Xeon R© CPU E5-2690 v4 @ 2.60GHz (14 Cores).

A. Experiments on Liver Datasets

1) Settings: The input to the algorithms are liver CT scans
of size 1283. Affine subnetworks downsample the images to 43

before applying the fully-connected layer. Dense deformable
subnetworks downsample the images to 23 before doing trans-
posed deconvolution.

We cascade up to 4 registration subnetworks. The reason
we need to cascade multiple subnetworks is that large dis-
placement is very common among CT liver scans and that
with more subnetworks, images with large displacement can
be progressively aligned. Among these networks, the one with
one affine registration subnetwork and three dense deformable
registration networks (referred to as “ADDD”) is used to be
trained with different amount of data and compared with
other algorithms. We use the correlation coefficient as our
similarity loss, the orthogonality loss and the determinant loss
as regularization losses for the affine subnetwork, and the
total variation loss as that for dense deformable subnetworks.
The ratio of losses for “ADDD” is listed in Table I. The
performance is not very sensitive to the choice of hyper-
parameters. We suggest that each of the dense deformable
subnetworks can automatically learn how to progressively
align the images, and that only the final subnetwork and the
affine subnetwork need to be trained with similarity loss.

2) Datasets: We have three datasets available:

Subnetwork Loss Relative Ratio

Affine Similarity 1
Determinant 0.1

Orthogonality 0.1

Dense 1 Similarity 0
Total variation 1

Dense 2 Similarity 0.05
Total variation 1

Dense 3 Similarity 1
Total variation 1

Table I: Ratio of loss functions.

• LITS [30] consists of 130 volumes. LITS comes with
segmentation of liver, but we do not use such information.
This dataset is used for training.

• BFH is provided by Beijing Friendship Hospital and
consists of 92 volumes. This dataset is used for training.

• MICCAI (MICCAI’07) [31] consists of 20 volumes with
liver segmentation ground truth. We choose 4 points of
anatomical interest as the landmarks1 and ask 3 expert
doctors to annotate them, taking their average as the
ground truth. This dataset is used as the test data.

We crop raw liver CT scans to a volume of size 1283 around
the liver, permute (and reflect, if necessary) the axes so that
the orientations of the images agree with each other, and
normalize them by adjusting exposure so that the histograms
of the images match each other. The preprocessing is necessary
as the images come from different sources.

3) Comparison among Methods: In Table II, “ADDD” is
our model detailed in Section V-A1, and “ADDD + inv” is
that model trained with additional term of invertibility loss in
the central area (the beginning and the ending quaters of each
side are removed) with relative weight 10−3. Learning-based
methods (VTN and VoxelMorph) are trained on LITS and BFH
datasets. All methods are evaluated on the MICCAI dataset. To
prove the effectiveness of our unsupervised method, we also
train “ADDD” supervised (the row “supervised”), where the
output of ANTs is used as the ground truth (using end-point
error [2] plus regularization term as the loss function).

Method Seg. IoU Lm. Dist. Time Time (w/o GPU)

ANTs [4] 0.8124 11.93 N/A 748 s
Elastix [5] 0.8365 12.36 N/A 115 s

VoxelMorph-2 [17] 0.6796 18.10 0.20 s 17 s
VTN ADDD (ours) 0.8868 12.04 0.13 s 26 s

VTN ADDD + inv (ours) 0.8882 11.42 0.13 s 26 s
supervised 0.7680 13.38 0.13 s 26 s

Table II: Comparison among traditional methods, VoxelMorph and our VTN (liver).

VoxelMorph-2 is trained (using code released by [17])
with a batch size of 4 and an iteration count of 5000. Its
performance with a batch size of 8 or 16 is worse so a batch
size of 4 is used. After 5000 iterations, the model begins
to overfit. The reason that it does not perform well on liver

1The landmarks: (L1) the top point of hepatic portal; (L2) the intersection
of the superior and anteroir branches of the right lobe; (L3) the intersection of
the superior and inferior branches of the right lobe; and (L4) the intersection
of the medial and inferior branches of the left lobe.
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datasets might be that it is designed for brain registration thus
cannot handle large displacement.

The results in Table II show the vast speed-up of learning-
based methods against optimization-based methods. Our meth-
ods surpass state-of-the-art registration algorithms in terms of
Segmentation IoU and Landmark Distance.

