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ABSTRACT 

Discovering interesting data patterns is a common and 

important analytical need in data analysis and exploration, 

with increasing user demand for automated discovery 

abilities. However, automatically discovering interesting 

patterns from multi-dimensional data remains challenging. 

Existing techniques focus on mining individual types of 

patterns. There is a lack of unified formulation for different 

pattern types, as well as general mining frameworks to 

derive them effectively and efficiently. We present a novel 

technique QuickInsights, which quickly and automatically 

discovers interesting patterns from multi-dimensional data. 

QuickInsights proposes a unified formulation of interesting 

patterns, called insights, and designs a systematic mining 

framework to discover high-quality insights efficiently. 

We demonstrate the effectiveness and efficiency of 

QuickInsights through our evaluation on 447 real datasets 

as well as user studies on both expert users and non-expert 

users. QuickInsights is released in Microsoft Power BI. 

1. INTRODUCTION 
Discovering interesting data patterns is a common and 

important analytical need when users try to obtain 

meaningful, useful, and actionable information hidden in 

data through data analysis and exploration [1][2][3][4][8] 

[22][24][29]. Such interesting patterns include correlation, 

anomaly, trend, etc. [8]. Two examples of interesting 

patterns are shown in Figure 1. The left chart shows that 

the CPU usage of a server is exceptionally lower than the 

other servers. The right chart shows sales of tablet devices 

in China is trending upwards in recent years.  

Exploratory visual analysis is a commonly used approach  

for understanding and reasoning about data to uncover 

interesting data patterns [9][35][36][39][40], in which 

users have to manually select data variables and specify 

visual encodings, either via a programming library (e.g., 

ggplot [31]) or via a graphical interface (e.g., Tableau 

[30]). Although manual specification is flexible for data 

exploration, it is non-trivial to iteratively create and refine 

visualizations to search for the ones that are interesting and 

useful [9][22], especially for non-expert users who have 

limited time and limited skills in statistics and data 

visualization [29][40]. 

 

Figure 1. Two examples of interesting patterns 

To speed up the data exploration process, we can 

complement interactive visual exploration tools with 

automated recommendation of interesting data patterns. 

With patterns automatically mined from the data and 

presented to users as visualizations, users can jump-start 

the exploration from them rather than from the scratch 

[28][29][36]. The patterns capture characteristics of a 

dataset from different perspectives, so they can help users 

understand data and prioritize their exploration actions. 

Some patterns may hit an “interesting zone” of users, thus 

inspiring them to generate new hypotheses and initiate 

further data exploration and analysis. Further, some 

patterns can directly lead to actions, e.g., system admin 

could login to server Svr07 for diagnosis when they find 

unexpected lower CPU usage from the data. Hence, 

Gartner’s report [25] has identified smart, automated 

pattern detection as one critical capability of next-

generation BI and analytics platforms.   

However, automatically discovering interesting patterns 

from data remains an open research problem. First, there is 

a lack of unified and consistent formulation of “interesting 

patterns”. A set of techniques [5][7][9][10] have been 
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proposed to extract different types of interesting patterns 

from multi-dimensional data, such as top-rank, anomalies, 

or exceptions. However, these techniques focus on mining 

individual types of patterns; therefore, they are insufficient 

for facilitating comprehensive data analysis. While “facts 

taxonomy” [8] was proposed to categorize interesting 

patterns, it does not provide a unified formulation. Second, 

there is a lack of efficient and effective mining frameworks 

that target general interesting patterns. The search space 

grows exponentially as the number of dimensions 

increases, and interesting patterns are often hidden in 

unknown subsets of data. 

We present QuickInsights, a novel technique for 

automatically discovering interesting patterns from multi-

dimensional datasets.  QuickInsights provides a unified 

formulation of interesting patterns, called insights, and a 

systematic mining framework to derive insights efficiently.  

Specifically, given a multi-dimensional dataset, an insight 

reflects something interesting on a specific subject in the 

data from certain perspective. We formulate an insight 

based on three key elements: subject, perspective and 

interestingness. Such formulation is able to unify different 

types of interesting patterns proposed in previous works 

[5][7][9][10]. Given the insight formulation, the mining 

framework of QuickInsights aims to automatically discover 

insights with quality and efficiency. 

Quality challenge: Some insights may be easily inferred 

by users based on data schema information. They provide 

little information gain, thus are less interesting to users. 

E.g., an almost perfect linear correlation of two measures 

over years, where measure1 is sales in USD, and measure2 

is sales in EUR (i.e., the values only differ by a factor of 

exchange rate) will become easily inferable to users. We 

try to avoid such Easily Inferable Insights (EII for short) to 

guarantee high-quality insight mining results. How to 

effectively detect and eliminate EIIs imposes challenges on 

insight mining.       

Efficiency challenge: The search space of mining multi-

dimensional dataset grows exponentially as the number of 

dimensions increases. Moreover, since QuickInsights is 

mostly used in interactive data exploration, it must output 

insights within a short time budget. To effectively utilize 

the time budget, we should try to first explore the “best” 

possible subsets of data where high-quality insights exist. 

In addition, insight evaluation always involves a lot of data 

aggregation queries against the database, which may 

further impact mining performance. 

To address the quality challenge, we notice that EII is 

mainly caused by inter-dimensional dependency. 

Therefore, we conduct functional dependency checking of 

insight subjects, and implement an efficient algorithm to 

detect and eliminate EIIs caused by functional dependency. 

To address the efficiency challenge, we first employ a 

“best-first” search mechanism to prioritize insight 

evaluation tasks. Given a time budget, this mechanism tries 

to prioritize insight evaluation tasks, by estimating which 

task would result in a higher score before evaluation. We 

then employ a smart-batching mechanism to effectively 

reduce the number of queries by taking advantage of spatial 

locality across multiple related queries in data, thus 

significantly improve query performance. 

We conducted quantitative experiments on 447 real 

datasets to evaluate the effectiveness and efficiency of 

QuickInsights. We also performed qualitative user studies, 

which showed that the insights generated by QuickInsights 

are useful and valuable to both expert users and non-expert 

users. QuickInsights has been released in Microsoft Power 

BI [14] as a feature available to end users, which is 

recognized by Gartner as a basic form of smart data 

discovery [25]. In this paper, we make the following 

contributions: 

• We propose a unified formulation of interesting 

patterns, called insights on multi-dimensional dataset. 

• We build an insight mining framework to achieve 

efficient insight mining performance using two key 

techniques: best-first search mechanism to prioritize 

insight evaluation tasks, and smart query-grouping to 

reduce the number of queries. 

• We design an insight evaluation algorithm to eliminate 

EIIs to achieve high-quality insight results. 

• We evaluate QuickInsights and verified its 

effectiveness and efficiency on discovering insights. 

QuickInsights is released in Microsoft Power BI. 

2. INSIGHT MODELING  

2.1 Data Model 

Multi-dimensional data conceptually is organized in a 

tabular format that consists of a set of records, and each 

record is represented by a set of attributes (columns in the 

table). Table 1 shows some sample data from a multi-

dimensional dataset about tablet sales. There are two types 

of columns in the table: dimensions and measures. 

Dimensions are used to group or filter records. The values 

of dimensions are either categorical (e.g., “Country”) or 

ordinal (e.g., “Year”). Measures are numerical columns 

(e.g., “Sales”) on which certain aggregations (e.g., SUM, 

AVG) can be performed. Formally, given a multi-



 

 

dimensional dataset ℝ(𝒟, ℳ) , where 𝒟 = {𝐷1, … 𝐷𝑑}  is 

the collection of dimensions and ℳ  is the collection of 

measures. Let 𝑑𝑜𝑚(𝐷𝑖) be the domain of 𝐷𝑖 . 

Table 1. A sample of multi-dimensional data. 

