

QuickInsights: Quick and Automatic Discovery of Insights from

Multi-Dimensional Data

Rui Ding, Shi Han, Yong Xu, Haidong Zhang, Dongmei Zhang
Microsoft Research

Beijing, China

{juding, shihan, yox, haizhang, dongmeiz}@microsoft.com

ABSTRACT

Discovering interesting data patterns is a common and

important analytical need in data analysis and exploration,

with increasing user demand for automated discovery

abilities. However, automatically discovering interesting

patterns from multi-dimensional data remains challenging.

Existing techniques focus on mining individual types of

patterns. There is a lack of unified formulation for different

pattern types, as well as general mining frameworks to

derive them effectively and efficiently. We present a novel

technique QuickInsights, which quickly and automatically

discovers interesting patterns from multi-dimensional data.

QuickInsights proposes a unified formulation of interesting

patterns, called insights, and designs a systematic mining

framework to discover high-quality insights efficiently.

We demonstrate the effectiveness and efficiency of

QuickInsights through our evaluation on 447 real datasets

as well as user studies on both expert users and non-expert

users. QuickInsights is released in Microsoft Power BI.

1. INTRODUCTION
Discovering interesting data patterns is a common and

important analytical need when users try to obtain

meaningful, useful, and actionable information hidden in

data through data analysis and exploration [1][2][3][4][8]

[22][24][29]. Such interesting patterns include correlation,

anomaly, trend, etc. [8]. Two examples of interesting

patterns are shown in Figure 1. The left chart shows that

the CPU usage of a server is exceptionally lower than the

other servers. The right chart shows sales of tablet devices

in China is trending upwards in recent years.

Exploratory visual analysis is a commonly used approach

for understanding and reasoning about data to uncover

interesting data patterns [9][35][36][39][40], in which

users have to manually select data variables and specify

visual encodings, either via a programming library (e.g.,

ggplot [31]) or via a graphical interface (e.g., Tableau

[30]). Although manual specification is flexible for data

exploration, it is non-trivial to iteratively create and refine

visualizations to search for the ones that are interesting and

useful [9][22], especially for non-expert users who have

limited time and limited skills in statistics and data

visualization [29][40].

Figure 1. Two examples of interesting patterns

To speed up the data exploration process, we can

complement interactive visual exploration tools with

automated recommendation of interesting data patterns.

With patterns automatically mined from the data and

presented to users as visualizations, users can jump-start

the exploration from them rather than from the scratch

[28][29][36]. The patterns capture characteristics of a

dataset from different perspectives, so they can help users

understand data and prioritize their exploration actions.

Some patterns may hit an “interesting zone” of users, thus

inspiring them to generate new hypotheses and initiate

further data exploration and analysis. Further, some

patterns can directly lead to actions, e.g., system admin

could login to server Svr07 for diagnosis when they find

unexpected lower CPU usage from the data. Hence,

Gartner’s report [25] has identified smart, automated

pattern detection as one critical capability of next-

generation BI and analytics platforms.

However, automatically discovering interesting patterns

from data remains an open research problem. First, there is

a lack of unified and consistent formulation of “interesting

patterns”. A set of techniques [5][7][9][10] have been

Svr01 Svr02 Svr03 Svr04 Svr05 Svr06 Svr07 Svr08 Svr09 Svr10

CPU Usage of Different Servers

2009 2010 2011 2012 2013 2014 2015 2016

Year

Sales in China by Year

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SIGMOD’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00

https://doi.org/10.1145/3299869.3314037

mailto:Permissions@acm.org

proposed to extract different types of interesting patterns

from multi-dimensional data, such as top-rank, anomalies,

or exceptions. However, these techniques focus on mining

individual types of patterns; therefore, they are insufficient

for facilitating comprehensive data analysis. While “facts

taxonomy” [8] was proposed to categorize interesting

patterns, it does not provide a unified formulation. Second,

there is a lack of efficient and effective mining frameworks

that target general interesting patterns. The search space

grows exponentially as the number of dimensions

increases, and interesting patterns are often hidden in

unknown subsets of data.

We present QuickInsights, a novel technique for

automatically discovering interesting patterns from multi-

dimensional datasets. QuickInsights provides a unified

formulation of interesting patterns, called insights, and a

systematic mining framework to derive insights efficiently.

Specifically, given a multi-dimensional dataset, an insight

reflects something interesting on a specific subject in the

data from certain perspective. We formulate an insight

based on three key elements: subject, perspective and

interestingness. Such formulation is able to unify different

types of interesting patterns proposed in previous works

[5][7][9][10]. Given the insight formulation, the mining

framework of QuickInsights aims to automatically discover

insights with quality and efficiency.

Quality challenge: Some insights may be easily inferred

by users based on data schema information. They provide

little information gain, thus are less interesting to users.

E.g., an almost perfect linear correlation of two measures

over years, where measure1 is sales in USD, and measure2

is sales in EUR (i.e., the values only differ by a factor of

exchange rate) will become easily inferable to users. We

try to avoid such Easily Inferable Insights (EII for short) to

guarantee high-quality insight mining results. How to

effectively detect and eliminate EIIs imposes challenges on

insight mining.

Efficiency challenge: The search space of mining multi-

dimensional dataset grows exponentially as the number of

dimensions increases. Moreover, since QuickInsights is

mostly used in interactive data exploration, it must output

insights within a short time budget. To effectively utilize

the time budget, we should try to first explore the “best”

possible subsets of data where high-quality insights exist.

In addition, insight evaluation always involves a lot of data

aggregation queries against the database, which may

further impact mining performance.

To address the quality challenge, we notice that EII is

mainly caused by inter-dimensional dependency.

Therefore, we conduct functional dependency checking of

insight subjects, and implement an efficient algorithm to

detect and eliminate EIIs caused by functional dependency.

To address the efficiency challenge, we first employ a

“best-first” search mechanism to prioritize insight

evaluation tasks. Given a time budget, this mechanism tries

to prioritize insight evaluation tasks, by estimating which

task would result in a higher score before evaluation. We

then employ a smart-batching mechanism to effectively

reduce the number of queries by taking advantage of spatial

locality across multiple related queries in data, thus

significantly improve query performance.

We conducted quantitative experiments on 447 real

datasets to evaluate the effectiveness and efficiency of

QuickInsights. We also performed qualitative user studies,

which showed that the insights generated by QuickInsights

are useful and valuable to both expert users and non-expert

users. QuickInsights has been released in Microsoft Power

BI [14] as a feature available to end users, which is

recognized by Gartner as a basic form of smart data

discovery [25]. In this paper, we make the following

contributions:

• We propose a unified formulation of interesting

patterns, called insights on multi-dimensional dataset.

• We build an insight mining framework to achieve

efficient insight mining performance using two key

techniques: best-first search mechanism to prioritize

insight evaluation tasks, and smart query-grouping to

reduce the number of queries.

• We design an insight evaluation algorithm to eliminate

EIIs to achieve high-quality insight results.

• We evaluate QuickInsights and verified its

effectiveness and efficiency on discovering insights.

QuickInsights is released in Microsoft Power BI.

2. INSIGHT MODELING

2.1 Data Model

Multi-dimensional data conceptually is organized in a

tabular format that consists of a set of records, and each

record is represented by a set of attributes (columns in the

table). Table 1 shows some sample data from a multi-

dimensional dataset about tablet sales. There are two types

of columns in the table: dimensions and measures.

Dimensions are used to group or filter records. The values

of dimensions are either categorical (e.g., “Country”) or

ordinal (e.g., “Year”). Measures are numerical columns

(e.g., “Sales”) on which certain aggregations (e.g., SUM,

AVG) can be performed. Formally, given a multi-

dimensional dataset ℝ(𝒟, ℳ) , where 𝒟 = {𝐷1, … 𝐷𝑑} is

the collection of dimensions and ℳ is the collection of

measures. Let 𝑑𝑜𝑚(𝐷𝑖) be the domain of 𝐷𝑖 .

Table 1. A sample of multi-dimensional data.

Subspace. A subspace is defined as a size-d collection of

filters 𝑠 = {𝑠[1], … , 𝑠[𝑑]} , where 𝑠[𝑖] ∈ 𝑑𝑜𝑚(𝐷𝑖) ∪ {∗} ,

and ‘*’ refers to the “any” value. We hide the filters with

star value (‘*’) for brevity. We call a subspace 𝑠 with

dimensionality 𝑙 ≔ |{𝑠[𝑖]|𝑠[𝑖] ∈ 𝑠, 𝑠[𝑖] ≠∗}| . Each

subspace associates with an aggregate value per each

measure, e.g., {Country: China} is one subspace with 𝑙 =

1, and its corresponding aggregation on measure Sales is

aggregated by SUM. For conciseness, we denote {Country:

China} as {China} for short.

