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Abstract

We define a unified information-based measure
to provide quantitative explanations on how inter-
mediate layers of deep Natural Language Proces-
sing (NLP) models leverage information of input
words. Our method advances existing explanation
methods by addressing issues in coherency and
generality. Explanations generated by using our
method are consistent and faithful across different
timestamps, layers, and models. We show how
our method can be applied to four widely used
models in NLP and explain their performances on
three real-world benchmark datasets.

1. Introduction
Deep neural networks have demonstrated significant impro-
vements over traditional approaches in many tasks (Socher
et al., 2012). Their high prediction accuracy stems from
their ability to learn discriminative feature representations.
However, in contrast to the high discrimination power, the
interpretability of DNNs has been considered an Achilles’
heel for decades. The black-box representation hampers
end-user trust (Ribeiro et al., 2016) and results in problems
such as the time-consuming trail-and-error optimization pro-
cess (Bengio et al., 2013; Liu et al., 2017), hindering further
development and application of deep learning.

Recently, quantitatively explaining intermediate layers of a
DNN has attracted increasing attention, especially in com-
puter vision (Bau et al., 2017; Zhang et al., 2018a;d; 2019).
A key task in this direction is to associate latent represen-
tations with the interpretable input units (e.g., image pixels
or words) by measuring the contribution or saliency of the
inputs. Existing methods can be grouped into three major
categories: gradient-based (Li et al., 2015; Fong & Vedal-
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(a) Gradient-based method (b) Ours

Figure 1. Illustration of coherency: (a) The gradient-based method
highlights the third layer only because the parameters of this layer
have larger absolute values; (b) Our method shows how the network
gradually processes input words through layers.

Methods Coherency GeneralityNeuron Layer Model
Gradient-based × × ×
Inversion-based × × ×

LRP × × × ×
Ours

Table 1. Comparison of different methods in terms of coherency
and generality. Our unified information-based measure can be defi-
ned with minimum assumptions (generality) and provides coherent
results across neurons (timestamps in NLP), layers, and models.

di, 2017; Sundararajan et al., 2017), inversion-based (Du
et al., 2018), and methods that utilize layer-wise relevance
propagation (LRP) (Arras et al., 2016). These methods have
demonstrated that quantitative explanations for intermediate
layers can enrich our understanding about the inner working
mechanism of a model, such as, the roles of neurons.

The major issue of aforementioned methods is that their
measures of saliency are usually defined based on heuri-
stic assumptions. This leads to problems with respect to
coherency and generality (Table 1):

Coherency requires that a method generates consistent ex-
planations across different neurons, layers, and models. Exis-
ting measures usually fail to meet this criterion because of
their biased assumptions. For example, gradient-based me-
thods assume that saliency can be measured by absolute
values of derivatives. Fig. 1(a) shows gradient-based expla-
nations. Each line in this figure represents a layer. According
to this figure, the input words contribute most to the third
layer (darkest color in L3). However, the third layer stands
out only because the absolute values of their parameters
are large. A desirable measure should quantify word contri-
butions without bias and reveal how the network structure
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gradually processes inputs through layers (Fig. 1(b)).

Generality refers to the problem that existing measures
are usually defined under certain restrictions on model
architectures or tasks. For example, gradient-based methods
can only be defined for models whose neural activations are
differentiable or smooth (Ding et al., 2017). Inversion-based
methods are typical methods for explaining vision models
and assume that the feature maps can be inverted to a recon-
structed image by using functions such as upsampling (Du
et al., 2018). This limits their application in NLP models.

In this paper, we aim to provide quantitative explanations
based on a measure that satisfies coherency and generality.
Coherency corresponds to the notion of equitability, which
requires that the measure quantifies associations between
inputs and latent representations without bias with respect to
relationships of a specific form. Recently, (Kinney & Atwal,
2014) have mathematically formalized equitability and pro-
ven that mutual information satisfies this criterion. Moreo-
ver, as a fundamental quantity in information theory, mutual
information can be mathematically defined without much
restrictions on model architectures or tasks (generality). Ba-
sed on these observations, we explain intermediate layers
based on mutual information. Specifically, this study aims
to answer the following research questions:

RQ1. How does one use mutual information to quantitative-
ly explain intermediate layers of DNNs?

RQ2. Can we leverage measures based on information as
a tool to analyze and compare existing explanation
methods theoretically?

RQ3. How can the information-based measure enrich our
capability of explaining DNNs and provide insights?