 

Subspace. A subspace is defined as a size-d collection of 

filters 𝑠 = {𝑠[1], … , 𝑠[𝑑]} , where 𝑠[𝑖] ∈ 𝑑𝑜𝑚(𝐷𝑖) ∪ {∗} , 

and ‘*’ refers to the “any” value. We hide the filters with 

star value (‘*’) for brevity. We call a subspace 𝑠  with 

dimensionality 𝑙 ≔ |{𝑠[𝑖]|𝑠[𝑖] ∈ 𝑠, 𝑠[𝑖] ≠∗}| . Each 

subspace associates with an aggregate value per each 

measure, e.g., {Country: China} is one subspace with 𝑙 =

1, and its corresponding aggregation on measure Sales is 

aggregated by SUM. For conciseness, we denote {Country: 

China} as {China} for short. 

Sibling group & breakdown. Given a subspace s and a 

dimension 𝐷𝑖 , a sibling group is defined as 𝑆𝐺(𝑠, 𝐷𝑖) =
{𝑠′|𝑠′[𝑖] ≠∗, 𝑠′[𝑗] = 𝑠[𝑗]∀𝑗 ≠ 𝑖} , i.e., a set of subspaces 

only differ in the values of 𝑑𝑜𝑚(𝐷𝑖). In this setting, we call 

𝐷𝑖  the breakdown dimension (i.e., the group-by operation 

against a subspace), and we denote  𝑠 ⊕ 𝐷𝑖 → 𝑆𝐺(𝑠, 𝐷𝑖) to 

indicate that sibling group 𝑆𝐺(𝑠, 𝐷𝑖)  is generated from 

subspace s by breaking down of 𝐷𝑖 . For example, 

subspaces {2011, China}, …, {2016, China} form a sibling 

group because they only differ in the value of dimension 

Year, and Year is the breakdown dimension. 

2.2 Insight Formulation 

In the domain of multi-dimensional data analysis, an 

interesting pattern can generally be summarized as follows: 

it reflects something interesting on a specific subject of 

data from a certain perspective. We refer to such kinds of 

interesting pattern as insight. Subject scopes the content of 

an insight. Taking the trend insight in Figure 1 as an 

example, its subject includes the sibling group 

𝑆𝐺({𝐶ℎ𝑖𝑛𝑎}, 𝑌𝑒𝑎𝑟) and the measure Sales. Its aggregate 

values form a time series over years for trending analysis, 

which is the perspective of this insight. Its interestingness 

is reflected by “trending upwards rapidly and consistently”. 

Below we describe subject, perspective, and 

interestingness of an insight accordingly. 

2.2.1 Insight Subject 

We define insight subject as:  

Definition 1. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)} 

For example, the subjects of the two insights in Figure 1 

are: {{*}, ServerName, CPU Usage}, and {{China}, Year, 

Sales}, respectively. Insight subject specifies the scope of 

content of an insight, and it corresponds to one or more sets 

of aggregate values, which can be used to quantify the 

interestingness. To facilitate intuitive understanding, let’s 

map to visual charts. Each combination of {subspace, 

breakdown, measure} corresponds to a sibling group and 

their aggregate values on the measure. The values of the 

breakdown dimension can map to x-axis values; and the 

aggregate values can map to y-axis values; while the 

subspace can map to filter. For the cases with multiple 

subspaces or multiple measures, they can map to multiple 

series of y-axis values with the same x-axis. 

Such a natural mapping to visual charts is an important 

advantage of Definition 1, given that insights are typically 

consumed via visual interfaces [8], thus enabling seamless 

integration with visual objects as the underlying object 

model. In addition, there are more advantages as follows. 

First, it is an abstraction that covers a wide range of 

subjects of specific “insights” in the literature. E.g., [9] 

automatically discovers insights with large deviation over 

a distribution, where the distribution can be properly 

modeled by Definition 1. Second, based on the feedback 

from several data science teams that we have closely 

engaged with in Microsoft, the insights derived from 

Definition 1 is satisfactory to facilitate their basic 

analytical needs.  

2.2.2 Insight Types 

We materialize different perspectives as different insight 

types. For instance, insight type “Outstanding#1” 

corresponds to the perspective of finding “the leading value 

that is outstandingly higher than the remaining values”. 

Specifying insight type is essential for further quantifying 

insight interestingness. E.g., given the sales in China over 

years (i.e., a time series), the evaluation criteria are 

different for perspectives such as trend or seasonality. 

We have developed 12 types of insights, corresponding to 

12 different perspectives commonly adopted in practice, 

such as Attribution, Change Point, Correlation, Outlier, 

Seasonality, etc. Details are available on website [15]. The 

mining framework of QuickInsights is designed to be 

extensible, and configurable (see Section 3.1.3 for details) 

to support new insight types easily.  

2.2.3 Insight Scoring 

We quantify the “interestingness” of an insight by 

assigning an appropriate score to it. Intuitively, 

interestingness of an insight is judged by two factors. First, 

the subject of the insight should be non-trivial, so that the 

insight expresses something important, e.g., we would like 

insight subject to be a best-selling brand, or a category that 

has large market share rather than being neglectable. 

Year OS Region Country Vendor Sales Units

2010 iOS USA United States Sony 1.1 7,032

2010 Android Asia India Amazon 1.5 10,462

2011 Windows USA United States Toshiba 2.4 12,337

2012 Android Asia China Huawei 3.7 28,556

… … … … … …



 

 

Second, aggregation results of the subject should exhibit 

significant differences against a baseline. We express the 

baseline as a statistical hypothesis, which reflects common 

situations formed up by majority of non-insights (i.e., 

aggregation results with uninteresting patterns). E.g., for 

correlation analysis, it is desirable to look for two time-

series instances exhibiting correlation against null 

hypothesis 𝐻0: 𝜌 = 0. Such a null hypothesis reflects one 

common situation where two time-series instances are 

independent. In this paper, we term these two factors as 

impact and significance, respectively, and score an insight 

by combining them.  

 

Figure 2. Illustration of impact and significance.  

Impact. Impact reflects the importance of the subject of an 

insight against the entire dataset. It can be determined by 

the best possible perspective for promoting the insight 

regarding any “meaningful measures”. Here we term these 

“meaningful measures” as impact-measures, and denote 

the value of impact on a specific impact-measure i as 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡)  or just 𝑖𝑚𝑝𝑎𝑐𝑡𝑖  for brevity. 

Figure 2 shows sales trends of two different markets when 

impact-measure is market share. The higher the market 

share the more important. 𝑖𝑚𝑝𝑎𝑐𝑡𝑖  should hold anti-

monotonic condition [16] , and should be normalized for 

fairness comparison across different impact-measures. 

Anti-monotonic is necessary because it is compliant with 

common sense: if the subject of insight A is a superset of 

the subject of insight B, then impact of A should be no less 

than impact of B. [11] provides calculations to 

accommodate anti-monotonic condition being held by 

various aggregations. The corresponding calculations are 

denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) . Normalization is 

necessary for fairness comparison across impact-measures. 

Having these, we propose: 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =  
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡.𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})
. 

To avoid divide-by-zero, we restrict the impact-measures 

to be measures only containing strictly positive values. E.g., 

COUNT is a valid impact-measure; Sales or Units in Table 

1 are also suitable impact-measures. Users can specify 

meaningful impact-measures aligned with their needs. 

Under this restriction, 𝑖𝑚𝑝𝑎𝑐𝑡𝑖  is well-defined and 

bounded within [0, 1], and we define impact of an insight, 

which seeks the impact-measure that best promotes insight: 

Definition 2.   𝑖𝑚𝑝𝑎𝑐𝑡 =  max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖)                           

Lemma 1. Definition 2 satisfies anti-monotonic condition 

and is bounded between 0 and 1. (Proof is in Appendix). 

Significance. Significance is evaluated on the aggregation 

values of the insight subject, and it is designed to reflect 

how significant the fact (i.e., the obtained aggregate 

values) against a baseline in a stochastic fashion. We 

express the baseline as an insight-type-dependent null 

hypothesis, which reflects common situations formed up 

by majority of non-insights, and quantify insight 

significance by conducting significance-based hypothesis 

testing. The bellowing two charts in Figure 2 shows two 

different time series signals. Intuitively, the left one is more 

significant than the right one, because it contains certain 

regularities instead of pure noise. 