Sibling group & breakdown. Given a subspace s and a

dimension 𝐷𝑖 , a sibling group is defined as 𝑆𝐺(𝑠, 𝐷𝑖) =
{𝑠′|𝑠′[𝑖] ≠∗, 𝑠′[𝑗] = 𝑠[𝑗]∀𝑗 ≠ 𝑖} , i.e., a set of subspaces

only differ in the values of 𝑑𝑜𝑚(𝐷𝑖). In this setting, we call

𝐷𝑖 the breakdown dimension (i.e., the group-by operation

against a subspace), and we denote 𝑠 ⊕ 𝐷𝑖 → 𝑆𝐺(𝑠, 𝐷𝑖) to

indicate that sibling group 𝑆𝐺(𝑠, 𝐷𝑖) is generated from

subspace s by breaking down of 𝐷𝑖 . For example,

subspaces {2011, China}, …, {2016, China} form a sibling

group because they only differ in the value of dimension

Year, and Year is the breakdown dimension.

2.2 Insight Formulation

In the domain of multi-dimensional data analysis, an

interesting pattern can generally be summarized as follows:

it reflects something interesting on a specific subject of

data from a certain perspective. We refer to such kinds of

interesting pattern as insight. Subject scopes the content of

an insight. Taking the trend insight in Figure 1 as an

example, its subject includes the sibling group

𝑆𝐺({𝐶ℎ𝑖𝑛𝑎}, 𝑌𝑒𝑎𝑟) and the measure Sales. Its aggregate

values form a time series over years for trending analysis,

which is the perspective of this insight. Its interestingness

is reflected by “trending upwards rapidly and consistently”.

Below we describe subject, perspective, and

interestingness of an insight accordingly.

2.2.1 Insight Subject

We define insight subject as:

Definition 1. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)}

For example, the subjects of the two insights in Figure 1

are: {{*}, ServerName, CPU Usage}, and {{China}, Year,

Sales}, respectively. Insight subject specifies the scope of

content of an insight, and it corresponds to one or more sets

of aggregate values, which can be used to quantify the

interestingness. To facilitate intuitive understanding, let’s

map to visual charts. Each combination of {subspace,

breakdown, measure} corresponds to a sibling group and

their aggregate values on the measure. The values of the

breakdown dimension can map to x-axis values; and the

aggregate values can map to y-axis values; while the

subspace can map to filter. For the cases with multiple

subspaces or multiple measures, they can map to multiple

series of y-axis values with the same x-axis.

Such a natural mapping to visual charts is an important

advantage of Definition 1, given that insights are typically

consumed via visual interfaces [8], thus enabling seamless

integration with visual objects as the underlying object

model. In addition, there are more advantages as follows.

First, it is an abstraction that covers a wide range of

subjects of specific “insights” in the literature. E.g., [9]

automatically discovers insights with large deviation over

a distribution, where the distribution can be properly

modeled by Definition 1. Second, based on the feedback

from several data science teams that we have closely

engaged with in Microsoft, the insights derived from

Definition 1 is satisfactory to facilitate their basic

analytical needs.

2.2.2 Insight Types

We materialize different perspectives as different insight

types. For instance, insight type “Outstanding#1”

corresponds to the perspective of finding “the leading value

that is outstandingly higher than the remaining values”.

Specifying insight type is essential for further quantifying

insight interestingness. E.g., given the sales in China over

years (i.e., a time series), the evaluation criteria are

different for perspectives such as trend or seasonality.

We have developed 12 types of insights, corresponding to

12 different perspectives commonly adopted in practice,

such as Attribution, Change Point, Correlation, Outlier,

Seasonality, etc. Details are available on website [15]. The

mining framework of QuickInsights is designed to be

extensible, and configurable (see Section 3.1.3 for details)

to support new insight types easily.

2.2.3 Insight Scoring

We quantify the “interestingness” of an insight by

assigning an appropriate score to it. Intuitively,

interestingness of an insight is judged by two factors. First,

the subject of the insight should be non-trivial, so that the

insight expresses something important, e.g., we would like

insight subject to be a best-selling brand, or a category that

has large market share rather than being neglectable.

Year OS Region Country Vendor Sales Units

2010 iOS USA United States Sony 1.1 7,032

2010 Android Asia India Amazon 1.5 10,462

2011 Windows USA United States Toshiba 2.4 12,337

2012 Android Asia China Huawei 3.7 28,556

… … … … … …

Second, aggregation results of the subject should exhibit

significant differences against a baseline. We express the

baseline as a statistical hypothesis, which reflects common

situations formed up by majority of non-insights (i.e.,

aggregation results with uninteresting patterns). E.g., for

correlation analysis, it is desirable to look for two time-

series instances exhibiting correlation against null

hypothesis 𝐻0: 𝜌 = 0. Such a null hypothesis reflects one

common situation where two time-series instances are

independent. In this paper, we term these two factors as

impact and significance, respectively, and score an insight

by combining them.

Figure 2. Illustration of impact and significance.

Impact. Impact reflects the importance of the subject of an

insight against the entire dataset. It can be determined by

the best possible perspective for promoting the insight

regarding any “meaningful measures”. Here we term these

“meaningful measures” as impact-measures, and denote

the value of impact on a specific impact-measure i as

𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) or just 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 for brevity.

Figure 2 shows sales trends of two different markets when

impact-measure is market share. The higher the market

share the more important. 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 should hold anti-

monotonic condition [16] , and should be normalized for

fairness comparison across different impact-measures.

Anti-monotonic is necessary because it is compliant with

common sense: if the subject of insight A is a superset of

the subject of insight B, then impact of A should be no less

than impact of B. [11] provides calculations to

accommodate anti-monotonic condition being held by

various aggregations. The corresponding calculations are

denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) . Normalization is

necessary for fairness comparison across impact-measures.

Having these, we propose: 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡.𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})
.

To avoid divide-by-zero, we restrict the impact-measures

to be measures only containing strictly positive values. E.g.,

COUNT is a valid impact-measure; Sales or Units in Table

1 are also suitable impact-measures. Users can specify

meaningful impact-measures aligned with their needs.

Under this restriction, 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 is well-defined and

bounded within [0, 1], and we define impact of an insight,

which seeks the impact-measure that best promotes insight:

Definition 2. 𝑖𝑚𝑝𝑎𝑐𝑡 = max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖)

Lemma 1. Definition 2 satisfies anti-monotonic condition

and is bounded between 0 and 1. (Proof is in Appendix).

Significance. Significance is evaluated on the aggregation

values of the insight subject, and it is designed to reflect

how significant the fact (i.e., the obtained aggregate

values) against a baseline in a stochastic fashion. We

express the baseline as an insight-type-dependent null

hypothesis, which reflects common situations formed up

by majority of non-insights, and quantify insight

significance by conducting significance-based hypothesis

testing. The bellowing two charts in Figure 2 shows two

different time series signals. Intuitively, the left one is more

significant than the right one, because it contains certain

regularities instead of pure noise.

More specifically, in the scenario of QuickInsights, without

knowing further knowledge of user preferences, we

propose baseline for each type of insight based on common

sense. Such common sense should approximate the

distribution of possible outcome which is uninteresting

(i.e., trivial or less valuable for data analysis). E.g., to

calculate significance of whether there exists a change

point on a time series instance, a reasonable baseline is to

assume the time series to be relatively stable, which is

compliant with common sense (such time series provides

no value on change point related analysis), and can be

easily formalized as a null hypothesis: 𝐻0: 𝑓𝑜𝑟 1 ≤ 𝑘 ≤

𝑁: 𝑝𝜃(𝑦𝑘|𝑦𝑘−1~𝑦1) = 𝑝𝜃0
(𝑦𝑘|𝑦𝑘−1~𝑦1) , where 𝑝𝜃0

is a fixed

probability distribution [21]. The insight significance takes

a value within [0, 1]. The closer the value to 1, the more

significant the insight is. Detailed baseline setup and

significance calculations are available at website [15].

Score. By combining the two factors together, we come up

with the final score which quantifies the overall

“interestingness” of an insight:

Definition 3. 𝑠𝑐𝑜𝑟𝑒𝑡 = 𝑓(𝑖𝑚𝑝𝑎𝑐𝑡) ∙ 𝑔𝑡(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒)

Here the subscript t refers to a specific insight type,

considering the significance calculation is insight type

dependent. f and g are any non-negative, monotonic

functions. Currently, we take the simplest form: 𝑠𝑐𝑜𝑟𝑒𝑡 =

𝑖𝑚𝑝𝑎𝑐𝑡 ∙ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡

Definition 4 (Insight representation). With the above

considerations, we represent an insight as a 5-tuple

𝑖𝑛𝑠𝑖𝑔ℎ𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠), 𝑡𝑦𝑝𝑒, 𝑠𝑐𝑜𝑟𝑒}

3. INSIGHT MINING

3.1 Mining Framework

Overall, QuickInsights aims to achieve three design goals:

(1) be a time-bounded mining procedure; (2) be portable to

0

1000

2000

3000

4000

5000

2013 2014 2015 2016 2017

sales for a small market (low impact)

0

1000000

2000000

3000000

4000000

5000000

2013 2014 2015 2016 2017

sales for a big market (high impact)

time series with regularities (high significance) noisy time series (low significance)

commodity query engines; (3) be extensible to adapt new

types of insights.

