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ABSTRACT
Email continues to be one of the most important means of online
communication. People spend a significant amount of time sending,
reading, searching and responding to email in order to manage
tasks, exchange information, etc. In this paper, we study intent
identification in workplace email. We use a large scale publicly
available email dataset to characterize intents in enterprise email
and propose methods for improving intent identification in email
conversations. Previous work focused on classifying email messages
into broad topical categories or detecting sentences that contain
action items or follow certain speech acts. In this work, we focus on
sentence-level intent identification and study how incorporating
more context (such as the full message body and other metadata)
could improve the performance of the intent identification models.
We experiment with several models for leveraging context including
both classical machine learning and deep learning approaches. We
show that modeling the interaction between sentence and context
can significantly improve the performance.
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1 INTRODUCTION
Email is one of the most popular online activities and remains a
major tool for communication and collaboration. In 2017, it is esti-
mated that 269 billion emails were sent and received per day and
that the total volume of emails is expected to continue to grow
reaching 319.6 billion by the end of 2021 [1]. Email is particularly
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From: Jack
To: Alice Monday 11:12 AM
Subject: instruction copy

Hi Alice,
Thanks for the great tutorial about the new development tools. It was great catching up with
you. We should get together sometime to continue our discussion soon.
I am writing to check if you still have the document you mentioned about how to submit jobs
to the new cluster? If so, could you please share it with me? I need to run some tests for the
new feature.
Thank you!

Best,
Jack

Figure 1: Example of an email where the sender is request-
ing information from the recipient. The request sentence is
highlighted in yellow

popular for work related communications. 86% of professionals
named email as their favorite mode of communication [1]. Enter-
prise workers tend to spend a lot of time on email too. A recent
survey shows that reading and answering emails takes up to 28%
of enterprise workers’ time, which is more than searching and
gathering information (19%) and communication and collaboration
internally (14%). [7].

Dabbish et al. [14] developed a conceptual model of the main pur-
pose email serves in an organizational context. They conducted a
survey of 124 participants to characterize different aspects of email
usage. Based on this, they identified four distinct uses of email that
have been previously studied in literature: task management, social
communication, scheduling, and information exchange. Previous
work also studied how to detect emails that have requests for ac-
tions [24] and showed that such emails are less likely to be deleted
by the user, and more likely to be left in the inbox or filed [14].
Studying and detecting intent in enterprise communications can
enable us to better understand how information workers use email
and how we can integrate machine intelligence into email systems
and build smart email clients to provide more value for email users.
For instance, understanding intents like intent to set up a meeting
could enable us to create new intelligent experiences that can offer
to assist the user with scheduling the meeting. Understanding that
a user is making a commitment or a promise to perform a certain
action, allows the system to help users track tasks in their to-do
list. Such actions could be recommended to users and performed
on their behalf upon confirmation. They could be surfaced in email
clients or offered by a digital assistant.

In this paper, we build on previous work by studying intents in
email conversations. We follow the footsteps of Dabbish et al. [14]
by studying the different uses of email. Instead of using survey-
based methods, we conduct large scale analysis of a publicly avail-
able enterprise email dataset: the Avocado corpus [27]. We leverage
this analysis to study the problem of detecting intents in email
conversations. Previous work, e.g., [24] and [4], has focused on
sentence-level intent detection by detecting the sentence(s) which
express the target intents in an email conversation. This setup
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is useful because it allows downstream applications to leverage
the sentences where the action item was mentioned. For instance,
a TO-DO application could simply transform the sentences with
commitment intent to tasks in the to-do list.

This work also focuses on the task of sentence-level intent iden-
tification and extends previous work [4, 24] in two ways. First, we
focus on detecting intent at a finer grain (e.g. request for setting
up a meeting, sharing a document, etc.) as opposed to the generic
notion of an action item. Second, we study how we can leverage
context to improve sentence-level email intent detection. We use
the term context to refer to additional information outside of the tar-
get sentence such as the text of the email message before and after
the target sentences. Previous work mostly used linguistic features
from the sentence itself [10], and ignored a rich set of contextual
information available in the rest of the message. We hypothesize
that the sentence-level intent identification could benefit from the
complementary information available in the context. Consider the
example in Figure 1. The highlighted sentence represents a sentence
where the sender is requesting information from the recipient. To
recognize the intent behind this sentence, it is important to consider
the context provided in the rest of the message. The range of speech
acts that may be indicative in context of an intent are often not
obvious and may be influenced by both social norms and the intent
being modeled. For example, a sentence near the beginning of a
mail demonstrating gratitude may indicate a request is likely to
occur later in the mail. Furthermore, typically only the target intent
(e.g. "requesting information") is labeled. Hence, we study the effect
of context information for sentence-level user intent identification
in email conversations and explore different ways of leveraging
that information.