More specifically, in the scenario of QuickInsights, without 

knowing further knowledge of user preferences, we 

propose baseline for each type of insight based on common 

sense. Such common sense should approximate the 

distribution of possible outcome which is uninteresting 

(i.e., trivial or less valuable for data analysis). E.g., to 

calculate significance of whether there exists a change 

point on a time series instance, a reasonable baseline is to 

assume the time series to be relatively stable, which is 

compliant with common sense (such time series provides 

no value on change point related analysis), and can be 

easily formalized as a null hypothesis: 𝐻0: 𝑓𝑜𝑟 1 ≤ 𝑘 ≤

𝑁: 𝑝𝜃(𝑦𝑘|𝑦𝑘−1~𝑦1) = 𝑝𝜃0
(𝑦𝑘|𝑦𝑘−1~𝑦1) , where 𝑝𝜃0

is a fixed 

probability distribution [21]. The insight significance takes 

a value within [0, 1]. The closer the value to 1, the more 

significant the insight is. Detailed baseline setup and 

significance calculations are available at website [15]. 

Score. By combining the two factors together, we come up 

with the final score which quantifies the overall 

“interestingness” of an insight: 

Definition 3. 𝑠𝑐𝑜𝑟𝑒𝑡  = 𝑓(𝑖𝑚𝑝𝑎𝑐𝑡) ∙ 𝑔𝑡(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒) 

Here the subscript t refers to a specific insight type, 

considering the significance calculation is insight type 

dependent. f and g are any non-negative, monotonic 

functions. Currently, we take the simplest form: 𝑠𝑐𝑜𝑟𝑒𝑡 =

𝑖𝑚𝑝𝑎𝑐𝑡 ∙ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡 

Definition 4 (Insight representation). With the above 

considerations, we represent an insight as a 5-tuple 

𝑖𝑛𝑠𝑖𝑔ℎ𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠), 𝑡𝑦𝑝𝑒, 𝑠𝑐𝑜𝑟𝑒} 

3. INSIGHT MINING 

3.1 Mining Framework 

Overall, QuickInsights aims to achieve three design goals: 

(1) be a time-bounded mining procedure; (2) be portable to 
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commodity query engines; (3) be extensible to adapt new 

types of insights.  

Time-bounded mining procedure. The typical scenario 

of QuickInsights is one that targets interactive data 

exploration, thus it must output insights within a given 

limited time budget, e.g., 10 seconds. To effectively utilize 

the time budget, the mining procedure should try to explore 

the best possible subjects (i.e., combination of subspace 

and breakdown), where high-quality insights might exist. 

To discover insights, data queries and significance 

evaluations are performed by a set of tasks, where each task 

takes certain subspace(s) (and the corresponding impact of 

each subspace) and breakdown as input, and is responsible 

for evaluating certain types of insights that are applicable 

to the input parameters (e.g., time series related insights are 

evaluated when input breakdown dimension is ordinal). 

Therefore, a best-first prioritization of tasks is necessary 

(Section 3.1.1). 

 

Figure 3. Overall workflow of QuickInsights 

Portable to arbitrary query engines. As a general mining 

framework, QuickInsights should be portable to build upon 

arbitrary query engines such as SQL Databases, SQL 

Server Analysis Services, etc. where multi-dimensional 

datasets are typically stored. Thus, an abstracted and 

general query interface layer is necessary (Section 3.1.2). 

Extensible to adapt new types of insights. QuickInsights 

is designed to support new insight types easily. Therefore, 

we decouple the mining procedure into two parts: subject 

enumeration and insight’s significance evaluation, only 

insight evaluation module is responsible for registering 

new insight types (Section 3.1.3). 

Figure 3 depicts the overall workflow of QuickInsights. 

The workflow can be divided into three stages, “Search & 

Task Generation” (Stage 1), “Query & Evaluation” (Stage 

2), and “Store and Refinement” (Stage 3). The first two 

stages are executed simultaneously in a parallel fashion 

within a time budget. Once the time exceeds the time 

budget, refinement is conducted in Stage 3 and then the 

qualified insights are output. 

In Stage 1, the SubjectSearcher module tries to enumerate 

all possible subspaces. Each subspace is assigned with 

impact by using the AutoImpact module. Insight evaluation 

tasks are then generated by combining subspaces with any 

valid breakdowns that pass trivial-insight checks (by 

Functional-Dependency checker). The generated tasks are 

stored in a priority queue, to be executed in Stage 2. The 

tasks associated with higher impacts will be assigned 

higher priorities. In Stage 2, the tasks are computed in 

parallel by a set of dedicated worker threads. The 

computing of tasks consists of three steps. First, the task 

with highest priority from the queue is fetched by a worker 

thread; then data query is performed as the next step, by 

conducting aggregation over all measures, conditioned on 

the task parameters. Insight evaluation is conducted as the 

last step, where the discovered insights (i.e., significance 

exceeds certain threshold) are stored. Both Stage 1 and 

Stage 2 are executed within a time budget. Below are the 

details. 

3.1.1 Best-First Prioritization 

In our implementation, the generated tasks are stored in a 

priority queue, as depicted in Figure 3 to facilitate best-first 

prioritization. Recall that each task has three input 

parameters: subspace(s), breakdown and impact, and we 

use the impact as priority to prioritize different tasks. 

According to Definition 3, the score of insight is monotonic 

to both impact and significance, so without knowing the 

significance (since insight evaluation has not yet been 

done), impact is useful for prioritizing and pruning tasks.   

3.1.2 Query Abstraction 

To make QuickInsights portable for general systems, an 

abstracted query interface layer is necessary. Table 2 

shows the query interface AggregationQuery, which builds 

a connection between the mining layer of QuickInsights 

and the data store. Thus, QuickInsights is portable as long 

as the underlying data store provides the implementation of 

AggregationQuery. A query via our query interface is 

semantically equivalent to a SQL query: 

“SELECT Aggr1(measure1), Aggr2(measure2), … GROUP BY 

breakdownDimension where filter = subspace”.  

Note that the efficiency of QuickInsights mainly depends 

on the efficiency of underlying query engine. Microsoft 

Power BI team has supported our query API based upon 

Analysis Service. To further improve query performance 

by leveraging data locality, we introduce a pre-fetch 

mechanism and modify the above GROUP BY clause to 

(Section 3.3):  

“GROUP BY expandingDimension, breakdownDimension”. 

The aggregation results are packaged into a dictionary. 

Each item of the dictionary collects the result of each value 
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in expandingDimension. Setting expandingDimension to 

null disables pre-fetching. Table 3 shows two typical query 

examples and the corresponding results. 

Table 2. Query Interface 

/* aggregate one or more measures for a subspace, group-by a breakdown dimension. 
If an expanding dimension is provided, also aggregates for the siblings of this 
subspace based on the expanding dimension. */ 
Dictionary<BasicValue, Dictionary<Measure, AggrResult>> AggregationQuery( 
    Subspace subspace, 
    Dimension expandingDimension, 
    Dimension breakdownDimension, 
    Dictionary<Measure, AggrParams> params, 
    OrderByType orderBy); 

 

Table 3. Examples of query and aggregation result 

 

3.1.3 Extensibility  

QuickInsights is designed to be extensible to support new 

types of insights easily. The extensibility of QuickInsights 

largely relies on the unified definition of insights 

(Definition 4). 

Specifically, since each insight subject is formulated as  

{𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)}  , thus the aggregation 

results of an insight subject can be represented by a 

common data structure, which can be reused for any new 

insight type. An example of adding a new insight type is 

depicted in Appendix. 

3.1.4 Pruning  

As depicted in Figure 3, we applied three pruning criteria 

(pruning1, 2, 3) to boost performance: pruning1 prunes out 

significant portion of search space, and pruning2 and 

pruning3 reduce the cost of insight evaluation. 

pruning1: We prune out any insights with impact smaller 

than a given threshold. An insight with impact below the 

threshold becomes less important and thus less interesting, 

so we adopt pruning1 to eliminate unimportant tasks. 