Time-bounded mining procedure. The typical scenario

of QuickInsights is one that targets interactive data

exploration, thus it must output insights within a given

limited time budget, e.g., 10 seconds. To effectively utilize

the time budget, the mining procedure should try to explore

the best possible subjects (i.e., combination of subspace

and breakdown), where high-quality insights might exist.

To discover insights, data queries and significance

evaluations are performed by a set of tasks, where each task

takes certain subspace(s) (and the corresponding impact of

each subspace) and breakdown as input, and is responsible

for evaluating certain types of insights that are applicable

to the input parameters (e.g., time series related insights are

evaluated when input breakdown dimension is ordinal).

Therefore, a best-first prioritization of tasks is necessary

(Section 3.1.1).

Figure 3. Overall workflow of QuickInsights

Portable to arbitrary query engines. As a general mining

framework, QuickInsights should be portable to build upon

arbitrary query engines such as SQL Databases, SQL

Server Analysis Services, etc. where multi-dimensional

datasets are typically stored. Thus, an abstracted and

general query interface layer is necessary (Section 3.1.2).

Extensible to adapt new types of insights. QuickInsights

is designed to support new insight types easily. Therefore,

we decouple the mining procedure into two parts: subject

enumeration and insight’s significance evaluation, only

insight evaluation module is responsible for registering

new insight types (Section 3.1.3).

Figure 3 depicts the overall workflow of QuickInsights.

The workflow can be divided into three stages, “Search &

Task Generation” (Stage 1), “Query & Evaluation” (Stage

2), and “Store and Refinement” (Stage 3). The first two

stages are executed simultaneously in a parallel fashion

within a time budget. Once the time exceeds the time

budget, refinement is conducted in Stage 3 and then the

qualified insights are output.

In Stage 1, the SubjectSearcher module tries to enumerate

all possible subspaces. Each subspace is assigned with

impact by using the AutoImpact module. Insight evaluation

tasks are then generated by combining subspaces with any

valid breakdowns that pass trivial-insight checks (by

Functional-Dependency checker). The generated tasks are

stored in a priority queue, to be executed in Stage 2. The

tasks associated with higher impacts will be assigned

higher priorities. In Stage 2, the tasks are computed in

parallel by a set of dedicated worker threads. The

computing of tasks consists of three steps. First, the task

with highest priority from the queue is fetched by a worker

thread; then data query is performed as the next step, by

conducting aggregation over all measures, conditioned on

the task parameters. Insight evaluation is conducted as the

last step, where the discovered insights (i.e., significance

exceeds certain threshold) are stored. Both Stage 1 and

Stage 2 are executed within a time budget. Below are the

details.

3.1.1 Best-First Prioritization

In our implementation, the generated tasks are stored in a

priority queue, as depicted in Figure 3 to facilitate best-first

prioritization. Recall that each task has three input

parameters: subspace(s), breakdown and impact, and we

use the impact as priority to prioritize different tasks.

According to Definition 3, the score of insight is monotonic

to both impact and significance, so without knowing the

significance (since insight evaluation has not yet been

done), impact is useful for prioritizing and pruning tasks.

3.1.2 Query Abstraction

To make QuickInsights portable for general systems, an

abstracted query interface layer is necessary. Table 2

shows the query interface AggregationQuery, which builds

a connection between the mining layer of QuickInsights

and the data store. Thus, QuickInsights is portable as long

as the underlying data store provides the implementation of

AggregationQuery. A query via our query interface is

semantically equivalent to a SQL query:

“SELECT Aggr1(measure1), Aggr2(measure2), … GROUP BY

breakdownDimension where filter = subspace”.

Note that the efficiency of QuickInsights mainly depends

on the efficiency of underlying query engine. Microsoft

Power BI team has supported our query API based upon

Analysis Service. To further improve query performance

by leveraging data locality, we introduce a pre-fetch

mechanism and modify the above GROUP BY clause to

(Section 3.3):

“GROUP BY expandingDimension, breakdownDimension”.

The aggregation results are packaged into a dictionary.

Each item of the dictionary collects the result of each value

Subject

Searcher

Trivial Insights

Checker
Task Task … Task

Smart Queryer

Search & Task

Generation

Query &

Evaluation

Insight

Evaluator

significant?

pruning1

pruning2pruning3

Worker

Worker

…

insights

Type A

insights

Type B

insights

Type x

Redundant-Insight

Eliminator

output Store &

Refinement

priority queue

Worker

Query

interface

Database
Analysis

Service

…

AutoImpact

in expandingDimension. Setting expandingDimension to

null disables pre-fetching. Table 3 shows two typical query

examples and the corresponding results.

Table 2. Query Interface

/* aggregate one or more measures for a subspace, group-by a breakdown dimension.
If an expanding dimension is provided, also aggregates for the siblings of this
subspace based on the expanding dimension. */
Dictionary<BasicValue, Dictionary<Measure, AggrResult>> AggregationQuery(
 Subspace subspace,
 Dimension expandingDimension,
 Dimension breakdownDimension,
 Dictionary<Measure, AggrParams> params,
 OrderByType orderBy);

Table 3. Examples of query and aggregation result

3.1.3 Extensibility

QuickInsights is designed to be extensible to support new

types of insights easily. The extensibility of QuickInsights

largely relies on the unified definition of insights

(Definition 4).

Specifically, since each insight subject is formulated as

{𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)} , thus the aggregation

results of an insight subject can be represented by a

common data structure, which can be reused for any new

insight type. An example of adding a new insight type is

depicted in Appendix.

3.1.4 Pruning

As depicted in Figure 3, we applied three pruning criteria

(pruning1, 2, 3) to boost performance: pruning1 prunes out

significant portion of search space, and pruning2 and

pruning3 reduce the cost of insight evaluation.

pruning1: We prune out any insights with impact smaller

than a given threshold. An insight with impact below the

threshold becomes less important and thus less interesting,

so we adopt pruning1 to eliminate unimportant tasks.

Furthermore, considering the anti-monotonic condition of

impact (Lemma 1), any descendant subspaces can also be

discarded from the SubjectSearcher module safely. In

current implementation, we set the threshold to 0.01.

pruning2: For each insight type, we use a size-k buffer to

keep the top-k scored insights. Considering 𝑠𝑐𝑜𝑟𝑒𝑡 = 𝑖𝑚𝑝𝑎𝑐𝑡 ∙

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡 < 𝑖𝑚𝑝𝑎𝑐𝑡 (because significance is bounded

within 0 and 1), so if impact of current insight candidate is

already smaller than the score of kth insight, its further

evaluation is saved. Furthermore, since each task knows

what types of insight it needs to evaluate, if insight

evaluation can be pruned on all the needed types, then data

query can be saved and the task is discarded.

pruning3: When a sibling group contains only one

subspace, further insight evaluation becomes trivial

(because this subspace is identical to its parent subspace

and thus implies duplication), hence unnecessary. So after

data query, if there is only one item among the sibling

group, we avoid further insight evaluation.

3.2 Easily Inferable Insights Elimination

In this section, we illustrate how to improve insight quality

by detecting and eliminating EIIs (i.e., Easily Inferable

Insights) incurred by functional dependency (FD in short).

3.2.1 FD Induced EII

Definition 5 (functional dependency). A functional

dependency FD: X → Y means that the values of Y are

determined by the values of X, where X and Y are two sets

of columns (i.e., dimensions or measures) [12].

FD is a commonly existing relationship in multi-

dimensional data, e.g., in Table 1, Country → Region. FDs

reflect certain hierarchical structure or consistent

relationship across columns.

Definition 6 (FD of insight subject). We pick all the

columns that appear in an insight subject as 𝐶𝑜𝑙 ≔

{𝑠1, … , 𝑠𝑝, 𝑑, 𝑚1, … , 𝑚𝑞} , where 𝑠1~𝑠𝑝 are the dimensions

appearing in subspace(s), 𝑑 is breakdown, and 𝑚1~𝑚𝑞 are

q measures. If ∃ 𝑋 ⊂ 𝐶𝑜𝑙, 𝑌 ⊂ 𝐶𝑜𝑙, 𝑋 ∩ 𝑌 = ∅, 𝑠. 𝑡. 𝑋 →

𝑌, we say 𝑋 → 𝑌 is a FD of this insight subject.

Table 4. Taxonomy of trivial insights

Based on Definition 6, we notice that FD of insight subject

would bring up EIIs.

Definition 7 (FD induced EII). An insight is called an FD

induced EII (or EII in short) if its aggregate values exhibit

pre-determined relationships thus providing trivially useful

information for the purpose of data analysis.