By examining these issues, we move towards a deep (aware
of intermediate layers) and unified (coherent) understanding
of neural models. We use models in NLP as guiding examp-
les to show the effectiveness of information-based measures.
In particular, we make the following contributions.

First, we define a unified information-based measure to
quantify how much information of an input word is encoded
in an intermediate layer of a deep NLP model (RQ1)1. We
show that our measure advances existing measures in terms
of coherency and generality. This measure can be efficiently
estimated by perturbation-based approximation and can be
used for fine-grained analysis on word attributes.

Second, we show how the information-based measure
can be used as a tool for comparing different explanati-
on methods (RQ2). We demonstrate that our method can
be regarded as a combination of maximum entropy optimi-
zation and maximum likelihood estimation.

Third, we demonstrate how the information-based mea-
1Codes available at https://aka.ms/nlp/explainability

sure enriches the capability of explaining DNNs by con-
ducting experiments in one synthetic and three real-world
benchmark datasets (RQ3). We explain four widely used
models in NLP, including BERT (Devlin et al., 2018), Trans-
former (Vaswani et al., 2017), LSTM (Hochreiter & Schmid-
huber, 1997), and CNN (Kim, 2014).

2. Related Works
Our work is related to various methods for explaining deep
neural networks and learning interpretable features.

Explaining deep vision models. Many approaches have be-
en proposed to diagnose deep models in computer vision.
Most of them focus on understanding CNNs. Among all
methods, the visualization of filters in a CNN is the most
intuitive way for exploring appearance patterns inside the
filters (Simonyan et al., 2013; Zeiler & Fergus, 2014; Ma-
hendran & Vedaldi, 2015; Dosovitskiy & Brox, 2016; Olah
et al., 2017). Besides network visualization, methods are
developed to show image regions that are responsible for
prediction. (Bau et al., 2017) use spatial masks on images
to determine the related image regions. (Kindermans et al.,
2017) extract the related pixels by adding noises to input
images. (Fong & Vedaldi, 2017; Selvaraju et al., 2017) com-
pute gradients of the output with respect to the input image.

Other methods (Zhang et al., 2018b;a; 2017; Vaughan et al.,
2018; Sabour et al., 2017) learn interpretable representa-
tions for neural networks. Adversarial diagnosis of neural
networks (Koh & Liang, 2017) investigates network repre-
sentation flaws using adversarial samples of a CNN. (Zhang
et al., 2018c) discovers representation flaws in neural net-
works caused by potential bias in data collection.

Explaining neural models in NLP. Model-agnostic me-
thods that explain a black-box model by probing into its
input and/or output layers can be used for explaining any
model, including neural models in NLP (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Koh & Liang, 2017; Peake & Wang,
2018; Tenney et al., 2019). These methods are successful in
helping understand the overall behavior of a model. Howe-
ver, they fail to explain the inner working mechanism of a
model as the informative intermediate layers are ignored (Du
et al., 2018). For example, they cannot explain the role of
each layer or how information flows through the network.

Recently, explaining the inner mechanism of deep NLP mo-
dels has started to attract attention. Pioneer works on this
direction can be divided into two categories. The first ca-
tegory learns an interpretable structure (e.g., Finite State
Automaton) from RNN and use the interpretable structure
as an explanation (Hou & Zhou, 2018). Works in the se-
cond category visualize neural networks to help understand
their meaning composition. These works either leverage di-
mension reduction methods such as t-SNE to plot the latent

https://aka.ms/nlp/explainability
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representation (Li et al., 2015) or compute the contribution
of a word to predictions or hidden states by using first-
derivative saliency (Li et al., 2015) or layer-wise relevance
propagation (LRP) (Arras et al., 2016; Ding et al., 2017).

Compared with the aforementioned methods, our unified
information-based method can provide consistent and in-
terpretable results across different timestamps, layers, and
models (coherency), can be defined with minimum assump-
tions (generality), and is able to analyze word attributes.

3. Methods
In this section, we first introduce the objective of interpre-
ting deep NLP neural networks. Then, we define the word
information in hidden states and analyze fine-grained attri-
bute information within each word.

3.1. Problem Introduction

A deep NLP neural network can be represented as a function
f(x) of the input sentence x. Let X denote a set of input sen-
tences. Each sentence is given as a concatenation of the vec-
torized embedding of each word x = [xT

1 ,x
T
2 , . . . ,x

T
n ]T ∈

X, where xi ∈ RK denotes the embedding of the i-th word.