Furthermore, considering the anti-monotonic condition of 

impact (Lemma 1), any descendant subspaces can also be 

discarded from the SubjectSearcher module safely. In 

current implementation, we set the threshold to 0.01. 

pruning2: For each insight type, we use a size-k buffer to 

keep the top-k scored insights. Considering 𝑠𝑐𝑜𝑟𝑒𝑡 = 𝑖𝑚𝑝𝑎𝑐𝑡 ∙

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡 < 𝑖𝑚𝑝𝑎𝑐𝑡  (because significance is bounded 

within 0 and 1), so if impact of current insight candidate is 

already smaller than the score of kth insight, its further 

evaluation is saved. Furthermore, since each task knows 

what types of insight it needs to evaluate, if insight 

evaluation can be pruned on all the needed types, then data 

query can be saved and the task is discarded. 

pruning3: When a sibling group contains only one 

subspace, further insight evaluation becomes trivial 

(because this subspace is identical to its parent subspace 

and thus implies duplication), hence unnecessary. So after 

data query, if there is only one item among the sibling 

group, we avoid further insight evaluation. 

3.2 Easily Inferable Insights Elimination 

In this section, we illustrate how to improve insight quality 

by detecting and eliminating EIIs (i.e., Easily Inferable 

Insights) incurred by functional dependency (FD in short).  

3.2.1 FD Induced EII  

Definition 5 (functional dependency). A functional 

dependency FD: X → Y means that the values of Y are 

determined by the values of X, where X and Y are two sets 

of columns (i.e., dimensions or measures) [12].  

FD is a commonly existing relationship in multi-

dimensional data, e.g., in Table 1, Country → Region. FDs 

reflect certain hierarchical structure or consistent 

relationship across columns.  

Definition 6 (FD of insight subject). We pick all the 

columns that appear in an insight subject as 𝐶𝑜𝑙 ≔

{𝑠1, … , 𝑠𝑝, 𝑑, 𝑚1, … , 𝑚𝑞} , where 𝑠1~𝑠𝑝 are the dimensions 

appearing in subspace(s), 𝑑 is breakdown, and 𝑚1~𝑚𝑞  are 

q measures. If ∃ 𝑋 ⊂ 𝐶𝑜𝑙, 𝑌 ⊂ 𝐶𝑜𝑙, 𝑋 ∩ 𝑌 = ∅, 𝑠. 𝑡. 𝑋 →

𝑌, we say 𝑋 → 𝑌 is a FD of this insight subject. 

Table 4. Taxonomy of trivial insights 

 

Based on Definition 6, we notice that FD of insight subject 

would bring up EIIs. 

Definition 7 (FD induced EII). An insight is called an FD 

induced EII (or EII in short) if its aggregate values exhibit 

pre-determined relationships thus providing trivially useful 

information for the purpose of data analysis. 

We carefully inspect all possible FDs incurred in insight 

subject, and come up to five forms of FD that would induce 

EIIs, as shown in Table 4 (ID1 ~ ID5). The details of how 

ID1~5 induce EII are shown in Appendix. 

3.2.2 Efficient FD Checking 

Given an insight candidate, we need to check if there exists 

FDs to satisfy any of ID1~5 in Table 4 thus to avoid further 

insight evaluation. The checking can be generalized as 

determining whether  {𝑑1~𝑑𝑖} → 𝑑𝑗  is held or not. On the 

other hand, such determination requires knowing the FDs 

that are globally held in a given dataset, and such FDs can 

subspace expanding breakdown params orderBy Aggregated result

{China} null Year
{Sales, SUM},

{Units, SUM}
Ascend

{China, [Sales, (2009:1.3) (…) (2016:12.3)],

[Units, (2009: 6,403) (…) (2016:13,432)]}

{China} Country Year {Sales, SUM} Ascend
{China, [Sales, (2009:1.3) (…) (2016:12.3)]}

{USA,    [Sales, (2009:2.7) (…) (2016:11.8)]}…

ID Form of Functional-Dependency Trivial insight description Example

ID1 𝑠1 , … , 𝑠𝑝 → 𝑑 Only one item in sibling group

ID2 𝑚1 , … , 𝑚𝑞 → 𝑑 Fixed x-y axis relationship

ID3 𝑑 → 𝑚1 , … , 𝑚𝑞 Fixed x-y axis relationship

ID4 𝑠1 , … , 𝑠𝑝 → 𝑚1, … , 𝑚𝑞 Flat line

ID5 𝑚1 , … , 𝑚𝑖 → 𝑚𝑗 Fixed x-y axis relationship

{Model:X5}Sales

Brand
BWM

Age

Birth Year

Age

Region 

{BirthYear:1980}

Sales (EURO)

Sales(USD) 

Height

Height Category
low medium high



 

 

be obtained from data schema or can be pre-calculated 

using FD mining techniques such as [13]. Thus, we 

formulate the problem as:  

Problem 1 (checking functional dependency). Given a set 

of FDs {𝑋1 → 𝑌1}, … , {𝑋𝑡 → 𝑌𝑡}, check if {𝑑1~𝑑𝑖} → 𝑑𝑗 is 

held or not. 

This problem can be solved by leveraging two axioms in 

the field of FD theory: Reflexivity and Transitivity [12]. 

Roughly, if 𝑑𝑗 ∈ {𝑑1~𝑑𝑖} , the {𝑑1~𝑑𝑖} → 𝑑𝑗  is true 

(Reflexivity). Otherwise, find 𝑋 = ⋃ {𝑋𝑖|𝑑𝑗 ∈ 𝑌𝑖}𝑖 , and 

check if {𝑑1~𝑑𝑖} → 𝑋 (Transitivity). This process repeats 

recursively until an empty set is reached. The pseudo code 

of an efficient algorithm (IsDependent) of FD checking is 

shown in Appendix due to page limit. 

Lemma 2. Time complexity of IsDependent is 𝑂(𝑙𝐷) ≪

𝑂(𝐷2). Details of the proof are available in Appendix. 

Here D is the number of columns, and 𝑙 = max
𝑖

|𝑋𝑖|, where 

|𝑋𝑖| refers to the cardinality of a set 𝑋𝑖. In general, the FDs 

obtained from data schema describes FD relationship 

between a small set of dimensions, thus 𝑙 ≪ 𝑑.  

3.3 Batched Query & Cache 

Data query occupies the majority of computational cost of 

QuickInsights. Next, we illustrate our considerations and 

approach on query optimization to significantly save the 

computational cost. 

3.3.1 Caching 

As depicted in Figure 3, the Subject-Searcher module, the 

AutoImpact module, as well as Tasks issue data queries. 

Subject-Searcher uses queries to enumerate all valid 

subspaces, AutoImpact needs query results on impact-

measures to assign impact to each subspace, and Tasks 

issue queries for insight evaluation. It is easy to see how 

these modules would generate duplicate queries, e.g., 

query {China}⊕Year can be used for insight evaluation, 

while Subject-Searcher also needs resultant subspaces for 

search space exploration, and the impact of resultant 

subspaces is obtained from AutoImpact by aggregating all 

impact-measures. Thus, cache mechanism is needed, and 

the cache unit needs to be designed to facilitate the 

requirements of these modules, as depicted in Figure 4. 

Here the cache unit is 2-dimensional aggregation results 

grouped-by breakdown, and across all measures (both 

insight measures and impact-measures), and the 

corresponding lookup key for each cache unit is indicated 

by 𝑠 ⊕ 𝐷. Such granularity is necessary for the needs of all 

the modules.  

3.3.2 Smart Batching 

A typical multi-dimensional dataset contains a huge 

number of 𝑠 ⊕ 𝐷  combinations, and requires a large 

number of data queries, which would lead to significant 

performance impact. On the other hand, by inspecting the 

issued queries from QuickInsights, we find that the 

generated subspaces exhibit strong relationships with each 

other, which provides opportunity to reduce the number of 

queries. 

 

Figure 4. Example of cache unit: breakdown⊗measure 

Definition 9 (level-2 sibling group). A set of subspaces 

form a level-2 sibling group if they can be generated by a 

level-2 group-by: 𝑠 ⊕ 𝐷1 ⊕ 𝐷2. 

E.g., when we have the following three query requests: 

{China}⊕Year, {USA}⊕Year, {India}⊕Year, they can 

be covered by a level-2 group-by: {*}⊕Country⊕Year, 

thus the corresponding subspaces belong to a level-2 

sibling group. Batching these three queries together would 

take advantage of spatial locality across multiple related 

queries in data, thus significantly improving query 

performance. 