4) Performance with Different Amount of Data: In Ta-
ble III, the “ADDD” network (see Section V-A1) is trained
with different amount of data. The result demonstrates that
training with more unlabeled data improves the performance.
Since we do not need any annotations during the training
phase, there are abundant clinical data ready for use.

Training Dataset for VTN ADDD Seg. IoU Lm. Dist.

LITS 0.8712 13.11
LITS + BFH 0.8868 12.04

Table III: Comparison of performance of VTN ADDD with different amount of unlabeled
training data (liver).

5) Network Cascading: In Table IV, all networks are
trained on LITS + BFH. The models whose name does not
include “A” have the affine registration subnetwork removed,
and the number of “D”s is the number of dense deformable
registration subnetworks. (See Section V-A1 for “ADDD”.)

Network Seg. IoU Lm. Dist. Time Time (w/o GPU)

D 0.8119 14.44 0.08 s 10 s
DD 0.8556 12.97 0.10 s 20 s

DDD 0.8709 12.49 0.12 s 28 s

AD 0.8323 13.20 0.09 s 9 s
ADD 0.8703 12.28 0.11 s 19 s

ADDD 0.8868 12.04 0.13 s 26 s

Table IV: Comparison of performance with different number of cascaded subnetworks
(liver).

B. Experiments on Brain Datasets

a) Settings: The input to the algorithms are brain MR
images of size 1283. For some experiments, the selection of
which will be detailed later, the brain scans are preprocessed
to be aligned to a specific atlas from LONI [32]. We use
ANTs for this purpose. There are two reasons we align the
brain scans with ANTs. One is that VoxelMorph [17] requires
the input to be affinely registered. The other is that we
will compare the performance between “ANTs + deformable
registration subnetworks” and “affine registration subnetwork
+ deformable registration subnetworks”, i.e., to compare the
effectiveness of integrating our affine registration subnetwork
in place of ANTs.

The following methods will have ANTs-affine-aligned im-
ages as input: VoxelMorph methods and VTN without “A”
(i.e., “D”, “DD” and “DDD”). A more precise naming is
“ANTs + VoxelMorph” and “ANTs + VTN”. The follow-
ing methods will not have ANTs-affine-aligned images as
input: ANTs, Elastix, VTN with “A” (i.e., “AD”, “ADD” and
“ADDD”). Those methods have affine registration integrated.
The comparison inside the former group focuses on dense
deformable registration performance, that inside the latter

group on overall performance, and that among the two groups
benchmarks affine registration subnetwork versus ANTs affine
registration in the context of a complete registration pipeline.

We will show 3 sets of comparisons similar to those for
liver datasets. In the tables listed in later paragraphs, the time
(with or without GPU) does not include the preprocessing with
ANTs even if it is used. Preprocessing an image with ANTs
costs 73.94 seconds on average. We will mention this fact
again when such emphasis is needed.

Care should be taken when evaluating methods with ANTs
affine alignment. For the data to be comparable with those
with affine registration integrated, the fixed image should be
equivalent. Methods with ANTs affine alignment have both
moving and fixed images aligned to an atlas. Those with
integrated affine registration never move the fixed image. The
affine transform produced by ANTs might not be orthogo-
nal, which is the source of unfair comparison. If the affine
transform is shrinking, methods with ANTs affine alignment
gain advantage. Otherwise, methods with integrated affine
alignment do.

One measure, Segmentation IoU, is not affected, because the
volumes of all objects get multiplied by the determinant of the
affine transform and the evaluation measure is homogeneous.
For Landmark Distance, we perform the inverse of the linear
part of the affine transform (which aligns the fixed image to the
atlas) to the difference vector between warped landmark and
landmark in the (aligned) fixed image, so that the length goes
back to the coordinate defined by the original fixed image.
This way, we minimize loss of precision to prevent unfairly
underevaluating methods with ANTs affine alignment. Speak-
ing of the actual data, the affine transformations produced by
ANTs are slightly shrinking. Our correction restores a fair
comparison among all methods.

b) Datasets: We use volumes from the following datasets
for training:

• ADNI [33] (67 volumes);
• ABIDE-1 [34] (318 volumes): part of data from ABIDE;
• ABIDE-2 [34] (1101 volumes): the rest from ABIDE;
• ADHD [35] (973 volumes).

We acquire the second part of ABIDE after a while when
the first part was downloaded and processed, thus the split.
This only helps us to understand how performance improves
as more data are used for training. For comparison among
different methods, it is always the case that all the data
mentioned above are used for training.