Suppose the neural network f contains L intermediate
layers. f can be constructed by layers of RNNs, self-
attention layers like that in Transformer, or other types of
layers. Given an input sentence x, the output of each inter-
mediate layer is a series of hidden states. The goal of our
research is to explain hidden states of intermediate layers by
quantifying the information of the word xi that is contained
by the hidden states. More specifically, we explain hidden
states from the following two perspectives.

• Word information quantification: Quantifying con-
tributions of individual input units is a fundamental
task in explainable AI (Ding et al., 2017). Given xi

and a hidden state s = Φ(x), where Φ(·) denotes the
function of the corresponding intermediate layer, we
quantify the amount of information in xi that is enco-
ded in s. The measure of word information provides
the foundation for explaining intermediate layers.

• Fine-grained analysis of word attributes: We analy-
ze the fine-grained reason why a neural network uses
the information of a word. More specifically, when
the neural network pays attention to a word xi (e.g.,
tragic), we disentangle the information representing its
attributes (e.g., negative adjective or emotional adjecti-
ve) away from the specific information of the word.

3.2. Word Information Quantification

In this section, we quantify the information of word xi

that is encoded in the hidden states of the intermediate

layers. To this end, we first define information at the coarsest
level (i.e. corpus-level), and then gradually decompose the
information to fine-grained levels (i.e. sentence-level and
word-level). Next, we show how the information can be
efficiently estimated via perturbation-based approximation.

3.2.1. MULTI-LEVEL QUANTIFICATION

Corpus-level. We provide a global explanation of the in-
termediate layer considering the entire sentence space. Let
random variable S denotes a hidden state, the information
of X encoded by S can be measured by

MI(X; S) = H(X)−H(X|S), (1)

where MI(·; ·) represents the mutual information, H(·) re-
presents the entropy. H(X) is a constant, and H(X|S) de-
notes the amount of information that is discarded by the
hidden states. We can calculate H(X|S) by decomposing it
into the sentence level:

H(X|S) =
∫
s∈S p(s)H(X|s)ds. (2)

Sentence-level. Let x and s = Φ(x) denote the input sen-
tence and its corresponding hidden state of an intermediate
layer. The information that s discards can be measured as
the conditional entropy of input sentences given s:

H(X|s) = −
∫
x′∈X

p(x′|s) log p(x′|s)dx′. (3)

H(X|s = Φ(x)) reflects how much information from
sentence x is discarded by s during the forward propagation.
The entropyH(X|s) reaches the minimum value if and only
if p(x′|Φ(x)) � p(x|Φ(x)), ∀x′ 6= x. This indicates that
Φ(x′) 6= Φ(x), ∀x′ 6= x, which means that all information
of x is leveraged. If only a small fraction of information
of x is leveraged, then we expect p(x′|s) to be more evenly
distributed, resulting in a larger entropy H(X|s).

Word-level. To further disentangle information components
of individual words from the sentence, we follow the
assumption of independence between input words, which
has been widely used in studies of disentangling linear
word attributions (Ribeiro et al., 2016; Lundberg & Lee,
2017). In this case, we have H(X|s) =

∑
iH(Xi|s) and

H(Xi|s) = −
∫
x′
i∈Xi

p(x′i|s) log p(x′i|s)dx′i, (4)

where Xi is the random variable of the i-th input word.

Comparisons with word attribution/importance: The
quantification of word information is different from previous
studies of estimating word importance/attribution with re-
spect to the prediction output (Ribeiro et al., 2016; Lundberg
& Lee, 2017). Our research aims to quantify the amount
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of information of a word that is used to compute hidden
states in intermediate layers. In contrast, previous studies
estimate a word’s numerical contribution to the final output
without considering how much information in the word is
used by the network. Generally speaking, from the perspecti-
ve of word importance/attribution estimation (Ribeiro et al.,
2016; Lundberg & Lee, 2017), our word information can be
regarded as the confidence of the use of each input word.

3.2.2. PERTURBATION-BASED APPROXIMATION

Approximating H(Xi|s) by perturbation: The core of
calculating H(Xi|s) is to estimate p(xi|s) in Eq. (4). Ho-
wever, the relationship between xi and s is very complex
(modeled by the deep neural network) , which makes calcu-
lating the distribution of Xi directly from s intractable.