However, one problem arises from batching: higher level 

group-by would introduce additional aggregation results 

which may never be used. In the mentioned example, 

{*}⊕Country⊕Year obtains the necessary results for the 

three requests, but it also obtains results for all countries 

besides China, USA, and India. In addition, considering 

QuickInsights typically runs within a time budget, only a 

portion of a whole search space can be inspected. 

Therefore, we prefer conducting a batched query on-

demand rather than exhaustive pre-fetching in the 

beginning to mitigate the issue of querying useless results. 

As depicted in Table 2, query API of QuickInsights 

considers an expanding dimension as an additional group-

by for batching purpose. We notice that using the latest 

breakdown as an expanding dimension can fully leverage 

spatial locality, and pre-fetched results can also be 

effectively utilized for later tasks.  

From another perspective, column cardinality together 

with pruning1 will affect the utility of batched query. For 

example, if there are >1000 distinct values in City for 

{China}, the batched query by expanding on City generates 

1000 subspaces, but at most 100 subspaces has impact > 

measure1 measure2 … impact-measure1 …

2009 1.1 22.43 … 14 …

2010 2.1 34.32 … 23 …

2011 3.2 53.91 … 63 …

… 0.9 17.06 … 10 …
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0.01 due to the Pigeonhole Principle, thus most (>90%) 

prefetched subspaces are useless which makes this query 

very ineffective. Therefore, when the number of subspaces 

generated by a breakdown exceeds a threshold, we don’t 

use it for expanding dimension.  

With these considerations, we name our approach smart 

batching. The approach aims to reduce number of data 

queries, while the pre-fetched results are effectively 

utilized. Considering page limit, we put the examples, 

pseudocode of QuickInsights’ query logic with both cache 

and smart batching in Appendix. 

4. EVALUATION 
We evaluate the effectiveness and efficiency of 

QuickInsights quantitatively on real datasets (Section 4.1). 

We further evaluate the usefulness of QuickInsights in 

assisting data analysis through two user studies on expert 

users and non-expert users, respectively (Section 4.2). 

4.1 Evaluation on Real Datasets 

4.1.1 Setup 

Datasets. We evaluate QuickInsights on 447 real datasets. 

These multi-dimensional datasets are collected with 

assistance from partnering Microsoft teams. The datasets 

cover various domains such as sales, weather, market, 

healthcare, etc. Their scales are quite variant, with the size 

ranging from 8.8KB to 386.2MB, and the dimensionality 

varying from tens to hundreds. Some of the datasets are 

available on our website [26]. 

Environment. All experiments are conducted on a 

machine with 3.6GHz Intel Core i7-4790 processor, and 

16GB RAM. QuickInsights is deployed upon a SQL Server 

Analysis Service (SQL Server 2016 RTM, version: 

13.0.1601.5, Tabular Mode). 

Configuration. We set the configuration of QuickInsights 

as follows: #worker threads = 8; maximum dimensionality 

of explored subspace = 2 since output insights with high-

dimensionality subspaces are less informative for common 

usages; we set COUNT as impact-measure for all datasets 

for simplicity, because setting different impact-measure 

has little affect to efficiency evaluation.  

4.1.2 Design 

We aim to evaluate QuickInsights from three perspectives: 

overall effectiveness, effectiveness for EIIs elimination 

and mining efficiency. 

To make the experimental results measurable, we set 

golden set of each dataset as the obtained insights from 

QuickInsights with time budget set to ∞, denoted as 𝑂𝑖 , 

where i indicates the index of a dataset. More specifically, 

we set the number k of top-k buffers (as depicted in Figure 

3, we maintain a top-k buffer for each type of insight) to 

10, and 𝑂𝑖  is the union of insights from all the buffers after 

insight mining is finished with an unbounded time budget. 

Overall effectiveness. To evaluate the overall 

effectiveness of QuickInsights, we define metric 𝑐𝑜𝑣𝑖(𝑡) =
|𝑂𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂𝑖(𝑡) is the set of output insights when time 

budget is set to t. Thus 𝑐𝑜𝑣𝑖(𝑡) is the coverage of “good” 

insights of 𝑂𝑖(𝑡). 

Effectiveness of EIIs elimination. To improve the quality 

of output insights, QuickInsights exploits the FD checker 

to avoid yielding EIIs. To demonstrate the effectiveness of 

such improvement, we assess the insights mined when the 

FD checker is turned off. 

FD checker enabled vs. disabled. Among the whole 

datasets, there are 218 ones with input FDs according to the 

data schema. Evaluation of the FD checker is therefore 

conducted on this subset because the other datasets have no 

effect. We compare the results when the FD checker is 

disabled to the golden set by two metrics: 

𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡) =
|𝑂_𝐹𝐷𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑓𝑝_𝐹𝐷𝑖(𝑡) =

|𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖|

|𝑂_𝐹𝐷𝑖(𝑡)|
 

where 𝑂_𝐹𝐷𝑖(𝑡) is the set of output insights when the FD 

checker is disabled. 𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡)  reflects the coverage of 

insights when the FD checker is disabled. 𝑓𝑝_𝐹𝐷𝑖(𝑡) reflects 

the estimated ratio of trivial insights in 𝑂_𝐹𝐷𝑖(𝑡). This is 

because 𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖  indicates the set of insights being 

eliminated by golden set, which must be FD induced EIIs.  

Mining efficiency. QuickInsights exploits best-first 

prioritization and smart-batching to boost mining 

performance. Thus, the evaluation of mining efficiency 

mainly is conducted on these two techniques. We propose 

the below evaluation metrics. 

Best-first prioritization enabled vs. disabled. We 

implement a priority queue (by using impact as priority) to 

prioritize insight evaluation tasks. To assess the 

effectiveness of such a strategy, we compare the coverage 

of output insights by replacing the priority queue with a 

FIFO queue. The metric is defined as: 𝑐𝑜𝑣_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡) =
|𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡)  is the set of output 

insights when best-first prioritization is disabled.  

Smart-batching enabled vs. disabled. We assess the 

efficiency improvement of smart-batching from two 

aspects: coverage when smart-batching is disabled, and the 

utilization of the cache. Below are the evaluation metrics. 

𝑐𝑜𝑣_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) =
|𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑡) =

|𝐻𝑖𝑡𝑠(𝑡)|

|𝐶𝑎𝑐ℎ𝑒𝑑(𝑡)|
 

where 𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡)  is the set of output insights when 

smart-batching is disabled, 𝐶𝑎𝑐ℎ𝑒𝑑(𝑡)  is the set of total 



 

 

cached items (See Figure 4 for definition of cache unit), 

and 𝐻𝑖𝑡𝑠(𝑡) is the set of cached items that are utilized. 

In our experiment design, we vary time budget t from 5 

seconds to 25 seconds, and so each evaluation metric 

generates a curve with respect to time budget on a specific 

dataset. Evaluation results are analyzed by averaging on all 

datasets, and via comparison between different curves. 

4.1.3 Results 

Below are the results of our experiments. 

 

Figure 5. Average coverage by varying time budgets 

Result of overall effectiveness. The curve at top of Figure 

5 presents the coverage of “good” insights (i.e., golden set 

insights) mined in different time budgets. Each data point 

is an average of the coverage over totally 447 datasets. The 

coverage increases as more time budget is given, which is 

reasonable since more search spaces can be explored and 

evaluated, and more hard-to-find insights can be 

discovered. Moreover, the coverage ranges from 0.6 to 0.8. 

For example, when the time budget is set to 5 seconds, the 

coverage is 0.63, which indicates that even when the 

response time is very quick, more than 60% of the insights 

returned by QuickInsights are truly top-scoring ones. 

Results of FD checker enabled vs. disabled. Table 5 

depicts the average coverage of output insights when the 

FD checker is disabled (third row), and ratio of the EIIs 

(fourth row). Since this evaluation is conducted on 218 

datasets that have FDs as input, we also list the 

corresponding coverage when the FD is enabled (second 

row) for comparison. As shown in Table 5, coverage of 

good insights decreased about 3% consistently when the 

FD checker is disabled. Moreover, value of 𝑓𝑝_𝐹𝐷(𝑡)  is 

around 25% when the FD checker is disabled, i.e., when 

users inspect the output insights, one out of four will be 

easily inferred. So disabling FD checker will significantly 

decrease the user experience of QuickInsights. 