We carefully inspect all possible FDs incurred in insight

subject, and come up to five forms of FD that would induce

EIIs, as shown in Table 4 (ID1 ~ ID5). The details of how

ID1~5 induce EII are shown in Appendix.

3.2.2 Efficient FD Checking

Given an insight candidate, we need to check if there exists

FDs to satisfy any of ID1~5 in Table 4 thus to avoid further

insight evaluation. The checking can be generalized as

determining whether {𝑑1~𝑑𝑖} → 𝑑𝑗 is held or not. On the

other hand, such determination requires knowing the FDs

that are globally held in a given dataset, and such FDs can

subspace expanding breakdown params orderBy Aggregated result

{China} null Year
{Sales, SUM},

{Units, SUM}
Ascend

{China, [Sales, (2009:1.3) (…) (2016:12.3)],

[Units, (2009: 6,403) (…) (2016:13,432)]}

{China} Country Year {Sales, SUM} Ascend
{China, [Sales, (2009:1.3) (…) (2016:12.3)]}

{USA, [Sales, (2009:2.7) (…) (2016:11.8)]}…

ID Form of Functional-Dependency Trivial insight description Example

ID1 𝑠1 , … , 𝑠𝑝 → 𝑑 Only one item in sibling group

ID2 𝑚1 , … , 𝑚𝑞 → 𝑑 Fixed x-y axis relationship

ID3 𝑑 → 𝑚1 , … , 𝑚𝑞 Fixed x-y axis relationship

ID4 𝑠1 , … , 𝑠𝑝 → 𝑚1, … , 𝑚𝑞 Flat line

ID5 𝑚1 , … , 𝑚𝑖 → 𝑚𝑗 Fixed x-y axis relationship

{Model:X5}Sales

Brand
BWM

Age

Birth Year

Age

Region

{BirthYear:1980}

Sales (EURO)

Sales(USD)

Height

Height Category
low medium high

be obtained from data schema or can be pre-calculated

using FD mining techniques such as [13]. Thus, we

formulate the problem as:

Problem 1 (checking functional dependency). Given a set

of FDs {𝑋1 → 𝑌1}, … , {𝑋𝑡 → 𝑌𝑡}, check if {𝑑1~𝑑𝑖} → 𝑑𝑗 is

held or not.

This problem can be solved by leveraging two axioms in

the field of FD theory: Reflexivity and Transitivity [12].

Roughly, if 𝑑𝑗 ∈ {𝑑1~𝑑𝑖} , the {𝑑1~𝑑𝑖} → 𝑑𝑗 is true

(Reflexivity). Otherwise, find 𝑋 = ⋃ {𝑋𝑖|𝑑𝑗 ∈ 𝑌𝑖}𝑖 , and

check if {𝑑1~𝑑𝑖} → 𝑋 (Transitivity). This process repeats

recursively until an empty set is reached. The pseudo code

of an efficient algorithm (IsDependent) of FD checking is

shown in Appendix due to page limit.

Lemma 2. Time complexity of IsDependent is 𝑂(𝑙𝐷) ≪

𝑂(𝐷2). Details of the proof are available in Appendix.

Here D is the number of columns, and 𝑙 = max
𝑖

|𝑋𝑖|, where

|𝑋𝑖| refers to the cardinality of a set 𝑋𝑖. In general, the FDs

obtained from data schema describes FD relationship

between a small set of dimensions, thus 𝑙 ≪ 𝑑.

3.3 Batched Query & Cache

Data query occupies the majority of computational cost of

QuickInsights. Next, we illustrate our considerations and

approach on query optimization to significantly save the

computational cost.

3.3.1 Caching

As depicted in Figure 3, the Subject-Searcher module, the

AutoImpact module, as well as Tasks issue data queries.

Subject-Searcher uses queries to enumerate all valid

subspaces, AutoImpact needs query results on impact-

measures to assign impact to each subspace, and Tasks

issue queries for insight evaluation. It is easy to see how

these modules would generate duplicate queries, e.g.,

query {China}⊕Year can be used for insight evaluation,

while Subject-Searcher also needs resultant subspaces for

search space exploration, and the impact of resultant

subspaces is obtained from AutoImpact by aggregating all

impact-measures. Thus, cache mechanism is needed, and

the cache unit needs to be designed to facilitate the

requirements of these modules, as depicted in Figure 4.

Here the cache unit is 2-dimensional aggregation results

grouped-by breakdown, and across all measures (both

insight measures and impact-measures), and the

corresponding lookup key for each cache unit is indicated

by 𝑠 ⊕ 𝐷. Such granularity is necessary for the needs of all

the modules.

3.3.2 Smart Batching

A typical multi-dimensional dataset contains a huge

number of 𝑠 ⊕ 𝐷 combinations, and requires a large

number of data queries, which would lead to significant

performance impact. On the other hand, by inspecting the

issued queries from QuickInsights, we find that the

generated subspaces exhibit strong relationships with each

other, which provides opportunity to reduce the number of

queries.

Figure 4. Example of cache unit: breakdown⊗measure

Definition 9 (level-2 sibling group). A set of subspaces

form a level-2 sibling group if they can be generated by a

level-2 group-by: 𝑠 ⊕ 𝐷1 ⊕ 𝐷2.

E.g., when we have the following three query requests:

{China}⊕Year, {USA}⊕Year, {India}⊕Year, they can

be covered by a level-2 group-by: {*}⊕Country⊕Year,

thus the corresponding subspaces belong to a level-2

sibling group. Batching these three queries together would

take advantage of spatial locality across multiple related

queries in data, thus significantly improving query

performance.

However, one problem arises from batching: higher level

group-by would introduce additional aggregation results

which may never be used. In the mentioned example,

{*}⊕Country⊕Year obtains the necessary results for the

three requests, but it also obtains results for all countries

besides China, USA, and India. In addition, considering

QuickInsights typically runs within a time budget, only a

portion of a whole search space can be inspected.

Therefore, we prefer conducting a batched query on-

demand rather than exhaustive pre-fetching in the

beginning to mitigate the issue of querying useless results.

As depicted in Table 2, query API of QuickInsights

considers an expanding dimension as an additional group-

by for batching purpose. We notice that using the latest

breakdown as an expanding dimension can fully leverage

spatial locality, and pre-fetched results can also be

effectively utilized for later tasks.

From another perspective, column cardinality together

with pruning1 will affect the utility of batched query. For

example, if there are >1000 distinct values in City for

{China}, the batched query by expanding on City generates

1000 subspaces, but at most 100 subspaces has impact >

measure1 measure2 … impact-measure1 …

2009 1.1 22.43 … 14 …

2010 2.1 34.32 … 23 …

2011 3.2 53.91 … 63 …

… 0.9 17.06 … 10 …

Measure

Year

aggregation on all measures

v
alu

es in
 b

reak
d

o
w

n

0.01 due to the Pigeonhole Principle, thus most (>90%)

prefetched subspaces are useless which makes this query

very ineffective. Therefore, when the number of subspaces

generated by a breakdown exceeds a threshold, we don’t

use it for expanding dimension.

With these considerations, we name our approach smart

batching. The approach aims to reduce number of data

queries, while the pre-fetched results are effectively

utilized. Considering page limit, we put the examples,

pseudocode of QuickInsights’ query logic with both cache

and smart batching in Appendix.

4. EVALUATION
We evaluate the effectiveness and efficiency of

QuickInsights quantitatively on real datasets (Section 4.1).

We further evaluate the usefulness of QuickInsights in

assisting data analysis through two user studies on expert

users and non-expert users, respectively (Section 4.2).

4.1 Evaluation on Real Datasets

4.1.1 Setup

Datasets. We evaluate QuickInsights on 447 real datasets.

These multi-dimensional datasets are collected with

assistance from partnering Microsoft teams. The datasets

cover various domains such as sales, weather, market,

healthcare, etc. Their scales are quite variant, with the size

ranging from 8.8KB to 386.2MB, and the dimensionality

varying from tens to hundreds. Some of the datasets are

available on our website [26].

Environment. All experiments are conducted on a

machine with 3.6GHz Intel Core i7-4790 processor, and

16GB RAM. QuickInsights is deployed upon a SQL Server

Analysis Service (SQL Server 2016 RTM, version:

13.0.1601.5, Tabular Mode).

Configuration. We set the configuration of QuickInsights

as follows: #worker threads = 8; maximum dimensionality

of explored subspace = 2 since output insights with high-

dimensionality subspaces are less informative for common

usages; we set COUNT as impact-measure for all datasets

for simplicity, because setting different impact-measure

has little affect to efficiency evaluation.

4.1.2 Design

We aim to evaluate QuickInsights from three perspectives:

overall effectiveness, effectiveness for EIIs elimination

and mining efficiency.