Therefore, in this subsection, we propose a perturbation-
based method to approximate H(Xi|s). Let x̃i = xi + εi
denote an input with a certain noise εi. We assume that the
noise term is a random variable that follows a Gaussian dis-
tribution, εi ∈ RK and εi ∼ N (0,Σi = σ2

i I). In order to
approximate H(Xi|s), we first learn an optimal distribution
of ε = [εT1 , ε

T
2 , ..., ε

T
n ]T with respect to the hidden state s

with the following loss.

L(σ) = Eε‖Φ(x̃)− s‖2 − λ
n∑
i=1

H(X̃i|s)|εi∼N (0,σ2
i I)
, (5)

where λ > 0 is a hyper-parameter, σ = [σ1, ..., σn], and
x̃ = x + ε. The first term on the left corresponds to the
maximum likelihood estimation (MLE) of the distribution
of x̃i that maximizes

∑
i

∑
x̃i

log p(x̃i|s), if we consider∑
i log p(x̃i|s) ∝ −‖Φ(x̃) − s‖2. In other words, the first

term learns a distribution that generates all potential inputs
corresponding to the hidden state s. The second term on
the right encourages a high conditional entropy H(X̃i|s),
which corresponds to the maximum entropy principle. In
other words, the noise ε needs to enumerate all perturbation
directions to reach the representation limit of s. Generally
speaking, σ depicts the range that the inputs can change to
obtain the hidden state s. Large σ means that a large amount
of input information has been discarded. We provide an
intuitive example to illustrate this in the supplement.

Since we use the MLE loss as constraints to approximate the
conditional distribution of xi given s, we can use H(X̃i|s)
to approximate H(Xi|s). In this way, we have

p(x̃i|s) = p(εi) ⇒ H(X̃i|s) =
K

2
log(2πe) +K log σi

(6)
Therefore, the objective can be rewritten as the minimization
of the following loss.

L(σ) =

n∑
i=1

(− log σi) +
1

Kλ
Ex̃i:εi∼N (0,σ2

i I)

‖Φ(x̃)− s‖2

σ2
S

. (7)

Here, σ2
S denotes the variance of S for normalization, which

can be computed using sampling.

Relationship with the existing perturbation method:
Our perturbation method is similar to the one in (Du et al.,
2018). While our method enumerates all possible perturbing
directions in the embedding space to learn an optimal noise
distribution, (Du et al., 2018) perturb inputs towards one
heuristically designed direction that may not be optimal.

3.3. Fine-Grained Analysis of Word Attributes

In this subsection, we analyze the fine-grained attribute
information inside each input word that is used by the inter-
mediate layers of the neural network.

Given a word xi (e.g., tragic) in sentence x, we assume
that each of its attribute corresponds to a concept c (e.g.,
negative adjective or emotional adjective). Here, concept c
(e.g., emotional adjective) is represented by the set of words
belonging to this concept (e.g., {happy, sorrowful, sad, ...}).
The concepts can be mined by using knowledge bases such
as DBpedia (Lehmann et al., 2015) and Microsoft Concept
Graph (Wu et al., 2012; Wang et al., 2015).

When the neural network uses a word xi, we disentangle
the information of a common concept c away from all the
information of the target word. The major idea is to calculate
the relative confidence of s encoding certain words with
respect to random words:

Ai = log p(xi|s)− Ex′
i∈Xi

log p(x′i|s) (8)
Ac = Ex′

i∈Xc
log p(x′i|s)− Ex′

i∈Xi
log p(x′i|s). (9)

Here, Xc is the word embeddings corresponding to c and
Ex′

i∈Xi
log p(x′i|s) indicates the baseline log-likelihood of

all random words. We use Ai (or Ac) to approximate
the relative confidence of s encoding xi (or words in c)
with respect to random words. The intuition is that larger
log p(x′i|s) corresponds to larger confidence that s encodes
the information in x′i.

Based on Eqs. (8)(9), we use ri,c = Ai −Ac to investigate
the remaining information of the word xi when we remove
the information of the common attribute c from the word.