Table 5. Results of disabling the FD checker 

Time budget (s)  5 10 15 20 25 

𝑐𝑜𝑣 0.49 0.57 0.62 0.65 0.67 

𝑐𝑜𝑣_𝐹𝐷(𝑡) 0.46 0.55 0.60 0.62 0.64 

𝑓𝑝_𝐹𝐷(𝑡) 0.28 0.25 0.25 0.23 0.22 

Results of best-first prioritization enabled vs. disabled. 

As depicted in Figure 5, the bottom curve presents the 

coverage of good insights when best-first prioritization is 

disabled. Compared to the top curve (with best-first 

prioritization enabled), we can see that the gain of the best-

first prioritization is significant. Without such a 

mechanism, the insight mining procedure seems to be 

trapped into massively worthless search spaces, making the 

curve rather flat. To increase coverage to around 63%, it 

needs much more time than 25 seconds, while the same 

coverage is achieved only in 5 seconds if best-first 

prioritization is enabled. We can see that the performance 

gain by using best-first prioritization is huge. 

Results of smart-batching enabled vs. disabled. As 

depicted in Figure 5, the middle curve presents the 

coverage of good insights when smart-batching is disabled. 

Compared to the top curve (with smart-batching enabled), 

smart-batching contributes to about 10% coverage 

increase. From a performance perspective, it takes about 15 

seconds to achieve 63% coverage (the dashed line in Figure 

5) when smart-batching is disabled, which is about three 

times slower than when smart-batching is enabled.  

Table 6. Cache utilization ratio 

Time budget (s)  5 10 15 20 25 

𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 38% 41% 43% 44% 44% 

Table 6 illustrates the cache utilization with varying time 

budgets, which reflects how many pre-fetched queries are 

reused in further insight evaluation. We can see that the 

ratio of utilization is relatively stable at 40%. The ratio is 

impacted by the near-timeout batched queries, which 

generate lots of unused cached items. 

4.2 User Study  

We conduct user studies to understand whether the insights 

generated by QuickInsights are useful to users or not. 

4.2.1 Methodology 

QuickInsights is designed to serve both expert users and 

non-expert users. The usage scenarios and requirements 

vary among different user groups, e.g., expert users would 

like QuickInsights to aid their further data analysis and 

decision making, while non-expert users would want to 

gain a better understanding of data. Thus, we conducted 

two user studies for expert users and non-expert users. 

User study for expert users. We invite six participants 

from three business groups in Microsoft to participate in 

this user study: HR (Human Resource), IT and UR 

(University Relationship). In each group, we select two 

data analysts whose daily work is data analysis. 

For each group, we ask the participants to provide one 

dataset of their own, since users would provide reasonable 

feedback on the datasets that they care about. The datasets 
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are required to be stored in Microsoft Excel spreadsheets, 

in the form of multi-dimensional table. In addition, we 

require that the datasets have different levels of familiarity 

to the corresponding groups. Specifically, HR participants 

provide a recently-conducted survey dataset for which they 

have no idea about the content (Not familiar), while UR 

participants give us a dataset which they have already 

conducted comprehensive analysis (Very familiar), and IT 

participants give us a new dataset but they have conducted 

analysis on similar datasets before (Moderate). Table 7 lists 

the information of the three datasets. 

Table 7. Datasets for user study on expert users 

Dataset #row #col Familiarity Description 

HR_data 351 10 Not familiar Internal survey results on a specific HR service 

IT_data 353,686 9 Moderate  
GPU usage data of servers, collected every 10 

minutes in one month 

UR_data 1202 14 Very familiar 
Records of hired interns in recent 4 years 

 

We provide a questionnaire for each group, which contains 

15 insights randomly selected among the insights obtained 

by running QuickInsights on the corresponding dataset. For 

each insight, we design three questions for scoring: 

Q1: How interesting do you feel of this insight? 

Q2: How helpful is this insight for you to understand the data 

characteristic, such as distribution, anomaly or correlation, etc.? 

Q3: To what extent do you feel interested to take follow-up 

actions, such as sharing with others, pinning to a dashboard, or 

conducting drill-down analysis? 

Specifically, Q1 targets obtain an overall impression of the 

insight from users; Q2 is designed to evaluate whether the 

insight is helpful for better data understanding or not; and 

Q3 is used to evaluate the actionability of the insight. 

Participants are asked to answer each question on a 5-point 

Likert Scale from “the least interesting/helpful” (1) to “the 

most interesting/helpful” (5). In addition, we allow users to 

provide free-text comments on each insight. We provide a 

text description along with a chart to represent each insight. 

Figure 6 shows a snapshot of an example insight and the 

corresponding questions. 

Our user study is conducted by interviewing the three 

groups separately. Each session consists of three stages. In 

the first stage, each participant briefly describes his/her 

experience and the role of data analysis, and we introduce 

QuickInsights and the process of the user study. We also 

educate them how to interpret an insight from its text 

description and visual representation. In the second stage, 

participants assign scores to the questions for each insight. 

They are encouraged to provide additional comments as 

well. In the last stage, we ask participants about their 

overall feedback, and whether they would use 

QuickInsights for their analytical tasks. Each session lasts 

about one hour on average. 

 

Figure 6. Example of questions for a ChangePoint insight 

User study for non-expert users. We invite 30 

participants (18 males) to participate in this user study. The 

participants are employees or interns from Microsoft. They 

have certain data analysis needs in daily work, but none of 

them are professional data analysts. To minimize potential 

bias, we select the participants with diverse roles and 

experiences. Detailed user profiles are shown in Appendix.  

Table 8. Datasets for user study on non-expert users (275/5 

means 275 rows, 5 columns) 

Dataset Schema data scale Description 

Movie 
Snowflake schema 

with 6 tables 

65 columns, largest table 

has >70,000 rows 

Worldwide movie sales from 

1985~2016 

CarSales Single table 275/5 
Car sales of different Brands, 

Models, etc. in past years 

Emission Single table 41,156/7 
The emission of CO2/SO2/NOx in 

past 25 years in USA 

Census Single table 90/6 
A census dataset mainly focuses on 

marriage status 

Since non-expert users normally do not have dedicated 

analytical tasks, we select four datasets from public 

domains, which are general, common, and easy-to-

understand. Table 8 lists the information of these datasets. 

We generate insights from these datasets via Power BI 

(thus under same configuration) and present them to users. 

The study design is an easier version compared with the 

user study for expert users. Specifically, the questionnaire 

contains 10 insights randomly selected from the results of 

running QuickInsights on the corresponding dataset. For 

each insight, we only ask the participants Q1 and Q2 but 

discard Q3, considering the typical scenario for non-expert 

users is knowledge discovery and data understanding. 

4.2.2 Key Findings  

We identified five key findings from the two user studies.  

Finding 1: QuickInsights demonstrates its usefulness for 

general data analysis for both two types of users.  

The expert users provided positive feedback on the overall 

satisfaction of QuickInsights. All three groups agreed that 

QuickInsights provides valuable information to aid their 

analytical tasks. In addition, some participants even 

provided “out-of-scope” feedback, such as improvements 

of visualization design, feature request of insight sharing, 

etc. This finding also indicates the effectiveness of our 



 

 

scoring function, since the insights in user study are the 

ones with highest scores. 

 

Figure 7. Statistics of scores from expert users 

  

Figure 8. Statistics of scores from non-expert users 

Figure 7 depicts the statistics of the scores from all expert 

participants. The error-bar indicates the standard deviation 

across 15 insights. The top-left chart illustrates the scores 

from HR participants. The average score on three questions 

are high and stable. The top-right chart illustrates the scores 

from IT participants, which has the largest deviation 

compared to HR or UR. In fact, the scores for most insights 

are either close to 1 (least interesting) or close to 5 (most 

interesting). The IT participants patiently provided 

comments on the insights with extreme scores, from which 

we learned that the IT analysts have very specific analytical 

tasks.  Therefore, the insights are either valuable or less 

useful. The bottom-left chart is the scores from the UR 

group. The average score given by UR participants is the 

lowest compared to the scores from HR and IT participants. 