To make the experimental results measurable, we set

golden set of each dataset as the obtained insights from

QuickInsights with time budget set to ∞, denoted as 𝑂𝑖 ,

where i indicates the index of a dataset. More specifically,

we set the number k of top-k buffers (as depicted in Figure

3, we maintain a top-k buffer for each type of insight) to

10, and 𝑂𝑖 is the union of insights from all the buffers after

insight mining is finished with an unbounded time budget.

Overall effectiveness. To evaluate the overall

effectiveness of QuickInsights, we define metric 𝑐𝑜𝑣𝑖(𝑡) =
|𝑂𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂𝑖(𝑡) is the set of output insights when time

budget is set to t. Thus 𝑐𝑜𝑣𝑖(𝑡) is the coverage of “good”

insights of 𝑂𝑖(𝑡).

Effectiveness of EIIs elimination. To improve the quality

of output insights, QuickInsights exploits the FD checker

to avoid yielding EIIs. To demonstrate the effectiveness of

such improvement, we assess the insights mined when the

FD checker is turned off.

FD checker enabled vs. disabled. Among the whole

datasets, there are 218 ones with input FDs according to the

data schema. Evaluation of the FD checker is therefore

conducted on this subset because the other datasets have no

effect. We compare the results when the FD checker is

disabled to the golden set by two metrics:

𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡) =
|𝑂_𝐹𝐷𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑓𝑝_𝐹𝐷𝑖(𝑡) =

|𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖|

|𝑂_𝐹𝐷𝑖(𝑡)|

where 𝑂_𝐹𝐷𝑖(𝑡) is the set of output insights when the FD

checker is disabled. 𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡) reflects the coverage of

insights when the FD checker is disabled. 𝑓𝑝_𝐹𝐷𝑖(𝑡) reflects

the estimated ratio of trivial insights in 𝑂_𝐹𝐷𝑖(𝑡). This is

because 𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖 indicates the set of insights being

eliminated by golden set, which must be FD induced EIIs.

Mining efficiency. QuickInsights exploits best-first

prioritization and smart-batching to boost mining

performance. Thus, the evaluation of mining efficiency

mainly is conducted on these two techniques. We propose

the below evaluation metrics.

Best-first prioritization enabled vs. disabled. We

implement a priority queue (by using impact as priority) to

prioritize insight evaluation tasks. To assess the

effectiveness of such a strategy, we compare the coverage

of output insights by replacing the priority queue with a

FIFO queue. The metric is defined as: 𝑐𝑜𝑣_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡) =
|𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡) is the set of output

insights when best-first prioritization is disabled.

Smart-batching enabled vs. disabled. We assess the

efficiency improvement of smart-batching from two

aspects: coverage when smart-batching is disabled, and the

utilization of the cache. Below are the evaluation metrics.

𝑐𝑜𝑣_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) =
|𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑡) =

|𝐻𝑖𝑡𝑠(𝑡)|

|𝐶𝑎𝑐ℎ𝑒𝑑(𝑡)|

where 𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) is the set of output insights when

smart-batching is disabled, 𝐶𝑎𝑐ℎ𝑒𝑑(𝑡) is the set of total

cached items (See Figure 4 for definition of cache unit),

and 𝐻𝑖𝑡𝑠(𝑡) is the set of cached items that are utilized.

In our experiment design, we vary time budget t from 5

seconds to 25 seconds, and so each evaluation metric

generates a curve with respect to time budget on a specific

dataset. Evaluation results are analyzed by averaging on all

datasets, and via comparison between different curves.

4.1.3 Results

Below are the results of our experiments.

Figure 5. Average coverage by varying time budgets

Result of overall effectiveness. The curve at top of Figure

5 presents the coverage of “good” insights (i.e., golden set

insights) mined in different time budgets. Each data point

is an average of the coverage over totally 447 datasets. The

coverage increases as more time budget is given, which is

reasonable since more search spaces can be explored and

evaluated, and more hard-to-find insights can be

discovered. Moreover, the coverage ranges from 0.6 to 0.8.

For example, when the time budget is set to 5 seconds, the

coverage is 0.63, which indicates that even when the

response time is very quick, more than 60% of the insights

returned by QuickInsights are truly top-scoring ones.

Results of FD checker enabled vs. disabled. Table 5

depicts the average coverage of output insights when the

FD checker is disabled (third row), and ratio of the EIIs

(fourth row). Since this evaluation is conducted on 218

datasets that have FDs as input, we also list the

corresponding coverage when the FD is enabled (second

row) for comparison. As shown in Table 5, coverage of

good insights decreased about 3% consistently when the

FD checker is disabled. Moreover, value of 𝑓𝑝_𝐹𝐷(𝑡) is

around 25% when the FD checker is disabled, i.e., when

users inspect the output insights, one out of four will be

easily inferred. So disabling FD checker will significantly

decrease the user experience of QuickInsights.

Table 5. Results of disabling the FD checker

Time budget (s) 5 10 15 20 25

𝑐𝑜𝑣 0.49 0.57 0.62 0.65 0.67

𝑐𝑜𝑣_𝐹𝐷(𝑡) 0.46 0.55 0.60 0.62 0.64

𝑓𝑝_𝐹𝐷(𝑡) 0.28 0.25 0.25 0.23 0.22

Results of best-first prioritization enabled vs. disabled.

As depicted in Figure 5, the bottom curve presents the

coverage of good insights when best-first prioritization is

disabled. Compared to the top curve (with best-first

prioritization enabled), we can see that the gain of the best-

first prioritization is significant. Without such a

mechanism, the insight mining procedure seems to be

trapped into massively worthless search spaces, making the

curve rather flat. To increase coverage to around 63%, it

needs much more time than 25 seconds, while the same

coverage is achieved only in 5 seconds if best-first

prioritization is enabled. We can see that the performance

gain by using best-first prioritization is huge.

Results of smart-batching enabled vs. disabled. As

depicted in Figure 5, the middle curve presents the

coverage of good insights when smart-batching is disabled.

Compared to the top curve (with smart-batching enabled),

smart-batching contributes to about 10% coverage

increase. From a performance perspective, it takes about 15

seconds to achieve 63% coverage (the dashed line in Figure

5) when smart-batching is disabled, which is about three

times slower than when smart-batching is enabled.

Table 6. Cache utilization ratio

Time budget (s) 5 10 15 20 25

𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 38% 41% 43% 44% 44%

Table 6 illustrates the cache utilization with varying time

budgets, which reflects how many pre-fetched queries are

reused in further insight evaluation. We can see that the

ratio of utilization is relatively stable at 40%. The ratio is

impacted by the near-timeout batched queries, which

generate lots of unused cached items.

4.2 User Study

We conduct user studies to understand whether the insights

generated by QuickInsights are useful to users or not.

4.2.1 Methodology

QuickInsights is designed to serve both expert users and

non-expert users. The usage scenarios and requirements

vary among different user groups, e.g., expert users would

like QuickInsights to aid their further data analysis and

decision making, while non-expert users would want to

gain a better understanding of data. Thus, we conducted

two user studies for expert users and non-expert users.

User study for expert users. We invite six participants

from three business groups in Microsoft to participate in

this user study: HR (Human Resource), IT and UR

(University Relationship). In each group, we select two

data analysts whose daily work is data analysis.

For each group, we ask the participants to provide one

dataset of their own, since users would provide reasonable

feedback on the datasets that they care about. The datasets

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

C
o

ve
ra

ge

time budget (s)

Coverage by difference setup

full functionality

without best-first

without smart-batching 10%

18%

are required to be stored in Microsoft Excel spreadsheets,

in the form of multi-dimensional table. In addition, we

require that the datasets have different levels of familiarity

to the corresponding groups. Specifically, HR participants

provide a recently-conducted survey dataset for which they

have no idea about the content (Not familiar), while UR

participants give us a dataset which they have already

conducted comprehensive analysis (Very familiar), and IT

participants give us a new dataset but they have conducted

analysis on similar datasets before (Moderate). Table 7 lists

the information of the three datasets.

Table 7. Datasets for user study on expert users

Dataset #row #col Familiarity Description

HR_data 351 10 Not familiar Internal survey results on a specific HR service

IT_data 353,686 9 Moderate
GPU usage data of servers, collected every 10

minutes in one month

UR_data 1202 14 Very familiar
Records of hired interns in recent 4 years

We provide a questionnaire for each group, which contains

15 insights randomly selected among the insights obtained

by running QuickInsights on the corresponding dataset. For

each insight, we design three questions for scoring:

Q1: How interesting do you feel of this insight?

Q2: How helpful is this insight for you to understand the data

characteristic, such as distribution, anomaly or correlation, etc.?

Q3: To what extent do you feel interested to take follow-up

actions, such as sharing with others, pinning to a dashboard, or

conducting drill-down analysis?

Specifically, Q1 targets obtain an overall impression of the

insight from users; Q2 is designed to evaluate whether the

insight is helpful for better data understanding or not; and

Q3 is used to evaluate the actionability of the insight.