Raw MR scans are cropped to 1283 around the brain. Axes
are permuted if necessary. The scans are normalized based on
the histograms of their foreground color distribution, which
might vary because they are captured on different sites.

For evaluation, we use 20 volumes from the LONI Prob-
abilistic Brain Atlas (LPBA40) [32]. LONI consists of 40
volumes, 20 of which have tilted head positions and are
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discarded. For the remaining 20 volumes, 18 landmarks2 are
annotated by 3 experts and the average are taken as the ground
truth.

c) Comparison Among Methods: In Table V, we com-
pare different methods on brain datasets. All neural networks
are trained on all available training data, i.e., ADNI, ABIDE
and ADHD. In the table, “supervised” is our “ADD” model
supervised with ANTs as the ground truth. Its loss is the end-
point error [2].

Method Seg. IoU Lm. Dist. Time Time (w/o GPU)

ANTs [4] 0.9387 2.85 N/A 764 s
Elastix [5] 0.9180 3.23 N/A 121 s

VoxelMorph-2? [17] 0.9268 2.84 0.19 s 14 s
VTN DD (ours)? 0.9305? 2.83? 0.09 s 19 s
VTN ADD (ours) 0.9270 2.62 0.10 s 17 s

VTN ADD + inv (ours) 0.9278 2.64 0.10 s 17 s
supervised 0.9060 2.94 0.10 s 19 s

Table V: Comparison among traditional methods, VoxelMorph [17] and our algorithm
on brain datasets. Bold: best among all methods. Star: best among methods with ANTs
affine pre-alignment.
Methods with “?” use ANTs for affine pre-alignment. The preprocessing time (about 74
seconds) is not included in the table.

Among these methods, our “ADD” achieves the lowest
Landmark Distance with a competitive speed. If we compare
“ADD” with “DD”, we find that the integration of affine
registration subnetwork significantly improves the Landmark
Distance, compared to using ANTs for out-of-band affine
alignment.

d) Performance with Different Amount of Data: In Ta-
ble VI, we summarize the performance of “DD” (with ANTs
affine alignment) trained on different amount of unlabeled
data. As more data are used to train the network, its perfor-
mance in terms of Landmark Distance consistently increases.

Training Dataset for VTN DD Seg. IoU Lm. Dist.

ADNI + ABIDE-1 0.9299 2.90
ADNI + ABIDE-1 + ABIDE-2 0.9312 2.86
ADNI + ABIDE-1 + ABIDE-2 + ADHD 0.9305 2.83

Table VI: Comparison of performance of VTN DD (with ANTs affine alignment) with
different amount of unlabeled training data (brain).

e) Network Cascading and Integration of Affine Regis-
tration: Table VII compares the performances of differently
cascaded networks. The networks without “A” have ANTs-
affine-aligned images as input, whereas the networks with “A”
do not.

As one would expect, the performance in each group im-
proves as the model gets more levels of cascaded subnetworks.
While the methods with ANTs affine alignment have higher

2The landmarks: (L1) right lateral ventricle posterior; (L2) left lateral
ventricle posterior; (L3) anterior commissure corresponding to the midpoint
of decussation of the anterior commissure on the coronal AC plane; (L4) right
lateral ventricle superior; (L5) right lateral ventricle inferior; (L6) left lateral
ventricle superior; (L7) left lateral ventricle inferior; (L8) middle of lateral
ventricle; (L9) posterior commissure corresponding to the midpoint of de-
cussation; (L10) right lateral ventricle superior; (L11) left lateral ventricle
superior; (L12) middle of lateral ventricle; (L13) corpus callosum inferior;
(L14) corpus callosum superior; (L15) corpus callosum anterior; (L16) corpus
callosum posterior tip of genu corresponding to the location of the most
posterior point of corpus callosum posterior tip of genu on the midsagittal
planes; (L17) corpus callosum fornix junction; and (L18) pineal body.

Method Seg. IoU Lm. Dist. Time Time (w/o GPU)

D? 0.9241 2.91 0.07 s 10 s
DD? 0.9305 2.83? 0.09 s 19 s

DDD? 0.9320? 2.85 0.10 s 28 s

AD 0.9214 2.73 0.08 s 9 s
ADD 0.9270 2.62 0.10 s 17 s

ADDD 0.9286 2.63 0.11 s 26 s

Table VII: Comparison of performance with different number of cascaded subnetworks
(brain), and comparison between using ANTs as affine alignment and end-to-end network
(integrated affine registration subnetwork). The first group (with “?”) uses ANTs to
affinely align input images, whereas the second group does not. Bold: best among all
methods. Star: best among methods with ANTs affine pre-alignment.
Methods with “?” use ANTs for affine pre-alignment. The preprocessing time (about 74
seconds) is not included in the table.