Based on feedback, the major reason is that they are very 

familiar with the dataset, thus most of the lower-scored 

insights are compliant with their prior knowledge. These 

observations are expected since the typical QuickInsights 

scenario targets users who are not familiar with dataset. 

As shown in Figure 8, non-expert participants also provide 

very positive feedback on the overall satisfaction of 

QuickInsights. In addition, 11 out of 30 non-expert 

participants wrote down additional feedback, and quite a 

few pointed out that QuickInsights is really helpful on 

knowledge discovery. 

Finding 2: Certain insight types would be favored for 

some domain-specific analysis tasks. We obtained this 

finding from the user study with expert users. One typical 

task of the IT group is to monitor GPU usage of various 

service jobs running over multiple servers, to detect which 

servers are overloaded (with high GPU usage) or idle (with 

low GPU usage), and reallocate jobs accordingly. The 

insight (with ChangePoint type) shown in Figure 6 is 

valuable (with a score 5 for all three questions) to them, 

since it discovered Server44 kept being idle for >20 days 

in October, which indicated some unknown service issues. 

Moreover, the Seasonality insights are especially 

interesting to them. QuickInsights discovered GPU usage 

for a specific GPU Model exhibits strong seasonality 

pattern with period equals to 24 hours. Thus, the IT users 

would want to take follow-up actions to see which periods 

within a day had low GPU usage, so that additional service 

jobs can potentially be scheduled during such a period. 

However, any transient spikes of GPU usage (regarding to 

the Outlier insight) are uninteresting since they are not 

indicators of workload. One possible solution is to assign 

appropriate weight to each insight type, so that the insight 

types with higher weights have more chance to be mined, 

and with higher score. The weights can be configurable to 

adjust for different domains. 

Finding 3: Insight subjects with certain structure would 

be less meaningful for some domain-specific analysis 

tasks. Specifically, certain dimensions, measures or 

combination are trivial. This finding emerged based on 

further feedback from the IT participants in the user study 

with expert users. For insights with a score equal to 1, 

typically their combinations of 𝑠 ⊕ 𝐷 are less meaningful 

to users. E.g., some insights concern a specific GPU Model 

(one dimension) breakdown by different GPU card slots 

(another dimension), which makes no sense since this is a 

fixed hardware configuration. QuickInsights should take 

this information into account, to avoid unnecessary data 

queries and insight evaluation. 

Finding 4: Prior knowledge is valuable for improving 

insight score calculation. In the user study on expert users, 

the UR participants shared with us their thoughts during the 

interview. Since they are very familiar with the dataset, 

most of the insights are compliant with their prior 

knowledge, making them less interesting. For example, 

“Computer Science is the major for most hired interns” is 

mined by QuickInsights as an insight, but it is not 

surprising to them. In contrast, the HR participants claim 

that similar insights are helpful for their understanding of 

the survey data. Since they were not familiar with the 

content of the dataset, no prior knowledge was built before 

inspecting the insights. Since QuickInsights provides a 

general mining framework, so we can incorporate prior 

knowledge in via customized significance calculation.  
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Finding5: Visualization and natural language 

description are important to convey insights. Based on the 

free-text comments, most of the negative feedback is about 

confusion on either the visual charts or the text 

descriptions. Comparing with expert participants, non-

expert participants are more often be confused by the charts 

or text descriptions. E.g., “the outlier does not seem so 

significant”, or “what does repeat pattern mean?”. We 

believe that future work from visualization and NLP 

communities could be very helpful and important to better 

represent and convey insights to non-expert users. 

5. RELATED WORK 
Pattern mining on multi-dimensional data. There exists 

lots of work in the literature which target mining various 

types of interesting patterns from multi-dimensional data. 

Sarawagi et al. [5] aim to find exceptions in OLAP data 

cubes. Wu et al. [7] propose promotion analysis for 

business intelligence, which discovers highly ranked 

subspaces associated with a given promotion object. 

Vartak et al. [9] focus on recommending high-deviation 

patterns via visualization. Chen et al. [10] investigate 

methods for multi-dimensional regression analysis of time 

series stream data. Their approach can be used to 

efficiently detect trends or outliers from multi-dimensional 

data. Palpanas et al. [18] provide answers to queries and 

find interesting cells in a data cube by the principal of 

maximum-entropy. Compared to these works, we attempt 

to propose a unified formulation of various types of 

interesting pattern as insights and conduct efficient insight 

mining via a general and extensible mining framework. 

Chen et al. [8] build a fact taxonomy of interesting patterns 

from visual perspective. All the facts can be formulated by 

the definition of insights.  

Interestingness measures for data mining. Silberschatz 

et al. [19] advocate using unexpectedness to measure the 

interestingness of a pattern. Unexpectedness patterns are 

interesting because they exhibit contrary to common 

knowledge and may suggest certain perspectives of data 

that require further analysis. This idea is conceptually 

compliant with our formulation of insight significance. In 

addition, we propose using impact to express the 

importance of a pattern, which is also a key factor 

contributing to the interestingness measure. Ceng et al. [20] 

identify 9 criteria to determine whether a pattern is 

interesting or not, where coverage and surprisingness are 

analogical to the impact and significance of QuickInsights. 

Coverage is a specific implementation of impact when 

COUNT is adopted as impact-measure. Tang et al. [27] 

propose composite extractors for discovering latent yet 

interesting knowledge that can be derived by higher-order 

calculations. QuickInsights is able to incorporate 

composite extractors by calculating impact and 

significance based on the results of composite extractors.  

OLAP and cubing. The data cube modeling has been a 

mature area to facilitate exploratory data analysis with lots 

of work such as Colliat [17], and Gray et al. [23]. Instead 

of pre-constructing data cubes, QuickInsights adopts a 

more economical way by on-demand querying and 

caching. Such an approach can avoid generating too many 

cubes which have no chance to be used for insight 

evaluation, and the query performance can be further 

improved via smart-batching, which is guided based on the 

subject searching mechanism of QuickInsights.   

Visualization recommendation. There has been much 

work [9][22][32][33][34][36][37][41][42][43] that aims to 

facilitate rapid visual data exploration by automatically 

recommending visualizations. Some recommenders, such 

as APT [32], SAGE [33] and Show Me [34], focus on 

suggestions of visual encodings. More recent work 

[9][22][36][37] also suggest what data to visualize. They 

might rank visualization candidates based on various 

statistical analysis to promote the visualizations with 

interesting patterns [35]. For example, Voyager [36][37] 

suggests visualizations based on statistical properties. 

Some systems are designed for specific tasks and patterns. 

Profiler [39] finds anomalies. SeeDB [9] identifies charts 

that are largely deviated from a given reference. Zenvisage 

[22] targets charts that are similar to a given input. Some 

novel visual data exploration tools (e.g., Foresight [29], 

Voder [38], DataSite [28]) are developed based on 

automatic insights and visualizations. Compared to above 

technologies, QuickInsights provides a unified formulation 

of interesting patterns, and developed a systematic insight 

mining framework to automatically mine insights from 

data. QuickInsights can be leveraged by visualization 

recommendation systems to produce insightful 

visualizations that convey interesting data patterns. 

6. CONCLUSION 
We present a novel technique QuickInsights to quickly and 

automatically discover insights from multi-dimensional 

data. QuickInsights proposes a systematic formulation of 

interesting patterns in terms of insights and conducts 

efficient insight mining to discover high-quality insights. 

QuickInsights has been released as a feature of Microsoft 

Power BI.  
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APPENDIX 

Property of Impact 

We restrict the impact-measures to be measures only containing 

non-negative values. Paper [13] provides a set of calculations to 

accommodate anti-monotonic condition being held by various 

aggregations (e.g., top-k average for AVG). The corresponding 

calculations are denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒). thus, we 

define impact by the following two steps: 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =  
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})
 

𝑖𝑚𝑝𝑎𝑐𝑡 =  max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖) 

    

Lemma. In definition 2, impact satisfies anti-monotonic 

condition, and it is bounded between 0 and 1. 