Participants are asked to answer each question on a 5-point

Likert Scale from “the least interesting/helpful” (1) to “the

most interesting/helpful” (5). In addition, we allow users to

provide free-text comments on each insight. We provide a

text description along with a chart to represent each insight.

Figure 6 shows a snapshot of an example insight and the

corresponding questions.

Our user study is conducted by interviewing the three

groups separately. Each session consists of three stages. In

the first stage, each participant briefly describes his/her

experience and the role of data analysis, and we introduce

QuickInsights and the process of the user study. We also

educate them how to interpret an insight from its text

description and visual representation. In the second stage,

participants assign scores to the questions for each insight.

They are encouraged to provide additional comments as

well. In the last stage, we ask participants about their

overall feedback, and whether they would use

QuickInsights for their analytical tasks. Each session lasts

about one hour on average.

Figure 6. Example of questions for a ChangePoint insight

User study for non-expert users. We invite 30

participants (18 males) to participate in this user study. The

participants are employees or interns from Microsoft. They

have certain data analysis needs in daily work, but none of

them are professional data analysts. To minimize potential

bias, we select the participants with diverse roles and

experiences. Detailed user profiles are shown in Appendix.

Table 8. Datasets for user study on non-expert users (275/5

means 275 rows, 5 columns)

Dataset Schema data scale Description

Movie
Snowflake schema

with 6 tables

65 columns, largest table

has >70,000 rows

Worldwide movie sales from

1985~2016

CarSales Single table 275/5
Car sales of different Brands,

Models, etc. in past years

Emission Single table 41,156/7
The emission of CO2/SO2/NOx in

past 25 years in USA

Census Single table 90/6
A census dataset mainly focuses on

marriage status

Since non-expert users normally do not have dedicated

analytical tasks, we select four datasets from public

domains, which are general, common, and easy-to-

understand. Table 8 lists the information of these datasets.

We generate insights from these datasets via Power BI

(thus under same configuration) and present them to users.

The study design is an easier version compared with the

user study for expert users. Specifically, the questionnaire

contains 10 insights randomly selected from the results of

running QuickInsights on the corresponding dataset. For

each insight, we only ask the participants Q1 and Q2 but

discard Q3, considering the typical scenario for non-expert

users is knowledge discovery and data understanding.

4.2.2 Key Findings

We identified five key findings from the two user studies.

Finding 1: QuickInsights demonstrates its usefulness for

general data analysis for both two types of users.

The expert users provided positive feedback on the overall

satisfaction of QuickInsights. All three groups agreed that

QuickInsights provides valuable information to aid their

analytical tasks. In addition, some participants even

provided “out-of-scope” feedback, such as improvements

of visualization design, feature request of insight sharing,

etc. This finding also indicates the effectiveness of our

scoring function, since the insights in user study are the

ones with highest scores.

Figure 7. Statistics of scores from expert users

Figure 8. Statistics of scores from non-expert users

Figure 7 depicts the statistics of the scores from all expert

participants. The error-bar indicates the standard deviation

across 15 insights. The top-left chart illustrates the scores

from HR participants. The average score on three questions

are high and stable. The top-right chart illustrates the scores

from IT participants, which has the largest deviation

compared to HR or UR. In fact, the scores for most insights

are either close to 1 (least interesting) or close to 5 (most

interesting). The IT participants patiently provided

comments on the insights with extreme scores, from which

we learned that the IT analysts have very specific analytical

tasks. Therefore, the insights are either valuable or less

useful. The bottom-left chart is the scores from the UR

group. The average score given by UR participants is the

lowest compared to the scores from HR and IT participants.

Based on feedback, the major reason is that they are very

familiar with the dataset, thus most of the lower-scored

insights are compliant with their prior knowledge. These

observations are expected since the typical QuickInsights

scenario targets users who are not familiar with dataset.

As shown in Figure 8, non-expert participants also provide

very positive feedback on the overall satisfaction of

QuickInsights. In addition, 11 out of 30 non-expert

participants wrote down additional feedback, and quite a

few pointed out that QuickInsights is really helpful on

knowledge discovery.

Finding 2: Certain insight types would be favored for

some domain-specific analysis tasks. We obtained this

finding from the user study with expert users. One typical

task of the IT group is to monitor GPU usage of various

service jobs running over multiple servers, to detect which

servers are overloaded (with high GPU usage) or idle (with

low GPU usage), and reallocate jobs accordingly. The

insight (with ChangePoint type) shown in Figure 6 is

valuable (with a score 5 for all three questions) to them,

since it discovered Server44 kept being idle for >20 days

in October, which indicated some unknown service issues.

Moreover, the Seasonality insights are especially

interesting to them. QuickInsights discovered GPU usage

for a specific GPU Model exhibits strong seasonality

pattern with period equals to 24 hours. Thus, the IT users

would want to take follow-up actions to see which periods

within a day had low GPU usage, so that additional service

jobs can potentially be scheduled during such a period.

However, any transient spikes of GPU usage (regarding to

the Outlier insight) are uninteresting since they are not

indicators of workload. One possible solution is to assign

appropriate weight to each insight type, so that the insight

types with higher weights have more chance to be mined,

and with higher score. The weights can be configurable to

adjust for different domains.

Finding 3: Insight subjects with certain structure would

be less meaningful for some domain-specific analysis

tasks. Specifically, certain dimensions, measures or

combination are trivial. This finding emerged based on

further feedback from the IT participants in the user study

with expert users. For insights with a score equal to 1,

typically their combinations of 𝑠 ⊕ 𝐷 are less meaningful

to users. E.g., some insights concern a specific GPU Model

(one dimension) breakdown by different GPU card slots

(another dimension), which makes no sense since this is a

fixed hardware configuration. QuickInsights should take

this information into account, to avoid unnecessary data

queries and insight evaluation.

Finding 4: Prior knowledge is valuable for improving

insight score calculation. In the user study on expert users,

the UR participants shared with us their thoughts during the

interview. Since they are very familiar with the dataset,

most of the insights are compliant with their prior

knowledge, making them less interesting. For example,

“Computer Science is the major for most hired interns” is

mined by QuickInsights as an insight, but it is not

surprising to them. In contrast, the HR participants claim

that similar insights are helpful for their understanding of

the survey data. Since they were not familiar with the

content of the dataset, no prior knowledge was built before

inspecting the insights. Since QuickInsights provides a

general mining framework, so we can incorporate prior

knowledge in via customized significance calculation.

0

1

2

3

4

5

Q1 Q2 Q3

average score of insights for HR data

participant1 participant2

0

1

2

3

4

5

Q1 Q2 Q3

average score of insights for IT data

participant3 participant4

0

1

2

3

4

5

Q1 Q2 Q3

average score of insights for UR data

participant5 participant6

0

1

2

3

4

5

Q1 Q2 Q3

average score over all participants

1

2

3

4

5

MovieSales CarSales Emission Census Overall

Average score of insights from non-expert users

Q1 Q2

Finding5: Visualization and natural language

description are important to convey insights. Based on the

free-text comments, most of the negative feedback is about

confusion on either the visual charts or the text

descriptions. Comparing with expert participants, non-

expert participants are more often be confused by the charts

or text descriptions. E.g., “the outlier does not seem so

significant”, or “what does repeat pattern mean?”. We

believe that future work from visualization and NLP

communities could be very helpful and important to better

represent and convey insights to non-expert users.

5. RELATED WORK
Pattern mining on multi-dimensional data. There exists

lots of work in the literature which target mining various

types of interesting patterns from multi-dimensional data.

Sarawagi et al. [5] aim to find exceptions in OLAP data

cubes. Wu et al. [7] propose promotion analysis for

business intelligence, which discovers highly ranked

subspaces associated with a given promotion object.

Vartak et al. [9] focus on recommending high-deviation

patterns via visualization. Chen et al. [10] investigate

methods for multi-dimensional regression analysis of time

series stream data. Their approach can be used to

efficiently detect trends or outliers from multi-dimensional

data. Palpanas et al. [18] provide answers to queries and

find interesting cells in a data cube by the principal of

maximum-entropy. Compared to these works, we attempt

to propose a unified formulation of various types of

interesting pattern as insights and conduct efficient insight

mining via a general and extensible mining framework.

Chen et al. [8] build a fact taxonomy of interesting patterns

from visual perspective. All the facts can be formulated by

the definition of insights.

Interestingness measures for data mining. Silberschatz

et al. [19] advocate using unexpectedness to measure the

interestingness of a pattern. Unexpectedness patterns are

interesting because they exhibit contrary to common

knowledge and may suggest certain perspectives of data

that require further analysis. This idea is conceptually

compliant with our formulation of insight significance. In

addition, we propose using impact to express the

importance of a pattern, which is also a key factor

contributing to the interestingness measure. Ceng et al. [20]

identify 9 criteria to determine whether a pattern is

interesting or not, where coverage and surprisingness are

analogical to the impact and significance of QuickInsights.

