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At the Core: Deep Neural Networks
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At the Core: Deep Neural Networks
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Behind the Scenes

Training DNNs is simple, but difficult (we just have a toolkit!)

Many core components poorly understood (but do work)

General goal: Build a better understanding of the
modern machine learning toolkit




Today:

A closer look at Batch Normalization




Batch Normalization (BatchNorm)
[loffe & Szegedy, 2015]




Batch Normalization (BatchNorm)
lloffe & Szegedy, 2015]
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Batch Normalization (BatchNorm)
[loffe & Szegedy, 2015]

whitening transformation




Batch Normalization (BatchNorm)
[loffe & Szegedy, 2015]
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Batch Normalization (BatchNorm)
[loffe & Szegedy, 2015]
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Batch Normalization (BatchNorm)
[loffe & Szegedy, 2015]
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Why do we use BatchNorm?




BatchNorm'’s Role in Optimization

Network without BatchNorm
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BatchNorm'’s Role in Optimization

Network with BatchNorm
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BatchNorm’s Role in Optimization

Network with BatchNorm
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One of the most influential techniques in DNN training

Default in almost all standard architectures




How does BatchNorm help?




How does BatchNorm help?

The story so far




The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]

Training = solving an optimization problem at each layer




The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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The Internal Covariate Shift Hypothesis
[loffe & Szegedy, 2015]
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The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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[IS15]: Layers need to continually adapt.




The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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The Internal Covariate Shift Hypothesis

[loffe & Szegedy, 2015]
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[IS15]: Reducing internal covariate shift is the key to BN’s success




A Closer Look at Internal Covariate Shift

Network with BatchNorm:
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A Closer Look at Internal Covariate Shift
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A Closer Look at Internal Covariate Shift

Network with BatchNorm:
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... despite large difference in performance




The Impact of Internal Covariate Shift

What happens if we increase internal covariate shift ?
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“Noisy” BatchNorm Activations
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“Noisy” BatchNorm Activations
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“Noisy” BatchNorm Activations
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“Noisy” BatchNorm Activations
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“Noisy” BatchNorm Activations
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“Noisy” BatchNorm Activations
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Different View of Internal Covariate Shift

We train our models with first-order methods




“Noisy” BatchNorm Activations
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Different View of Internal Covariate Shift

We train our models with first-order methods

How do updates to previous layers affect
the gradient for this layer?




Different View of Internal Covariate Shift
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Different View of Internal Covariate Shift

Change in gradients < change in optimization problem
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Does BatchNorm increase this notion of stability?




Different View of Internal Covariate Shift
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Different View of Internal Covariate Shift

Optimization Performance “Covariate Shift” (Layer 10)

Using BatchNorm yields no apparent decrease in this
optimization-oriented notion of ICS
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Different View of Internal Covariate Shift

Optimization Performance “Covariate Shift” (Layer 10)
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How does BatchNorm help?




How does BatchNorm help?

So far: Internal covariate shift connection unclear

But BatchNorm is effective: Why?




Back to Optimization Primitives

Recall: We use first-order methods in practice
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Back to Optimization Primitives

Recall: We use first-order methods in practice
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We rely on our loss being locally well-behaved




A Simple Experiment

Explore landscape in the
gradient direction
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A Simple Experiment
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A Simple Experiment

Explore landscape in the Craih i ey
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A Simple Experiment

Explore landscape in the
gradient direction
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Explore landscape in the
gradient direction

%(W)

L]
W(t)

A

L(W) /

step




A Simple Experiment

Explore landscape in the
gradient direction
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A Simple Experiment

Explore landscape in the G o
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A Simple Experiment

Explore landscape in the Gk oo
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Landscape Induced by BatchNorm

Measure this variation at different points during training
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Landscape Induced by BatchNorm

Measure this variation at different points during training
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Landscape Induced by BatchNorm
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Delving Deeper

What is the effect of a single BatchNorm layer
on the optimization problem?

Network without BatchNorm ' Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer

We also show:

Gradients (wrt y) become more predictive

Translates into similar worst-case improvements
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer

We also show:

Gradients (wrt y) become more predictive

Translates into similar worst-case improvements




Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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In general, no control over distribution moments.




Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Are these effects unique to BatchNorm?

Comparable landscape properties
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Are these effects unique to BatchNorm?

Comparable landscape properties

400
Standard Standard + L; W | Standard Standard + L,
Standard + Batchnorm Standard + L. 8 Standard + Batchnorm Standard + L.
v Standard + L, QC) Standard + L,
o 10 S
(U o —
k(}< | ' ' ) | .g
‘CCJ ‘ 8 200
e
5 & | |
) - l , l
a O | | | | |
) ©
10 ©
O
0
15 0 -3’:. lz)k lb":

0 5k 10k 15k

Steps




Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Are these effects unique to BatchNorm?

Comparable landscape properties
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Delving Deeper

Network without BatchNorm Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?

Standard

Standard + BatchNorm Standard + L; Norm Standard + L. Norm

Layer #11

In general, no control over distribution moments.




Are these effects unique to BatchNorm?
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Are these effects unique to BatchNorm?
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Are these effects unique to BatchNorm?

Comparable landscape properties
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Are these effects unique to BatchNorm?
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Are these effects unique to BatchNorm?

Comparable landscape properties
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Are these effects unique to BatchNorm?

Comparable landscape properties
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Delving Deeper

Network without BatchNorm : Network with a single BatchNorm layer

Theorem (Effect of BatchNorm on the Lipschitzness of the loss)

For any weights W and loss function L, we have:

)
2 i 2 > 1 7 \2
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?

Standard Standard + BatchNorm Standard + L; Norm Standard + L. Norm

Layer #11

In general, no control over distribution moments.




Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Are these effects unique to BatchNorm?

What if we normalize by a different notion of activation “scale”?
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Performance improvement comparable to BatchNorm!
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Goal: Understand the exact role of BatchNorm in optimization

BatchNorm « ICS < Optimization relationships tenuous
Noisy BatchNorm Optimization-based ICS

]
1. * VMIL,

/M V Wi L ,u/m’uuu’
Identify a fundamental smoothing effect of BatchNorm

Gradient variation Loss variation
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—step X Vy L(W) .

step

‘,;/(! ) >




Goal: Understand the exact role of BatchNorm in optimization

Moving forward:

Direct approaches to landscape smoothing
BatchNorm and generalization

Other normalization methods




Goal: Understand the exact role of BatchNorm in optimization

Moving forward:

Direct approaches to landscape smoothing
BatchNorm and generalization

Other normalization methods

More broadly: understand other elements of our DL toolkit

See our blog post at
gradsci.org/batchnorm
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