Proof: Considering the impact-measures are restricted to only 

contain non-negative values, and since 

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)  satisfies anti-monotonic 

condition, thus,  

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) ≤ 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗}) →

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 ∈ [0,1] → 𝑖𝑚𝑝𝑎𝑐𝑡 ∈ [0,1], because every subspace is a 

subset of overall subspace {*}. 

To prove anti-monotonic condition, let S and s be two subspaces 

where 𝑠 ∈ 𝑆, then  

𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠) ≤ 𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆) ∀𝑖 → max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠))

≤ max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆)) 

Complexity Analysis for FD Detection  

Lemma. Time complexity of IsDependent (as shown in Table 9) 

is 𝑂(𝑙𝐷) ≪ 𝑂(𝐷2) , here D is the number of columns, and 𝑙 =

max
𝑖

|𝑋𝑖|, where |𝑋𝑖| refers to the cardinality of a set 𝑋𝑖.  

Proof: Similar to the analysis of graph traverse, we use a Boolean 

array inspected to record which column has been evaluated. Thus, 

each column will be evaluated at most once. And considering we 

inspect at most D columns, then we come up with the complexity 

𝑂(𝑙𝐷). Further considering in general, the FDs obtained from data 

schema describe FD relationship between a small set of 

dimensions, thus 𝑙 ≪ 𝑑, the proof concludes. 

Example of Batched Query 

For example, let a query request be {China, Android}⨁Year, and 

we know the subspace {China, Android} is generated from a 

previous query {China} ⨁ OS, then we choose OS as the 

expanding dimension rather than Country or any other 

dimensions, because all the subspaces generated by query 

{China}⨁OS have been inserted into the task queue (combined 

with all feasible breakdowns including Year), thus the query 

results expanded by OS will be useful for these tasks, but which 

is uncertain if we use other dimensions as the expanding 

dimension. 

Pseudo Code 

Table 9. Pseudo code of FD detection 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

/* check if a set of columns determine another column, given a set of  
   basicFDs */ 
IsDependent(determinantCols, col, basicFDs) 

 inspected  {} 
 return Qualify(determinantCols, col, inspected, basicFDs) 

 
/* check if a set of columns determine another column recursively */ 
Qualify(determinantCols, col, inspected, basicFDs) 
    /* reflexivity axiom */ 
    if col in determinantCols 
         return true 
    /* this column has already been inspected */ 
    if col in inspected 
         return inspected[col] 
    inspected[col]  false 

/* retrieve all the determinant sets of col. it is possible that one         
   column can be determined by multiple determinant sets */ 

 dtSets  GetAllDeterminants(col, basicFDs) 
    foreach set in dtSets 

     qualify  true 
        /* if all the columns within this set can be determined,  
         then col can be determined according to transitivity axiom */ 

     foreach newCol in set 
          if Qualify(determinantCols, newCol, inspected, basicFDs) is false 
               then qualify  false  
                    break     
     if qualify is true 
          then inspected[col]  true  
               return true      
 return false 

 

Table 10. Pseudo code of batched-query with cache 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

/* a specific query issued from QuickInsights miner layer */ 
Query(subspace, expanding, breakdown, params) 

ret  Cache.Lookup(subspace, breakdown, params) 
if ret ≠ null 

        return ret 
/* a special optimization for the case where breakdown is null: we swap  
breakdown and expanding to increase cache hit */ 
if breakdown = null and expanding ≠ null 
    newSubspace  subspace - expanding 
    ret  Cache.Lookup(newSubspace, expanding, params) 
    if ret ≠ null 
        /* in case the lookup successful, we need to re-format result */ 
        return ExtractResult(ret) 
 
/* conduct real data query */ 
queryResult  DataDriver.AggregationQuery(subspace, expanding,  
breakdown, params) 
if expanding is null 
    ret  first in queryResult 
    Cache.Add(subspace, breakdown, params, ret) 
else 
    root  subspace - expanding 
    foreach t in queryResult 
        newSubspace  root + {expanding:t.Key} 
        Cache.Add(newSubspace, breakdown, params, t.Value) 
        if newSubspace is subspace 
            ret  t.Value 
return ret 

Example of Adding A New Insight Type 

Suppose we would like to support a new insight type which is 

equivalent to the pattern depicted in [9], we first need to register 

it as a new insight type, named “HighDeviation”. Considering the 

subject of HighDeviation insight is with single subspace and 

single measure, thus only the tasks with single subspace as input 

are allowed for its evaluation, this is reflected by a single-line 

checking “case HighDeviation: return subspaces.Count==1;” in 

the method CanEvaluate in Table 11. In the Evaluation method, 

certain statistical metrics are calculated to measure the deviation 

for each individual measure, and qualified insights are output. 

Table 11. Three steps for supporting a new type of insight 

Step1: add the new insight type  
enum InsightType {…, newType, …} 
 
Step2: implement insight evaluation of the new type 
List<Insight> Evaluate(List<Dictionary<Measure, AggrResult>> aggrResults); 
 
Step3: register new insight type to task execution pre-condition 
bool CanEvaluate( 
List<Subspace> subspaces, Dimension breakdown, InsightType type); 

 



 

 

Examples of FD Induced EII 

For example, suppose there exists FD between two measures 

𝑆𝑎𝑙𝑒𝑠(𝑈𝑆𝐷) → 𝑆𝑎𝑙𝑒𝑠(𝐸𝑈𝑅𝑂) (falls into the category of ID5 in Table 

4), the corresponding values only differ by a constant exchange-

rate. These two measures will exhibit perfect correlation no 

matter breakdown by any dimension (thus the relationship is pre-

determined) when drawn in a scatter plot, but clearly provides 

little value for analysis. The example of ID2 in Table 4 is another 

case about measure height determining dimension Height-

Category. For example, the value of Height-Category is 

calculated by measure height, by setting 𝑙𝑜𝑤 = ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 100, ℎ𝑖𝑔ℎ =

ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 1000, 𝑚𝑒𝑑𝑖𝑢𝑚 = 100 < ℎ𝑒𝑖𝑔ℎ𝑡 < 1000. Any insight describes 

height breakdown by Height-Category would become a trivial 

Outstanding No. 1 insight: “height of high is outstanding No. 1 

among all Height-Categories”, which is pre-determined no matter 

what subspace of the insight is. The details of how ID1~5 induce 

EII are available at website [15] due to page limit. 

Profiles of Non-Expert Users 

To mitigate any potential bias, we select non-expert participants 

by different jobs, genders, and different familiarity with data 

analysis, as shown in Table 12.  

Table 12. Statistics of non-expert users 

 

Details of “Movie” Dataset 

 

Figure 9. Snapshot of the schema of 'Movie' Dataset 

Figure 9 shows a snapshot of the database schema of ‘Movie’ 

data. This is a real-world dataset, containing the various 

information of movie in the years from 1985 to 2016. This is a 

typical multi-dimensional dataset, which is formed by six tables, 

connected by Snowflake schema. Table 13 shows the scale of 

each table. There are in total about 60 dimensions, and almost 

every table has more than 10,000 rows. Thus the search space for 

QuickInsights is very large. 

 

Table 13. Data scale of each table 

Table Name #Dimensions #Measures #Rows 

Movies* 27 8 4740 

Movie Cast 10 1 74038 

Actors 8 2 39567 

Genres 2 1 22470 

Production Companies 2 1 22222 

Production Locations 2 1 12084 

 

When this dataset is run by Power BI, QuickInsights could 

generate quite a few insights within 20 seconds. Figure 10 shows 

nine sample insights generated by QuickInsights. We have used 

these insights to conduct the user study. The details of the user 

study are presented in Section 4.2.2.  

 

Figure 10. Snapshot of sampled insights recommended from 

Movie 

Job role Count

Researcher 17

Developer 8

UX Designer 2

IT 1

Admin 1

PM 1

Gender Count

male 18

female 12

Analysis frequency Count

Daily 5

Weekly 8

Monthly 10

Seldom 7