Our contributions can be summarized as follows:
(1) We present detailed analysis of email usage in enterprise set-

tings using a large scale publicly available email collection.
(2) We study the problem of incorporating context information

for identifying intents in email messages and show that hu-
mans benefit from contextual information when identifying
intents in emails.

(3) We propose several methods for incorporating context in
sentence-level intent identification and show that incorpo-
rating context significantly improves performance.

The remainder of this paper will proceed as follows: In Section 2,
we discuss related work and position our work with respect to
the literature. We present an analysis of email usage in enterprise
settings using a large scale publicly available email collection in
Section 3. Section 4 describes the method we propose for leveraging
context information for identifying intents in email messages and
Section 5 describes our experiments and results. We conclude and
discuss future work in Section 6.

2 RELATEDWORK
Our work is related to several lines of work, including email search
and management, email intent understanding, and email classifica-
tion in general. We cover each of them below.
2.1 Email Search and Management
Much of the early research on email focused on how people orga-
nized and managed their email. Whittaker and Sidner [34] proposed

the concept of email overload to describe the usage of emails be-
yond communication needs, such as task management and personal
archiving. They identified common strategies for handling email
overload such as filing, searching, and cleaning. Grbovic et al. [19]
showed that, with the increase of email messages over time, users do
not use folders and argue that search is an increasingly important
alternative to human-generated folders and tags.

Several studies have focused on developing effective search sys-
tems for email [16, 31]. Others focused on developing better ranking
models for email search [12, 33]. Craswell et al. [12] combined email
metadata with email content using BM25F. Ogilvie and Callan [28]
proposed a language modeling approach to combine evidence from
the text of the message, the subject, other messages in the thread,
and messages that are in reply to the message. Weerkamp et al. [33]
explored incorporating thread, mailing list, and community content
levels for email ranking.

Efficient search and email management strategies help people
be more productive as they interact with communications. In this
work, we explore how we can efficiently identify intents in enter-
prise email communications. This can further improve information
workers productivity and enables creating new intelligent experi-
ences to assist users with their tasks seamlessly and efficiently.

2.2 Email Intent Understanding
Previous research studied email acts and email intent analysis [4,
9, 24, 32]. Cohen et al. [9] proposed machine learning methods
to classify emails according to an ontology of verbs and nouns,
which describe the “email speech act” intended by the email sender.
Follow-up work by Carvalho and Cohen [5] described a new text
classification algorithm based on a dependency-network based col-
lective classification method and showed significant improvements
over a bag-of-words baseline classifier.

Another line of work studied the different actions people may
perform on an email message. Dabbish et al. [14] examined people’s
ratings of message importance and the actions they took on spe-
cific email messages with a survey of 121 people. Recently, Lin et
al. [26] proposed using a reparametrized recurrent neural network
to model actions that the recipient of the email might take upon
receiving it. Lampert et al. [24] studied the problem of identifying
messages that contain requests. They show that they can achieve
better performance by segmenting the content of email messages
into different functional zones (e.g. greetings, quoted text , etc.)
and then considering only content in a small number of message
zones. Bennett and Carbonell [4] studied the problem of action item
detection from email messages. They argue that unlike standard
topic-driven text classification, action-item detection requires in-
ferring the intent of the sender, and identifying the sentence that
directly indicates the action item.

Our work differs from the previous work in this area in sev-
eral important ways. We extend the work of [14] by studying the
different uses of email using large scale analysis of a publicly avail-
able dataset of enterprise email communications. We extend the
work of [24] and [4] by expanding the notion of intent beyond ac-
tion items and studying how to leverage context to improve intent
detection.



2.3 Email Classification and Mining
Beyond email intent understanding, prior work has studied sev-
eral other classification and mining tasks over email. Klimt and
Yang [22] introduced the Enron corpus as a dataset and used it
to explore automated classification of email messages into fold-
ers. Bekkerman et al. [3] extended this work by discussing the
challenges that arise from differences between email foldering and
traditional document classification. Pal and McCallum [30] pro-
posed a model for suggesting who to add as an additional recipient
for an email under composition. Graus et al. [18] generalized this
to the task of recipient recommendation by leveraging both email
content and communication graph signals. Another line of work
focused on predicting reply behavior in email. On et al. [29] studied
the problem of email reply order prediction by mining interaction
behaviors. Kooti et al. [23] characterized the replying behavior in
conversations for pairs of users. They investigated the effects of
increasing email overload on user behaviors and performed experi-
ments on predicting reply time, reply length and whether the reply
ends a conversion. Yang et al. [35] presented a detailed study for
reply behavior in enterprise email and proposed methods for pre-
dicting whether a message will receive a reply and when the reply
will occur. DiCastro et al. [15] studied four common user actions
on email (read, reply, delete, delete-without-read) using a sample of
100k users of the Yahoo! Mail service. They proposed and evaluated
a machine learning framework for predicting these four actions.
We focus on extracting intents whose automated identification can
be used to assist the user in performing intent-related tasks.