Coverage is a specific implementation of impact when

COUNT is adopted as impact-measure. Tang et al. [27]

propose composite extractors for discovering latent yet

interesting knowledge that can be derived by higher-order

calculations. QuickInsights is able to incorporate

composite extractors by calculating impact and

significance based on the results of composite extractors.

OLAP and cubing. The data cube modeling has been a

mature area to facilitate exploratory data analysis with lots

of work such as Colliat [17], and Gray et al. [23]. Instead

of pre-constructing data cubes, QuickInsights adopts a

more economical way by on-demand querying and

caching. Such an approach can avoid generating too many

cubes which have no chance to be used for insight

evaluation, and the query performance can be further

improved via smart-batching, which is guided based on the

subject searching mechanism of QuickInsights.

Visualization recommendation. There has been much

work [9][22][32][33][34][36][37][41][42][43] that aims to

facilitate rapid visual data exploration by automatically

recommending visualizations. Some recommenders, such

as APT [32], SAGE [33] and Show Me [34], focus on

suggestions of visual encodings. More recent work

[9][22][36][37] also suggest what data to visualize. They

might rank visualization candidates based on various

statistical analysis to promote the visualizations with

interesting patterns [35]. For example, Voyager [36][37]

suggests visualizations based on statistical properties.

Some systems are designed for specific tasks and patterns.

Profiler [39] finds anomalies. SeeDB [9] identifies charts

that are largely deviated from a given reference. Zenvisage

[22] targets charts that are similar to a given input. Some

novel visual data exploration tools (e.g., Foresight [29],

Voder [38], DataSite [28]) are developed based on

automatic insights and visualizations. Compared to above

technologies, QuickInsights provides a unified formulation

of interesting patterns, and developed a systematic insight

mining framework to automatically mine insights from

data. QuickInsights can be leveraged by visualization

recommendation systems to produce insightful

visualizations that convey interesting data patterns.

6. CONCLUSION
We present a novel technique QuickInsights to quickly and

automatically discover insights from multi-dimensional

data. QuickInsights proposes a systematic formulation of

interesting patterns in terms of insights and conducts

efficient insight mining to discover high-quality insights.

QuickInsights has been released as a feature of Microsoft

Power BI.

Acknowledgement. We thank our partners in Microsoft

Power BI team for collaboration and system integration.

We also thank our colleagues from Microsoft Research for

their valuable input and feedback.

REFERENCES

[1] J. Han, M. Kamber and Jian Pei. Data Mining:

Concepts and Techniques. Morgan Kaufmann

Publishers, 2011.

[2] D. A. Keim. Information Visualization and Visual

Data Mining. TVCG, 2002.

[3] U. Fayyad, G. P. Shapiro, and P. Smyth. From Data

Mining to Knowledge Discovery: An Overview. In

advances in Knowledge Discovery and Data Mining,

1996.

[4] R. Amar, J. Eagan, and J. T. Stasko. Low-level

Components of Analytic Activity in Information

Visualization. InfoVis,’05

[5] S. Sarawagi, R. Agrawal, and N. Megiddo.

Discovery-Driven Exploration of OLAP Data Cubes.

In EDBT, pages 168-182, 1998.

[6] S. Sarawagi. Explaining Differences in Multi-

Dimensional Aggregates. In VLDB, pages 42-53,

1999.

[7] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion

Analysis in Multi-dimensional Space. In VLDB,

2009.

[8] Y. Chen, J. Yang, and W. Ribarsky. Toward

Effective Insight Management in Visual Analytics

Systems. IEEE Pacific Visualization Symposium,

2009.

[9] M. Vartak, S. Rahman, S. Madden, A.

Parameswaran, and N. Polyzotis. Seedb: Efficient

Data-driven Visualization Recommendations to

Support Visual Analytics. In VLDB, 2015.

[10] Y. Chen, G. Dong, J. Han, B. W. Wah and J. Wang.

Multi-Dimensional Regression Analysis of Time-

Series Data Streams. VLDB, 2002.

[11] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang.

Efficient Computation of Iceberg Cubes with

Complex Measures. SIGMOD, 1-12, 2001.

[12] M. Y. Vardi. Fundamentals of dependency theory. In

E. Borger, editor, Trends in Theoretical Computer

Science, 171-224, 1987.

[13] H. Yao, H. J. Hamilton. Mining Functional

Dependencies from Data. DMKD, 197-219, 2008.

[14] https://powerbi.microsoft.com/en-

us/blog/announcing-power-bi-integration-with-

cortana-and-new-ways-to-quickly-find-insights-in-

your-data/.

[15] QuickInsights. https://www.microsoft.com/en-

us/research/project/quickinsights/

[16] R. Ng, L. Lakshmanan, J. Han, and A. Pang.

Exploratory Mining and Pruning Optimization of

Constrained Association rules. SIGMOD’98

[17] George Colliat. OLAP, Relational, and

Multidimensional Database Systems. Technical

report, CA, 1995.

[18] T. Palpanas and N. Koudas. Entropy based

Approximate Querying and Exploration of Data

Cubes. SSDBM, 2001.

[19] A. Silberschatz and A. Tuzhilin. What Makes

Patterns Interesting in Knowledge Discovery

Systems. TKDE, 1996.

[20] L. Ceng, and H. J. Hamilton. Interestingness

Measures for Data Mining: A Survey. ACM

Computing Surveys, 2006.

[21] M. Basseville, and I. V. Nikiforov. Detection of

Abrupt Changes: Theory and Application. Prentice-

Hall, 1993.

[22] T. Siddiqui, A. Kim, J. Lee, K. Karrie and A.

Parameswaran. Effortless Data Exploration with

zenvisage: An Expressive and Interactive Visual

Analytics System. VLDB, 2017.

[23] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.

Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.

Data cube: A relational Aggregation Operator

Generalizing Group-by, Cross-tab, and Sub Totals.

DMKD, 1997.

[24] E. K. Choe, B. Lee, and M. C. Schraefel.

Characterizing Visualization Insights from

Quantified Selfers’ Personal Data Presentations.

IEEE Computer Graphics and Applications, Volume

35, Issue 4, 2015.

[25] Gartner. Magic Quadrant for Business Intelligence

and Analytics Platforms. Feb 2017.

https://www.gartner.com/doc/reprints?id=1-

3TYE0CD&ct=170221&st=sb

[26] https://docs.microsoft.com/en-us/power-bi/sample-

datasets

[27] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang.

Extracting Top-k Insights from Multi-dimensional

Data. SIGMOD, 2017.

[28] Z. Cui, S. K. Badam, A. Yalcin, and N. Elmqvist.

Datasite: Proactive Visual Data Exploration with

Computation of Insight-based Recommendations.

arXiv:1802.08621, 2018

[29] C. Demiralp, P. J. Hass, S. Parthasarathy, and T.

Pedapati. Foresight: Recommending Visual Insights.

VLDB, 2017.

[30] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A

System for Query, Analysis, and Visualization of

Multidimensional Relational Databases. IEEE

TVCG, 2002.

[31] H. Wickham. ggplot2: Elegant Graphics for Data

Analysis. Springer, 2009.

https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
https://www.microsoft.com/en-us/research/project/quickinsights/
https://www.microsoft.com/en-us/research/project/quickinsights/
https://www.gartner.com/doc/reprints?id=1-3TYE0CD&ct=170221&st=sb
https://www.gartner.com/doc/reprints?id=1-3TYE0CD&ct=170221&st=sb
https://docs.microsoft.com/en-us/power-bi/sample-datasets
https://docs.microsoft.com/en-us/power-bi/sample-datasets

[32] J. Mackinlay. Automating the Design of Graphical

Presentations of Relational Information. ACM

Transactions on Graphics, 1986.

[33] S. F. Roth, J. Kolojejchick, J.Mattis, and J. Goldstein.

Interactive Graphic Design using Automatic

Presentation Knowledge. ACM CHI, 1994.

[34] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show

Me: Automatic Presentation for Visual Analysis.

IEEE TVCG, 2007.

[35] K. Wongsuphasawat, D. Moritz, A. Anand, J.

Mackinlay, B. Howe, and J. Heer. Towards A

General-Purpose Query Language for Visualization

Recommendation. HILDA, 2016.

[36] K. Wongsuphasawat, D. Moritz, A. Anand, J.

Mackinlay, B. Howe, and J. Heer. Voyager:

Exploratory Analysis via Faceted Browsing of

Visualization Recommendations. IEEE TVCG, 2016.

[37] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F.

Ouk, A. Anand, J. Mackinlay, B. Howe, and J. Heer.

Voyager 2: Augmenting Visual Analysis with Partial

View Specifications. ACM CHI, 2017.

[38] A. Srinivasan, S. M. Drucker, A. Endert, J. Stasko.

