

How Does Batch Normalization Help Optimization?

Andrew Ilyas

The Deep Learning Revolution

Advances in Hardware, Data and Algorithms

At the Core: Deep Neural Networks

At the Core: Deep Neural Networks

Behind the Scenes

Training DNNs is simple, but difficult (we just have a toolkit!)

Many core components poorly understood (but do work)

General goal: Build a better understanding of the modern machine learning toolkit

Today:

A closer look at Batch Normalization

whitening transformation

$$\hat{y} = \frac{y-\mu}{\sigma+\epsilon} \ ,$$
 where
$$\mu = \mathbb{E}[y] \quad \sigma^2 = Var(y)$$

[loffe & Szegedy, 2015]

Make distribution "close" to **standard normal**

Why do we use BatchNorm?

BatchNorm's Role in Optimization

Network without BatchNorm

BatchNorm's Role in Optimization

Network with BatchNorm

Faster Convergence

Robust to Hyperparameters

BatchNorm's Role in Optimization

Network with BatchNorm

Faster Convergence

Robust to Hyperparameters

One of the most influential techniques in DNN training

Default in almost all standard architectures

How does BatchNorm help?

How does BatchNorm help?

The story so far

[loffe & Szegedy, 2015]

Training ≈ solving an optimization problem at each layer

[loffe & Szegedy, 2015]

[IS15]: Layers need to continually adapt.

[loffe & Szegedy, 2015]

[IS15]: Reducing internal covariate shift is the key to BN's success

A Closer Look at Internal Covariate Shift

Network with BatchNorm:

Network without BatchNorm:

A Closer Look at Internal Covariate Shift

Network with BatchNorm:

Network without BatchNorm:

No difference in stability ...

A Closer Look at Internal Covariate Shift

Network with BatchNorm:

Network without BatchNorm:

... despite large difference in performance

The Impact of Internal Covariate Shift

What happens if we increase internal covariate shift?

Network with BN

Non-stationary noise (non-zero mean and variance)

Network with "Noisy" BN

"Noisy" BatchNorm Activations

BatchNorm
"Noisy" BatchNorm
Standard

"Noisy" BatchNorm Activations

Distributional instability has almost no impact on performance!

We train our models with first-order methods

"Noisy" BatchNorm Activations

BatchNorm
"Noisy" BatchNorm
Standard

We train our models with first-order methods

How do updates to previous layers affect the **gradient** for this layer?

Change in gradients ← change in optimization problem

Does BatchNorm increase this notion of stability?

How does BatchNorm help?

How does BatchNorm help?

So far: Internal covariate shift connection unclear

But BatchNorm is effective: Why?

Recall: We use first-order methods in practice

Recall: We use first-order methods in practice

Recall: We use first-order methods in practice

Recall: We use first-order methods in practice

We rely on our loss being locally well-behaved

Explore landscape in the gradient direction

step

Explore landscape in the gradient direction

Landscape Induced by BatchNorm

Measure this variation at different points during training

Variation in Loss (L(W))

Change in Gradient $(\nabla_W L(W))$

Landscape Induced by BatchNorm

Measure this variation at different points during training

Landscape Induced by BatchNorm

Variation in Loss (L(W))

Change in Gradient $(\nabla_W L(W))$

Result:

BatchNorm has **profound** effect on the landscape

(Makes it **smoother** and **easier to navigate**)

What is the effect of a **single** BatchNorm layer on the optimization problem?

Network without BatchNorm

Network with a single BatchNorm layer

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{i}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Multiplicative ↓

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{T}\nabla_{y_{j}}L_{Std})^{2}\right)$$
Multiplicative \(\psi\)
Additive \(\psi\)

Network without BatchNorm

Network with a single BatchNorm layer

We also show:

Gradients (wrt y) become more predictive

Translates into similar worst-case improvements

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{i}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{T}\nabla_{y_{j}}L_{Std})^{2}\right)$$
Multiplicative \(\psi\)
Additive \(\psi\)

Network without BatchNorm

Network with a single BatchNorm layer

We also show:

Gradients (wrt y) become more predictive

Translates into similar worst-case improvements

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Multiplicative ↓

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{i}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

Multiplicative ↓

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{T}\nabla_{y_{j}}L_{Std})^{2}\right)$$
Multiplicative \(\psi\)
Additive \(\psi\)

What if we normalize by a different notion of activation "scale"?

$$\hat{y} = \gamma \frac{y - \hat{\mu}}{C} + \beta$$

Typical BatchNorm

$$\hat{\mu} = \frac{1}{B} \sum_{i=1}^{B} y_i$$

$$\mathbf{C} = \frac{1}{B} \|y - \hat{\mu}\|_2$$

ℓ_p BatchNorm

$$\mathbf{C} = \|\mathbf{y}\|_{p}$$

$$= \left(\frac{1}{B} \sum_{i=1}^{B} |y_{i}|^{p}\right)^{1/p}$$

In general, no control over distribution moments.

What if we normalize by a different notion of activation "scale"?

In general, no control over distribution moments.

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{\mathsf{T}}\nabla_{y_{j}}L_{Std})^{2}\right)$$

What if we normalize by a different notion of activation "scale"?

$$\hat{y} = \gamma \frac{y - \hat{\mu}}{C} + \beta$$

Typical BatchNorm

$$\hat{\mu} = \frac{1}{B} \sum_{i=1}^{B} y_i$$

$$\mathbf{C} = \frac{1}{B} ||\mathbf{y} - \hat{\mu}||_2$$

ℓ_p BatchNorm

$$\mathbf{C} = \|\mathbf{y}\|_{p}$$

$$= \left(\frac{1}{B} \sum_{i=1}^{B} |y_{i}|^{p}\right)^{1/p}$$

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{T}\nabla_{y_{j}}L_{Std})^{2}\right)$$

What if we normalize by a different notion of activation "scale"?

In general, no control over distribution moments.

Network without BatchNorm

Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

$$||\nabla_{y_{j}}L_{BN}||^{2} \leq \frac{\gamma^{2}}{\sigma_{j}^{2}} \left(||\nabla_{y_{j}}L_{Std}||^{2} - \mu(\nabla_{y_{j}}L_{Std})^{2} - \frac{1}{m}(\hat{y}_{j}^{T}\nabla_{y_{j}}L_{Std})^{2}\right)$$
Multiplicative \(\psi\)
Additive \(\psi\)

What if we normalize by a different notion of activation "scale"?

In general, no control over distribution moments.

What if we normalize by a different notion of activation "scale"?

Performance improvement comparable to BatchNorm!

Goal: Understand the exact role of BatchNorm in optimization

BatchNorm ↔ ICS ↔ Optimization relationships tenuous

Noisy BatchNorm

Optimization-based ICS

Identify a fundamental smoothing effect of BatchNorm

Gradient variation

Loss variation

Goal: Understand the exact role of BatchNorm in optimization

Moving forward:

Direct approaches to landscape smoothing

BatchNorm and generalization

Other normalization methods

Goal: Understand the exact role of BatchNorm in optimization

Moving forward:

Direct approaches to landscape smoothing

BatchNorm and generalization

Other normalization methods

More broadly: understand other elements of our DL toolkit

arXiv:1805.11604

See our blog post at gradsci.org/batchnorm