In the next section, we study the distribution of different in-
tents in enterprise email communications and the advantage of
contextual information in detecting those intents.

3 INTENTS IN ENTERPRISE EMAIL
We start by characterizing email intents in enterprise email and
studying the effect of using context on detecting those intents. First,
we define several categories of email intents that have been studied
in previous work and study how they are manifested in enterprise
email communications by analyzing a sample of a large scale enter-
prise email dataset. Second, we seek to understand whether using
context could impact human understanding of email intent. To this
end, we conduct an analysis to study whether humans benefit from
context in understanding intent in email. We presume that to under-
stand the meaning of text, humans not only read the given text but
also pay attention to relevant information in the text surrounding
it. Thus, before we study how to build models to leverage context,
we focus on quantifying the impact of context on human ability
to identify email intent. We start by adopting a categorization of
different intents in email conversations based on previous work and
provide an empirical analysis of intents in emails using a publicly
available email collection.

3.1 Characterizing Types of Intents in Email
The objective of this analysis is to characterize the different types
of intents that occur in email, how often they occur and how often
they co-occur in a single message.

Following the work in [8, 13, 32], we define four distinct non-
comprehensive categories for email intents including information

exchange, task management, scheduling and planning, and social
communication. Each of these categories can be associated with
several intents. We provide definitions for each category and its
sub-intents below:
Information Exchange: Information exchange intent involves
communicating about information; either the sender intends to
share information or to seek information. A common use of email
includes asking questions, requesting or sharing content, status
updates, etc. We define two sub-intents of this category: share
information and request information. Sharing information means
the sender would like to share information or content with the
recipient(s), such as FYI messages, progress updates, status updates,
or documents. Requesting information denotes a scenario where the
sender is requesting information that can be potentially responded
to by sharing a document or a similar resource. Note that these
sub-intents are not comprehensive. For example, there are other
intents that can be associated with seeking information such as
asking questions, requesting confirmation, etc.
Task Management: Email is often used to manage tasks and
the actions associated with those tasks. The definition of task man-
agement is very general and thus can be divided into two distinct
sub-intents: request action and promise action. Requesting an action
means that the sender is asking the recipient to perform some ac-
tivities and promising an action means the sender is committing to
perform an action.
Scheduling and Planning: Scheduling and planning over
email involves the scenario where people intend to schedule an
event or share a reminder about a coming event. This category of
intents includes schedule meeting and reminder. Scheduling meet-
ing refers to the sender’s intention to organize an event, such as
a physical meeting, a phone call or a conference call. Reminder
refers to the sender’s intention to remind the recipient about an
upcoming event.
Social Communication: Social communication are casualmes-
sages such as greeting messages or thank you notes, which are
exchanged between friends and family, as well as work contacts.
Examples of sub-intents for the social communication category
include, but are not limited to, greeting messages and thank you
notes.

To better understand the characteristics of user intent in email
messages, we launched an annotation task to manually annotate
the intents in the Avocado1 research email collection [27] from
the Linguistic Data Consortium. This collection contains corporate
emails from a defunct information technology company referred
to as “Avocado”. The collection contains an anonymized version
of the full content of emails, and various meta information from
Outlook mailboxes for 279 company employees. The full collection
contains 938, 035 emails. We selected a total of 1300 email threads
uniformly at random from the Avocado dataset and annotated the
first email message by three annotators according to the intents
and sub-intents discussed earlier in this section.

For each message, the annotator could choose multiple intents
and the final judgment is made by a majority-voting strategy. In our

1Some in the research community view Avocado as a more appropriate research
test bed than the Enron collection since Avocado entered the public domain via the
cooperation and consent of the legal owner of the corpus while Enron entered via a
legal discovery process with no particular consent process for use in research.
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Figure 2: Frequency of each intent in a subset of the Avocado
dataset (broken by sub-intent as described in Section 3.1)

case, the final intents for the email are those which are selected by
at least two annotators. We achieve a substantial Kappa score 0.694
for the inter-annotator agreement. Figure 2 shows the distribution
of the emails over sub-intents in the Avocado dataset.

Note that our list of sub-intents is not comprehensive. Hence,
we allowed an annotator to select Other when they were unable to
identify the intent (e.g. a forwarded message with no text) or when
the emails had an intent that is not defined in our list.

Distribution of Intent Types: Figure 2 shows different intents
and the frequency by which they appear in our sample of anno-
tated messages. The figure shows that information exchange and
task management are the most frequent intents in enterprise emails.
This is similar to findings in previous work [13] that used surveys
to characterize different usage of email. We also note that the per-
centage of the information exchange intent is significantly higher
in our analysis while the scheduling intents are considerably lower
compared to the survey results in [13]. The discrepancy can be
explained by the differences in the method of data collection, data
source, and the amount of annotated data. Note that our analy-
sis is based on annotation of a public email data set where email
messages where selected at random. While in [13], the data was
collected for 581 emails through surveys which asked respondents
to provide intent information about five new non-spam messages
in their email inbox. It is possible that when we ask respondents
to recall an email, they tend to think about emails that may not
match the distribution of all emails in their mailboxes. Additionally,
different work environments (a university in the case of [13] and
an IT company in our case) could affect the distribution of intents
in email messages.