Segmentation IoU, integrating affine registration subnetwork
yields better Landmark Distance. Worth mentioning is that the
better Segmentation IoU comes at the price of a rather slow
preprocessing phase (74 seconds).

VI. CONCLUSION

In this paper, we present Volume Tweening Network (VTN),
a new unsupervised end-to-end learning framework using con-
volutional neural networks for 3D medical image registration.
The network is trained in an unsupervised manner without
any ground-truth deformation. Experiments demonstrate that
our method achieves state-of-the-art performance, and that
it witnesses an 880x (or 3.3x without GPU acceleration)
speed-up compared to traditional medical image registration
methods. Our thorough experiments prove our contributions,
each on its own being useful and forming a strong union
when put together. Our networks can be cascaded. Cascading
deformable subnetworks tackles the difficulty of registering
images in the presence of large displacement. Network cas-
cading also enables the integration of affine registration into
the algorithm, resulting in a truly end-to-end method. The
integration proves to be more effective than using out-of-band
affine alignment. We also incorporate the invertibility loss into
the training process, which further enhances the performance.
Our methods can potentially be applied to various other
medical image registration tasks.
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APPENDIX A
NAMING OF VOLUME TWEENING NETWORK

(a) (b) (c) (d) (e) (f)

Figure 7: Examples of intermediate warped moving images by a cascaded network
consisting of 4 subnetworks. (a) the moving image (a CT liver scan); (b) warped by the
affine registration subnetwork; (c/d/e) warped by the first/second/third dense deformable
registration subnetwork; (f) the fixed image (another CT liver scan). The images are
realistic and are rendered with the same data as those in Figure 1.

In Figure 7, intermediate warped images as well as the
fixed and moving images are projected and rendered, giving a
straight-forward illustration of how the image is transformed
step by step by a cascaded network. This explains the naming
Volume Tweening Network – due to the cascaded nature of
the network, the intermediate images look like frames in a
shape tweening animation from the moving image to the fixed
image.

APPENDIX B
LOSS FUNCTIONS

This section lists some other loss functions that could be
used for training the network.

A. L2 Loss

L2 loss (or mean square error) measures the difference
between intensities of the images at each voxel, it is defined
as

LMSE (I1, I2) =
1

|Ω|
∑
x∈Ω

(I1 (x)− I2 (x))
2
. (13)

L2 loss is straight-forward and easy to implement, but it
is not very informative if the fixing and moving images
have different imaging parameters. The disadvantage manifests
itself especially when the images are inter-subject, or are
imaged using devices from different manufacturers.

B. Mutual Information

Again we will regard the images as random variables. The
entropy of a discrete random variable X is

H (X) = −
∑
x

p
X

(x) log p
X

(x), (14)

and the mutual information of two discrete random variables
X,Y is

I (X;Y ) = H (X) +H (Y )−H (X,Y ) . (15)

Mutual information of two images measures how much the
two variables are related by some function. Presumably the
intensities of corresponding anatomical structures in the fixed
and moving images should be related via some function, which
might be non-linear. Therefore, mutual information should
be more resistant to non-linear intensity variation. Indeed,
variants of mutual information have been the gold standard

among medical image registration metrics [19], [18], [14],
[13]. The downside of this family of loss functions is that
adapting them in neural networks is not completely trivial.

From the definition, computing mutual information reduces
to computing entropies. Given a series of independent obser-
vations x1, . . . , xn to a random variable X , a naïve estimation
of H (X) is

H (X) ≈ 1

n

n∑
i=1

log
|{j : xj = xi}|

n
. (16)

Though Equation (16) systematically underestimates the en-
tropy and various improved algorithms have been developed
[36], [37], it is still the simplest estimator. However, there is
one obstacle keeping it from being used in neural networks,
“binning.” Traditionally, binning is required for two reasons:
that the metric is more robust against random fluctuations
in intensities, which will be effaced by binning; and that
directly estimating entropy of continuous random variable
from unbinned observations is generally more difficult than
the binned, discrete alternative. However, the downside of
binning is that the operation makes gradient vanish almost
everywhere, effectively making the problem of maximizing
mutual information a discrete optimization problem, disquali-
fying gradient descent and other gradient-based optimizers. To
tackle the problem, we rewrite Equation (16) as

H (X) ≈ 1

n

n∑
i=1

log

∑n
j=1 z (xi − xj)

n
, (17)

where z (x) is 1 if x = 0, and 0 otherwise. Now, we are ready
to replace z with an approximation, e.g., zλ(x) = e−λ|x| for
λ > 0. Furthermore, using this formula boosts the time of
computation to the order of number of observations squared.
Thus, we need to randomly sample a subset of locations to
compute entropy.