Augmenting Visualizations with Interactive Data

Facts to Facilitate Interpretation and Communication.

IEEE TVCG, 2019.

[39] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, J.

Heer. Profiler: Integrated Statistical Analysis and

Visualization for Data Quality Assessment. AVI,

2012.

[40] L. Grammel, M. Tory, and M. Storey. How

Information Visualization Novices Construct

Visualizations. IEEE TVCG, 2010.

[41] K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A.

Hidalgo. VizML: A Machine Learning Approach to

Visualization Recommendation. arXiv: 1808.04819,

2018.

[42] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M.

Smith, B. Howe, and J. Heer. Formalizing

Visualization Design Knowledge as Constraints:

Actionable and Extensible Models in Draco. IEEE

TVCG, 2019.

[43] Y. Luo, X. Qin, N. Tang, and G. Li. DeepEye:

Towards Automatic Data Visualization. ICDE, 2018.

APPENDIX

Property of Impact

We restrict the impact-measures to be measures only containing

non-negative values. Paper [13] provides a set of calculations to

accommodate anti-monotonic condition being held by various

aggregations (e.g., top-k average for AVG). The corresponding

calculations are denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒). thus, we

define impact by the following two steps:

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})

𝑖𝑚𝑝𝑎𝑐𝑡 = max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖)

Lemma. In definition 2, impact satisfies anti-monotonic

condition, and it is bounded between 0 and 1.

Proof: Considering the impact-measures are restricted to only

contain non-negative values, and since

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) satisfies anti-monotonic

condition, thus,

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) ≤ 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗}) →

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 ∈ [0,1] → 𝑖𝑚𝑝𝑎𝑐𝑡 ∈ [0,1], because every subspace is a

subset of overall subspace {*}.

To prove anti-monotonic condition, let S and s be two subspaces

where 𝑠 ∈ 𝑆, then

𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠) ≤ 𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆) ∀𝑖 → max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠))

≤ max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆))

Complexity Analysis for FD Detection

Lemma. Time complexity of IsDependent (as shown in Table 9)

is 𝑂(𝑙𝐷) ≪ 𝑂(𝐷2) , here D is the number of columns, and 𝑙 =

max
𝑖

|𝑋𝑖|, where |𝑋𝑖| refers to the cardinality of a set 𝑋𝑖.

Proof: Similar to the analysis of graph traverse, we use a Boolean

array inspected to record which column has been evaluated. Thus,

each column will be evaluated at most once. And considering we

inspect at most D columns, then we come up with the complexity

𝑂(𝑙𝐷). Further considering in general, the FDs obtained from data

schema describe FD relationship between a small set of

dimensions, thus 𝑙 ≪ 𝑑, the proof concludes.

Example of Batched Query

For example, let a query request be {China, Android}⨁Year, and

we know the subspace {China, Android} is generated from a

previous query {China} ⨁ OS, then we choose OS as the

expanding dimension rather than Country or any other

dimensions, because all the subspaces generated by query

{China}⨁OS have been inserted into the task queue (combined

with all feasible breakdowns including Year), thus the query

results expanded by OS will be useful for these tasks, but which

is uncertain if we use other dimensions as the expanding

dimension.

Pseudo Code

Table 9. Pseudo code of FD detection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/* check if a set of columns determine another column, given a set of
 basicFDs */
IsDependent(determinantCols, col, basicFDs)

 inspected  {}
 return Qualify(determinantCols, col, inspected, basicFDs)

/* check if a set of columns determine another column recursively */
Qualify(determinantCols, col, inspected, basicFDs)
 /* reflexivity axiom */
 if col in determinantCols
 return true
 /* this column has already been inspected */
 if col in inspected
 return inspected[col]
 inspected[col]  false

/* retrieve all the determinant sets of col. it is possible that one
 column can be determined by multiple determinant sets */

 dtSets  GetAllDeterminants(col, basicFDs)
 foreach set in dtSets

 qualify  true
 /* if all the columns within this set can be determined,
 then col can be determined according to transitivity axiom */

 foreach newCol in set
 if Qualify(determinantCols, newCol, inspected, basicFDs) is false
 then qualify  false
 break
 if qualify is true
 then inspected[col]  true
 return true
 return false

Table 10. Pseudo code of batched-query with cache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/* a specific query issued from QuickInsights miner layer */
Query(subspace, expanding, breakdown, params)

ret  Cache.Lookup(subspace, breakdown, params)
if ret ≠ null

 return ret
/* a special optimization for the case where breakdown is null: we swap
breakdown and expanding to increase cache hit */
if breakdown = null and expanding ≠ null
 newSubspace  subspace - expanding
 ret  Cache.Lookup(newSubspace, expanding, params)
 if ret ≠ null
 /* in case the lookup successful, we need to re-format result */
 return ExtractResult(ret)

/* conduct real data query */
queryResult  DataDriver.AggregationQuery(subspace, expanding,
breakdown, params)
if expanding is null
 ret  first in queryResult
 Cache.Add(subspace, breakdown, params, ret)
else
 root  subspace - expanding
 foreach t in queryResult
 newSubspace  root + {expanding:t.Key}
 Cache.Add(newSubspace, breakdown, params, t.Value)
 if newSubspace is subspace
 ret  t.Value
return ret

Example of Adding A New Insight Type

Suppose we would like to support a new insight type which is

equivalent to the pattern depicted in [9], we first need to register

it as a new insight type, named “HighDeviation”. Considering the

subject of HighDeviation insight is with single subspace and

single measure, thus only the tasks with single subspace as input

are allowed for its evaluation, this is reflected by a single-line

checking “case HighDeviation: return subspaces.Count==1;” in

the method CanEvaluate in Table 11. In the Evaluation method,

certain statistical metrics are calculated to measure the deviation

for each individual measure, and qualified insights are output.

Table 11. Three steps for supporting a new type of insight

Step1: add the new insight type
enum InsightType {…, newType, …}

Step2: implement insight evaluation of the new type
List<Insight> Evaluate(List<Dictionary<Measure, AggrResult>> aggrResults);

Step3: register new insight type to task execution pre-condition
bool CanEvaluate(
List<Subspace> subspaces, Dimension breakdown, InsightType type);

Examples of FD Induced EII

For example, suppose there exists FD between two measures

𝑆𝑎𝑙𝑒𝑠(𝑈𝑆𝐷) → 𝑆𝑎𝑙𝑒𝑠(𝐸𝑈𝑅𝑂) (falls into the category of ID5 in Table

4), the corresponding values only differ by a constant exchange-

rate. These two measures will exhibit perfect correlation no

matter breakdown by any dimension (thus the relationship is pre-

determined) when drawn in a scatter plot, but clearly provides

little value for analysis. The example of ID2 in Table 4 is another

case about measure height determining dimension Height-

Category. For example, the value of Height-Category is

calculated by measure height, by setting 𝑙𝑜𝑤 = ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 100, ℎ𝑖𝑔ℎ =

ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 1000, 𝑚𝑒𝑑𝑖𝑢𝑚 = 100 < ℎ𝑒𝑖𝑔ℎ𝑡 < 1000. Any insight describes

height breakdown by Height-Category would become a trivial

Outstanding No. 1 insight: “height of high is outstanding No. 1

among all Height-Categories”, which is pre-determined no matter

what subspace of the insight is. The details of how ID1~5 induce

EII are available at website [15] due to page limit.

Profiles of Non-Expert Users

To mitigate any potential bias, we select non-expert participants

by different jobs, genders, and different familiarity with data

analysis, as shown in Table 12.

Table 12. Statistics of non-expert users

Details of “Movie” Dataset

Figure 9. Snapshot of the schema of 'Movie' Dataset

Figure 9 shows a snapshot of the database schema of ‘Movie’

data. This is a real-world dataset, containing the various

information of movie in the years from 1985 to 2016. This is a

typical multi-dimensional dataset, which is formed by six tables,

connected by Snowflake schema. Table 13 shows the scale of

each table. There are in total about 60 dimensions, and almost

every table has more than 10,000 rows. Thus the search space for

QuickInsights is very large.

Table 13. Data scale of each table

Table Name #Dimensions #Measures #Rows

Movies* 27 8 4740

Movie Cast 10 1 74038

Actors 8 2 39567

Genres 2 1 22470

Production Companies 2 1 22222

Production Locations 2 1 12084

When this dataset is run by Power BI, QuickInsights could

generate quite a few insights within 20 seconds. Figure 10 shows

nine sample insights generated by QuickInsights. We have used

these insights to conduct the user study. The details of the user

study are presented in Section 4.2.2.

Figure 10. Snapshot of sampled insights recommended from

Movie

Job role Count

Researcher 17

Developer 8

UX Designer 2

IT 1

Admin 1

PM 1

Gender Count

male 18

female 12

Analysis frequency Count

Daily 5

Weekly 8

Monthly 10

Seldom 7