Single vs. Multiple Intents: Emails usually contain more than
one intent and the intents are not mutually exclusive. For example,
an email message could be sending a reminder about a deadline
and requesting an action to be completed before the deadline. Our
analysis shows that approximately 55.2% of messages contain a
single intent, 35.8% contain two intents and 9.0% contain three or
more intents. Looking in more details at the emails with multiple
sub-intents, we observed that some intents are highly correlated.
Figure 3 shows the co-occurrence of different sub-intents in the
same email which is based on the frequency of emails with specific
pairs of sub-intents. In addition, we can observe that share informa-
tion and request information are very likely to happen in the same
email, while social and reminder or schedule meeting sub-intents
are unlikely to co-exist in the same email. An example of an email

Figure 3: The distribution of sub-intent pairs in the same
email

message which contains share information and request information
sub-intents is "We have been invited to the X conference in Seattle.
Please let me know if the team has enough budget to pay for our
travel".

This section provided a brief analysis of intent distribution in
an enterprise email collection. This analysis was intended to serve
two main purposes. First, it provided the necessary information
to guide the selection of a number of intents to focus on for the
intent identification study (see Section 5.1). Second, it verified that
following previous work by identifying intents at the sentence-
level (versus assigning a single intent to the whole message) is a
reasonable choice given the fact that close to half of the messages
contained more than one intent.

Now we turn our attention to how these intents can be detected
from email text. But before we discuss how machine learning mod-
els could be used to accomplish this task, we first seek to test our
hypothesis that context helps with identifying intent by conducting
a study where we compare the performance of humans in identi-
fying intent when they have access or lack access to context. The
study and the results are described in the next subsection.

3.2 Effect of Contextual Information on
Human Performance

The main focus of this work is to study the effect of leveraging
contextual information for email intent detection. Before jumping to
buildingmachine learningmodels for intent identification, we study
how helpful contextual information can be for a human annotator.
We use one intent as an example, the request information intent, and
study the effect of contextual information on human performance
in identifying whether a sentence contains the intent or not. As
explained early, we use the the whole email body as context and
seek to understand whether it will help human annotators to make
better judgments on a target sentence. We picked 540 instances
from the ground truth set such that half of them have positive labels
(containing the request information intent). We sent all instances to
two groups of human annotators (crowdworkers). The annotators



in these two groups do not have any overlap. One of the group had
access to the full email body, with the target sentence highlighted,
and the other only had access to the target sentence. Each instance
is annotated by three people and the majority of the annotations
for each sentence represents its human prediction. We can use
the annotations as predictors and calculate the human predictors
precision and recall in the two settings by comparing annotations
with ground truth labels.

Table 1: Positive Precision and Recall for human prediction
where context is available (With Email Body) and context
not available (Without Email Body)

Annotation Task Precision Recall
With Email Body 93.45 76.61

Without Email Body 91.51 52.86

Table 1 shows drops in both positive precision and recall when
the human annotators were not provided with the email body.
However, the cutback in positive precision is not as significant as
the cutback in positive recall. To make sure that the comparison
between these two annotations is fair and not biased toward the
annotation behavior, we calculated the Krippendorff’s α agreement
score [20] for inter-annotator agreement among multiple judges.
The α score for the annotation task including the full body of the
email message is 0.58 and for the task without the email body is
0.56. Note that the α scores are only slightly different which implies
the annotation behavior does not vary substantially from one task
to the other.

To further understand the impact of context on human predic-
tors, we show the confusion matrix for human predictions without
context in Table 2. This provides more information about the type
of errors humans do when they lack access to the context. Recall
that we defined human predictions for each sentence as the major-
ity of the annotations for each sentence when the annotators do
not have access to the email body.

Table 2: Confusion Matrix for Human Predictions

Predictions True Positive True Negative
Positive 175 (%32.4) 14 (%2.6)
Negative 95 (%17.6) 256 (%47.4)

Table 2 shows that the true positive sentences benefit signifi-
cantly from the contextual information in the email body. Overall,
this analysis shows that human annotators perform far better in
intent detection when they are provided with contextual informa-
tion, in the form of the full body of the email message. Similarly,
we can argue that machine learning models for identifying intent
can also benefit from the contextual information. In next section,
we will discuss how we incorporate the context information into
a linear model (i.e. logistic regression) and deep learning model
(i.e. a recurrent neural network) to improve sentence level intent
detection in email.