APPENDIX C
NOTES TO IMPLEMENTATION

A. TensorFlow Custom Operations

We choose TensorFlow [28] as our platform. Several op-
erations need to be implemented as custom operations to
reduce memory footprint. These include functionalities to warp
images, compute moments of random variables, approximate
entropy, etc.

B. Warp and Domain Shrinking

Recall that the domain of a flow is the cuboid Ω on which
the image is defined. Consider the flow f : Ω → R3, define
its “valid domain” as

vdom f = {ω ∈ Ω : ω + f(ω) ∈ Ω} , (18)

i.e., those points that are kept in Ω when displaced according
to the flow. Ideally the valid domain could be the same as Ω.
However, sometimes part of the moving image is cropped out
in the fixed one, or due to algorithm’s imperfectness, the valid
domain might unavoidably be a proper subset of Ω, which is
called domain shrinking. In our network, an image might need
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to be warped multiple times. Warping with a domain-shrinking
flow field will introduce glitches on the boundaries. This
is especially undesirable if the warping is used to compose
inverse flows, which makes values on the boundaries non-
zero artefacts. To partially resolve the problem, we assume
the central part of the composed flow is still valid, hence only
compute invertibility loss in the central area.

C. Flow Composition

If we are composing two dense flows, there is nothing
much interesting to do other than following the definition.
However, if the first flow to be composed is actually an affine
transform, alternative formula for composition could speed up
computation, avoid interpolation and eliminate further domain
shrinking. Simple calculation gives

(Ax+ b) ? f = (I +A) f +Ax+ b, (19)

which does not involve warping at all.

D. Orthogonality Loss

Computing orthogonality loss involves signular values of
I + A. The square of these singular values are exactly the
eigenvalues of (I +A)

T
(I +A). Since the loss is a symmetric

fraction of these eigenvalues, it can be rewritten as a fraction of
the characteristic polynomial of (I +A)

T
(I +A) by Viète’s

theorem. The formula is cumbersome but not difficult to
derive.

E. Command Lines for Traditional Methods

In this section we record the command lines used for
traditional methods.

For registration (liver and brain) with ANTs [4], the com-
mand we use is the following:
antsRegistration -d 3 -o <OutFileSpec>
-u 1 -w [0.025,0.975]
-r [<Fixed>,<Moving>,1]
-t Rigid[0.1]
-m MI[<Fixed>,<Moving>,1,32,Regular,0.2]
-c [2000x2000x2000,1e-9,15]
-s 2x1x0 -f 4x2x1
-t Affine[0.1]
-m MI[<Fixed>,<Moving>,1,32,Regular,0.1]
-c [2000x2000x2000,1e-9,15]
-s 2x1x0 -f 4x2x1
-t SyN[0.15,3.0,0.0]
-m CC[<Fixed>,<Moving>,1,4]
-c [100x100x100x50,1e-9,15]
-s 3x2x1x0 -f 6x4x2x1

For registration (liver and brain) with Elastix [5], the com-
mand we use is the following:
elastix -f <Fixed> -m <Moving>
-out <OutFileSpec>
-p Affine -p BSpline_1000

For affine pre-alignment (brain) with ANTs, the command
we use is the following:
antsRegistration -d 3 -o <OutFileSpec>

-u 1 -w [0.025,0.975]
-r [<Atlas>,<Image>,1]
-t Rigid[0.1]
-m MI[<Atlas>,<Image>,1,32,Regular,0.2]
-c [2000x2000x2000,1e-9,15]
-s 2x1x0 -f 4x2x1 -t Affine[0.1]
-m MI[<Atlas>,<Image>,1,32,Regular,0.1]
-c [2000x2000x2000,1e-9,15]
-s 2x1x0 -f 4x2x1

APPENDIX D
ADDITIONAL FIGURES

This section includes several example illustrations of results.