4 CONTEXT-AWARE USER INTENT
IDENTIFICATION

The main task we pursue in this paper can be defined as follows:
given an email message and a sentence in that email, we aim to

Figure 4: Context Augmented Sentence-Level intent identi-
fication framework

predict whether the sentence implies a given intent or not. We have
shown earlier that humans benefit from the context provided by
the full email body when identifying intents. As such, we propose
a simple framework, shown in Figure 4, to leverage the context
information for sentence-level intent identification. The framework
consists of three major components: sentence encoder, context
encoder and feature fusion layer. The sentence encoder takes as
input the target sentence and aims to extract the local features from
the sentence itself. Similarly, the context encoder would extract
the global features from the full body. The outputs of the sentence
and context encoders are then fed into the feature fusion layer to
generate the context-aware sentence representation, which is used
for the final intent classification. The feature fusion layer could be
considered as an aggregation function of the local sentence features
and the global context features. The framework allows us to extract
features from the target sentence, the context (which was shown
to be useful in the analysis in Section 3.2) and augmenting the two
feature sets together. The framework could be used in a traditional
machine learning model or a deep learning model. We describe
each in turn next.

4.1 A Traditional Machine Learning Model
Previous works [4, 11] have used learning algorithms such as logis-
tic regression and Support Vector machines for detecting intents in
email text. We can extend this work to incorporate context follow-
ing the framework in Figure 4 as follows:
Sentence Encoder: The sentence encoder would be designed as a
handcrafted feature extractor. We generate n-grams (up to 3-grams)
from the target sentence and use n-gram TF-IDF values as features.
Context Encoder: Just like the sentence encoder, the context en-
coder is designed as a handcrafted feature extractor with n-grams
(up to 3-grams) extracted from the full message body.
Feature Fusion: To augment the sentence features with context
features, we concatenate the sentence and context feature vec-
tors. This allows the classifier access to features extracted from the
context while maintaining separate feature spaces for the target
sentence and the context.
Intent Classification: The concatenated feature vector is fed to a
classifier. We experiment with both Logistic Regression (LR) and
Support Vector Machines (SVM) for the classifier. Both learning



Figure 5: Overview of the DCRNNmodel structure: Sentence
Encoder (SE) is a bi-directional GRU, which output the hid-
den states of the tokens in the sentence. The Context En-
coder (CE) use the same SE for each sentence in the Context.⊗

is the attention operator which takes the hidden states
matrix as input and output a vector.
algorithms yield compact, interpretable models that have been
previously used for task modeling on email (e.g., [10]).

4.2 A Deep Learning Model
Motivated by the recent advances in applying neural network meth-
ods to natural language understanding tasks, we use a neural net-
work approach to better represent the text of the target sentence,
the context and the interaction between them.
Sentence Encoder: Given a sentence s with a list of words wi ,
i ∈ 1..L, the sentence encoder aims to enrich the representation
of each word with knowledge from the sentence scope. For each
wordwi in the sentence, we first transform them into dense vectors
through a word embedding matrix [25]W ∈ Rd×|V | . Here |V | is the
size of vocabulary, and d is the dimension of the word embedding.
Thenwe apply a bi-directional recurrent neural network (RNN)with
GRU cells [6] to the sentence s . The bi-directional RNN contains two
RNNs, forward RNN and backward RNN, one reads the sentence
with a forward order and the other reads it in reverse. We obtain the
hidden state [6] hi for each wordwi in sentence s by concatenating
the forward hidden state

−→
hi and the backward hidden state

←−
hi , i.e.,

hi = [
−→
hi ,
←−
hi ]. Scanning the text from both directions allows the

representation of each word to carry information from the words
before and after it.
Context Encoder: Given a context (i.e. full message body) c with
a list of sentence sj , j ∈ 1..N , the context encoder aims to encode

each sentence in the context to a fixed vector space. We first apply
the same sentence encoder as we used to encode each sentence in
the context. Given the hidden states of the words in the sentences,
there are several ways to build the sentence representation, such
as max-pooling and averaging over the hidden state matrix. One
disadvantage of these methods is that they treat all words of the
sentence equally. However, we noticed that some keywords in the
sentences tend to be more important than others for identifying
the user intent. For example, meet, discuss, get together are strong
signals for the schedule meeting intent. As such, we chose to apply
an attention operation [2] on the sentence and use the weighted
average of the hidden states as the sentence representation. The
more important words are expected to have larger attention weights
which can be learned from the data during model training. To
compute the attention weights, we define a sentence status vector
us where the dimension of us is a hyperparameter we can set
arbitrarily. The attention operation takes all the hidden states H as
input, and outputs the weight vector α as:

α = So f tmax(usTanh(WsH
T + bs )) (1)

Note that H = [h1,h2, ...,hL] , andWs and bs are the weight matrix
and bias vector of a one-layer MLP. The sentence representation rs
is achieved as:

rs = αH (2)

Feature Fusion: Given the hidden states Hs of the target sentence
s and the sentence representations Rc of the context c , we aim to
augment every token in s with the relevant information from c .
To accomplish this, we compute an unnormalized attention matrix
A = F (Hs ,Rc ) ∈ RL×N , here L is the length of the target sentence s
and N is the number of sentences in the context c . Each element
in Ai j is a scalar that is intended to represent the relation between
the token i in the target sentence and the sentence j in the context.
Each element Ai j is computed as

Ai j = w
T
c [H i

s ;R
j
c ;H i

s ◦ R
j
c ] ∈ R (3)

where wc is trainable weight vector, [; ] is vector concatenation
and ◦ is element-wise multiplication. This results in a matrix A
where every row represent a token in the target sentence and each
element represents how relevant each sentence in the context is to
this token. We then normalize the values of each row of A (such
that they add up to 1) to generate a vector al for each token in the
target sentence. The context-aware representation for the lth token
is represented as H l

s = [H l
s ; (Rc )T al ]. Finally, we apply another

attention operation similar to equations 1 and 2 on Hs to get the
final context-aware representation vs for the target sentence.
Intent Classification: Given the target sentence representation
vs , we then feed it a single softmax layer function to perform the
prediction. It yields:

p = So f tmax(Wpvs + bp ) (4)

where p is the prediction probability, andWp ,bp are the parameters
of the final full connection layer. We use cross-entropy loss to train
the model.

The full model is illustrated in Figure 5 and is referred to as a
Dynamic-Context Recurrent Neural Network (DCRNN) model.



Table 3: Examples of the thee intents types used for exper-
iments: Request Information, Schedule Meeting and Promise
Action

Intent Type Examples

Request Infor-
mation

Can anyone point me to the specs document
of project Blue?

Schedule
Meeting

It would be great to get together to discuss the
project status when you are back.

Promise
Action

I will create the slides for the project review
next week and share them for feedback.

5 EXPERIMENTS
5.1 Tasks
Following previous work and the analysis presented in Section 3,
we experiment with the following three intents:

(1) Request Information: The sender is requesting informa-
tion that can be potentially responded to by sharing a docu-
ment or a similar source;

(2) Schedule Meeting: The sender is expressing the desire to
meet or suggesting a meeting that can potentially be sched-
uled and added to the participants calendars ;

(3) Promise Action: The sender is promising to perform an
action that can potentially be added to her to-do list.

Note that the selected intents represent all the categories discussed
in Section 3 except the social communication categories. Also note
that the intents can all be directly linked to actions than can be
taken on the message. For example, a request information intent
can result in a document being shared, a schedule meeting intent
can result in a calendar item being created on the participants
calendars, and a promise action intent can result in an item added
to the sender’s to-do list. The proposed models should be easily
extended to new intents once training data for more intents are
available.

The intents were annotated by human annotators who examined
the entire email and determined whether it has a given intent or
not. Additionally, the text span, within email, where the intent is
manifested was highlighted. As discussed in the analysis in Sec-
tion 3, multiple intents could coincide in one message. Note that
the negative examples were selected in a way that makes the pre-
diction problem more challenging. For each intent, the negative
examples were limited to the sentences that were not labeled as
positive but contained one or more words from the list of top 100
words (according to TF-IDF) which frequently appeared in the pos-
itive sentences. For example, for the schedule meeting intent, the
list contained words like “meet”, “schedule”, “discuss”, etc. Addi-
tionally, text that appears as quoted text from previous messages,
greetings and signatures was excluded. Each instance was labeled
by 3 annotators and a majority vote was used to determine the final
label. The Cohen’s kappa value for all tasks was larger than 0.6
showing a substantial agreement between annotators. The sizes of
the datasets were 47914, 9076, and 7080 for the schedule meeting,
promise action and request information respectively. The positive
instances ratio was 15.5%, 28.5% 19.6% respectively. Table 3 shows
examples of different types of intents.

5.2 Evaluation
To evaluate the model, we split the full dataset of each task to
training, validation, and test datasets using 5-fold cross validation.
We split the dataset such that 60% of the data is used for training,
20% for validation and 20% for testing. Data was split based on
user identifiers such that data from any given user would belong to
either training, validation, or test data. We used the validation set
to tune all hyper-parameters (e.g., L1 and L2 weights for LR, batch
size, learning rate, dropout rate, and GRU hidden unit size for deep
learning). We use the test data for evaluation and use F1 score as our
main metric. For the deep learning methods, We use the pre-trained
300 dimension Glove vectors as the initial word embedding. We
tune the hyper-parameters: batch size (32, 64), learning rate (0.1,
0.001, 0.0001), GRU hidden unit size(10, 30, 50) and dropout rate
(0.2, 0.5, 0.7) based on the validation set. For training, we use the
Adam Optimization Algorithm and initialize the model parameters
using the method in [17].