A. Figures for Liver Registration

Figure 8 compares the methods listed in Table II except for
“ADDD” (which is similar to “ADDD + inv”), where three
landmarks are selected and the sections of the volumes at the
height of each landmark in the fixed image are rendered. This
means the red crosses (landmarks in the moving and warped
images) indicate the projections of the landmarks onto those
planes. It should be noted that though the sections of the
warped segmentations seem to be less overlapping with those
of the fixed one, the Segmentation IoU is computed for the
volume and not the sections. It might well be the case that the
overlap is not so satisfactory when viewed from those planes
yet is better when viewed as a volume. Similarly, overlapping
red and yellow crosses do not necessarily imply overlapping
fixed and warped landmarks as they might deviate along z-
axis.

In Figure 9, we compare ADDD + inv, ADDD, ADD, AD
and D, four differently cascaded networks, one with an extra
loss term. The data prove cascading networks significantly
improves the performance, because it better registers images
with large displacement.

Figure 10 illustrates the intermediate flows produced by
ADDD network on two CT liver scans. Each subnetwork
registers the images better, increasing Segmentation IoU and
lowering Landmark Distance.

B. Figures for Brain Registration

Figure 11 exemplifies the methods on two brain scans. Com-
parison between our methods and traditional methods proves
the applicability of our methods to 3D brain registration.
Comparison between ADD and DD? shows that integrating
affine registration subnetwork is effective.

Figure 12 compares unsupervised and supervised VTN. The
figure clearly demonstrates that supervision by the ground-
truth generated by traditional methods (ANTs here) does
not yield better performance that using our unsupervised
training method. Moreover, acquiring the ground-truth is time-
consuming, hence not worth the effort.

In Figure 13, there are two dimensions of comparison.
Comparing ADD and AD, or D? and DD? shows that perfor-
mance is gained by cascading more subnetworks. Comparing
ADD and DD?, or AD and D? shows that integrating affine
registration into the method yields better registration accuracy.
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(a) (b) (c)
12.49

(d)
0.9420

(e)
12.44

(f)
0.8593

(g)
13.28

(h)
0.8612

(i)
19.20

(j)
0.7311

Figure 8: Example comparison among VTN ADDD + inv (c/d), Elastix (e/f), ANTs (g/h) and VoxelMorph-2 (i/j). (a) sections of the fixed image (a CT liver scan); (b) sections of
the moving image (another CT liver scan); (c/e/g/i) sections of the warped images and landmark distances; (d/f/h/j) sections of the warped segmentations (white for the fixed and
semi-transparent red for the warped) and segmentation IoUs. Crosses indicate the projection of landmarks (L2, L3 and L4 from top to bottom), yellow (lighter) for one in the fixed
image, red (darker) for the corresponding one in the moving/warped images. Best viewed in color.
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Figure 9: Example comparison among ADDD + inv (c/d), ADDD (e/f), ADD (g/h), AD (i/j) and D (k/l) networks. Columning and coloring are the same as those in Figure 8, except
that the fixed image and the moving image are another pair of CT liver scans. Best viewed in color.
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Figure 10: Example intermediate warped moving images by ADDD network. (c/d) warped by the affine subnetwork; (e/f/g/h/i/j) warped by the first/second/third dense deformable
subnetwork. Columning and coloring are the same as those in Figure 8, except that the fixed image and the moving image are another pair of CT liver scans. Best viewed in color.
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2.27
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Figure 11: Example comparison among VTN ADD (c/d), VTN DD?(e/f), Elastix (g/h), ANTs (i/j) and VoxelMorph-2?(k/l). The input images to methods with “?” are affinely
aligned to a fixed atlas by ANTs and their warped images are transformed backwards according to the affine transformation aligning the fixed image and the atlas for sensible
comparison. Columning and coloring are the same as those in Figure 8, except that the fixed image and the moving image are a pair of MR brain scans and that the landmarks are
L7, L12 and L15. Best viewed in color.
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Figure 12: Example comparison among unsupervised and supervised VTN. (c/d) DD?; (e/f) ADD; (g/h) ADD (supervised). Rendering, columning and coloring are the same as
those in Figure 11. Best viewed in color.
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Figure 13: Example comparison among VTN with and without integrated affine registration. (c/d) ADD; (e/f) DD?; (g/h) AD; (i/j) D?. Rendering, columning and coloring are the
same as those in Figure 11, except that the fixed image and the moving image are another pair of MR brain scans. Best viewed in color.
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