5.3 Results
Overall Results: To evaluate the effect of adding context, we use
several sentence-only models as baselines to several models that
try to leverage both the target sentence and the context. We use F1-
Score as evaluation metric and the Statistical significance is tested
using a paired t-test with p<0.05 indicating significance. For the
sentence only models, we follow previous work [4, 11] by training
logistic regression (LR) and Support Vector Machine (SVM) models
on n-gram features of the text. We also add strong text classifi-
cation baselines that use Convolutional Neural Networks (CNN)
for sentence classification [21]. For the models that use both the
sentence and the context, we use the two traditional machine learn-
ing models described in Section 4.1 (LR: Sentence + Context and
SVM:Sentence + Context) and the deep learning model described in
Section 4.2 (DCRNN). The results of all methods on the three tasks
described earlier are shown in Table 4. The table shows that given
the sentence as the only input, the SVM and the CNN model tend
to perform better with the first achieving the best results on the
Schedule Meeting and Request Action tasks while the latter achieves
the best results on the Promise Action task.

Table 4: Classification results F1 comparing sentence only
models and sentence + context models for different intent-
identification tasks: Schedule Meeting (SM), Promise Action
(PA) and Request Information (RI). ‡ indicates statistically
significant improvement over all compared approaches.

SM PA RI
LR : Sent 66.86 74.73 74.71
SVM : Sent 66.24 73.56 75.45
CNN : Sent 67.12 75.21 73.15
LR : Sent + Cont 66.302 74.75 74.76
SVM : Sent + Cont 64.24 71.53 75.20
DCRNN 73.48‡ 80.42‡ 78.37‡

We hypothesized that the context information along with the tar-
get sentencewould improve the performance of intent identification



Table 5: Classification results F1 for different intent-
identification tasks for variants of the DCRNN mode:
DCRNN: Concat uses a simpler fusion layer where the out-
put of the sentence and context decoders is concatenated,
Sentence Decoder Only ignore the context while Context En-
coder Only uses only the context encode and ignores the
target sentence. ‡ indicates statistically significant improve-
ment over all compared approaches.

SM PA RI
DCRNN 73.48‡ 80.42‡ 78.37‡
DCRNN: Concat 71.244 78.23 76.25
Sent Encoder Only 69.21 76.19 74.11
Cont Encoder Only 43.29 61.33 67.12

at the sentence level. It is interesting to see that the performance
of the LR and SVM models do not show consistent improvement
over the sentence-only model across tasks. More specifically the
performance of LR model (Sentence + Context) is very close to the
performance of the sentence only LR model. The SVMmodel shows
significant drop for the schedule meeting task (2 points drop) and
the promise action task (2 points drop). One possible explanation
for the performance drop of LR and SVM models is that the LR and
SVM model failed to pay attention to the relevant information in
the context (i.e. full message body) while ignoring the irrelevant
information. Another reason might be that the concatenation of
the features from the target sentence and the context is not rep-
resentative enough to capture the interaction between them (the
context is represented with the same features regardless of the tar-
get sentence). More effort on feature engineering may be needed to
enable the LR and SVM model to leverage the context information.

On the other hand, the DCRNN model does a much better job
when leveraging the context information achieving significant gains
for all three tasks. Unlike the LR and SVMmodel, the DCRNNmodel
is able to model the interaction between the target sentence and the
context. Moreover, it is able to pay more attention to the relevant
parts of the context for each token in the target sentence.
Effect of different model components: As shown in Figure 4,
the DCRNN consists of several components. To understand the
impact of each component on the model performance, we remove
different components, one at a time, and observe the impact on the
performance compared to the full model. The results are shown
in Table 5. We start by removing the fusion layer and replacing it
with a simple concatenation of the output of the sentence encoder
and the context encoder (DCRNN:Concat). We notice a drop in per-
formance on all tasks showing that going beyond concatenation
has a positive impact on the overall performance. This shows that
different parts of the context could be more important to consider
for different tokens of the target sentence. Note that the feature
fusion component, described in Section 4.2, ensures that the context
representation is conditional on and relevant to the target sentence.
On the other hand, concatenation results in the same context rep-
resentation used regardless of the sentence. Next, we experiment
with dropping the context encoder (Sentence Encoder Only) and the
sentence encoder (Context Encoder Only). Note that when we drop
one of the components, we still apply an attention operation (see
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Figure 6: The performance (F1-Score) of models with differ-
ent training data sizes (Schedule Meeting task)

equations 1 and 2) on the output of the remaining encoder and then
feed the resulting vector to the classifier. We observe a significant
drop in the performance in both cases. The drop is significantly big-
ger when only the context is used. This highlights both the value of
the context and also that it only serves to augment the information
in the target sentence and cannot replace it.
Effect of the training data size:We study the effect of training
data size for non-deep learning and deep learning based approaches
on schedule meeting task. We choose LR model (both using sentence
only and sentence + context) and the DCRNN model for this study,
we omit the SVM model since it had similar performance to the LR
model. We fixed the size of validation and test set, and generated
three new training sets by randomly sampling 5K, 10K and 20K
instances from the original training set. Figure 6 shows the perfor-
mance of different algorithms trained on different dataset sizes. In
the case 5K training data, the performance of all models is almost
identical. As the training data size increases, the performance of
all models improves. Additionally, the the DCRNN models start to
outperform the LR model with an increasing performance gap.
Effect of the context size: So far we have been using the word
context to refer to the full email body where the target sentence is
located. Another way to define context is the surrounding text of
the target sentence with a specific window size. Figure 7 shows the
performance of the DCRNN model for different context window
sizes. We use 0 to refer to the case where only the target sentence
is used as input to the model and ± n to refer to the case where
the n sentences before and after the target sentence are used as
its context. We observe that there is an increasing trend in F1-
score along with the increasing size of the context windows for all
three tasks. The models get the best performance when we use a
window size of the full email body as the context. Benefiting from
the attention mechanism, our approach could be able to handle
the noisy information and capture the dependency between the
target sentence and other sentences, even if these sentences are not
adjacent to the target sentence.
Effect of User Interaction History and Temporal Metadata:
There are other contextual information about an email message
that we can leverage, including user interaction history and email
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Figure 8: An example showing the most relevant sentences
from the full body corresponding to the target sentence. Rel-
evance is computed by aggregating the attentionweights for
the context sentences over tokens in the target sentence.

metadata and temporal information. These features were exten-
sively studied in the literature in context of tasks like email reply
prediction. We follow the same definition of features used for reply
prediction in the literature and use the same features defined in [35].
We picked the request information intent identification task and
studied the effect of adding these features on the performance of a
model that uses content only. We split the data into training, vali-
dation, and test sets using the arrival time of emails. This ensures
we mimic the real world scenario where we only have access to
historical data from the past and we test them on future data. We
examined the performance of the LR model with different sets of
contextual features and observed that the users’ interaction history
and emails metadata and temporal information have almost no
effect on the performance of our model and therefore we did not
leverage this information further in our analysis. Further work is
needed to define other user history and metadata features that may
be more appropriate for these tasks.

5.4 Case Study
To understand how the context information helps the intent identi-
fication on sentence level, we look into the attention weights on
the tokens in the target sentence and the sentences in the context.
We notice that our DCRNN model is able to pay attention to sup-
porting information from the context which could be very useful
when the target sentences are ambiguous. For instance, with only

(a) Schedule Meeting

(b) Request Information

(c) Promise Action

Figure 9: An example showing themost importantwords (ac-
cording to the token attention weights for each token in the
target sentence) for multiple sentences.

the target sentence "So let’s make it 3pm" in Figure 8, it would be
hard to decide the intent of the user. The user might intend to set
up a meeting time with the recipient or just assign a deadline for
a task. As shown in Figure 8, the model assigned high weight to
the two keywords "let’s make" (orange highlighted) in the target
sentence and these two keywords put more attention on sentence
1 and 3 in the context. In sentence 1 and sentence 3, the model
focused more on "meeting canceled" and "will call you". Along with
the selected context information, it is more clear that the target
sentence "So let’s make it 3pm" in this case pertains to the schedule
meeting intent.

To further analyze the patterns learned by the model, in Figure 9,
we visualize the attention weights of the tokens from 10 sentences
with the positive prediction on the high confidence level for each
task. We highlight the tokens with attention weights higher than
0.1 in each sentence. We find our model assigns higher weights
to intent-related keywords. For instance, in the schedule meeting
model, the meeting related keywords such as schedule, discuss and
get together are being highlighted. In the case of request information,
critical words like send, forward, document and slides receive more
attentions. And in the promise action task, the typical patterns like
“will + verb”, “let you” and “keep you” are captured by the model.

6 CONCLUSIONS
In this paper, we studied the problem of user intent understand-
ing in workplace email. We studied a large scale publicly available
email dataset to characterize intents in enterprise email. We showed



that a variety of intents occur in enterprise communication. Auto-
matically detecting these intents could not only help us to better
understand communications in the workplace, but also allow us to
create new experiences that assist the users with completing tasks
and retrieving information efficiently. Typical approaches to email
intent understanding have focused on assigning broad categories
to the whole message or on classifying sentences one at a time. We
showed that sentence-level classification tends to ignore additional
context provided in the email message. To study this further, we
conducted a study where we asked human annotators to annotate
sentences in context and in isolation. We showed that the ceiling of
performance is much lower for humans if context is discarded. This
inspired us to study how to incorporate context in automatic clas-
sification of intent in email. We showed that incorporating context
within a model using n-gram features with methods such as logistic
regression or support vector machines fails to show significant
improvements over sentence-level models. Hence, we proposed a
neural network based approach using a context-aware attention
mechanism. We showed that the proposed model can significantly
improve the performance by leveraging the context. Comparing
these gains to the human results indicates that we have not yet
reached the maximum benefit that can be realized by leveraging
context. Our future work will aim to develop better models to re-
alize the full potential of leveraging context and will extend the
notion of context to cover thread-level information, users’ history,
and metadata about email messages.
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