4. Comparative Study

In this study, we compare our methods with three baselines
in terms of their explanation capability. In particular, we
study whether the methods can give faithful and coherent ex-
planations when used for comparing different timestamps
(Sec. 4.1), layers (Sec. 4.2), and models (Sec. 4.3). Results
indicate that our method gives the most faithful explanati-
ons and may be used as a guidance for selecting models or
tuning model parameters. The baselines we use include:

• Perturbation (Fong & Vedaldi, 2017) is a method for
explaining computer vision models. We migrate this
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Figure 2. Saliency maps at different timestamps compared with three baselines. The model we analyze learns to reverse sequences. Our
method shows a clear “reverse” pattern. Perturbation and gradient methods also reveal this pattern, although not as clear as ours.
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Figure 3. Saliency maps of different layers comparing with three baselines. Our method shows how information decreases through layers.
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Figure 4. Saliency maps for models with different hyperparame-
ters. Here, α refers to the weight of the regularization term.

method directly to NLP by treating the input sentence
x as an image.
• LRP (Bach et al., 2015) is a method that can measure

the relevance score of any two neurons. Following
(Ding et al., 2017), we visualize the absolute values of
the relevance scores between a certain hidden state and
input word embeddings.

• Gradient (Li et al., 2015) is a method that uses the ab-
solute value of first-derivative to represent the saliency
of each input words. We use the average saliency value
of all dimensions of word embedding to represent the
its word-level saliency value.

The baselines are the most representative methods in each
category. Other more advanced methods (Sundararajan et al.,
2017) share similar issues with the selected baselines and
their results are presented in the supplement.

4.1. Across Timestamp Analysis

In this experiment, we compare our methods with the base-
lines in terms of their ability in giving faithful and coherent
explanations across timestamps in the last hidden layer.

Model. We train a two-layer LSTM model (with attention)

that learns to reverse sequences. The model is trained by
using a synthetic dataset that contains only four words: a,
b, c, and d. The input sentences are generated by randomly
sampling tokens and the output sentence is computed by
reversing the input sentence. The test accuracy is 81.21%.

Result. Fig. 2 shows saliency maps computed by different
explanation methods. Each line in the map represents a ti-
mestamp and each column represents an input word. For our
method, we visualize σi calculated by optimizing Eq. (7).
The saliency maps show how the hidden state in the last hid-
den layer changes as different words are fed into the network.
For example, the line shown in Fig. 2A means that after the
3rd word b is fed into the decoder (t=3), the hidden state
of the last hidden layer mainly encodes five input words: a,
b, c from the encoder and c, b from the decoder. Note that
all words before <EOS> are inputs to the encoder and all
words after the second <SOS> are inputs to the decoder.

As shown in the figure, our method shows a very clear “re-
verse” pattern, which means that the last hidden layer mainly
encodes two parts of information. The first part contains in-
formation about the last words fed into the decoder (e.g. c, b
in Fig. 2A). Used as a query in the attention layer, this part
is used to retrieve the second part of information, which are
related input words in the encoder (e.g., a, b, c in Fig. 2A).
By comparing the two parts, the model obtains information
about the next output word (e.g., a). The gradient method
and the perturbation method also reveal this pattern, alt-
hough their patterns are not as clear as ours. Compared with
others, LRP fails to display a clear pattern.

4.2. Across Layer Analysis

In this subsection, we compare our method and the baselines
in terms of their ability in providing faithful and coherent
explanations across different layers. For each layer, we con-
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catenate its hidden states at different timestamps as one
vector. Then, we compute the associations between the con-
catenated vector and the input words.

Dataset. The dataset we use is SST-2, which stands for
Stanford Sentiment Treebank (Socher et al., 2013). It is a
real-world benchmark for sentence sentiment classification.

Model. We train a LSTM model that contains four 768D
(per direction) Bidirectional LSTM layers, a max-pooling
layer, and a fully connected layer. The inputs word embed-
dings are 768D randomly initialized vectors.

Result. Fig. 3 shows the saliency maps at different layers.
Our method clearly shows that the information contained
in each layer gradually decreases. This indicates that the
model gradually focuses on the most important parts of the
sentence. Although the perturbation method shows a similar
pattern, its result is much more noisy. LRP and gradient
methods fail to generate coherent pattern across layers
because of their heuristic assumptions about word saliency.

4.3. Across Model Analysis

In this experiment, we study how different choices of
hyperparameters affect the hidden states learned by the
models. Comparison of different model architectures will
be presented in Sec. 5. Here, we use the encoder from
Transformer (Vaswani et al., 2017) as an example. The
encoder consists of 3 multi-head self-attention layers (head
number is 4, hidden state size is 256, and feed-forward
output size is 1024), a first-pooling layer and a fully
connected layer. The input word embedding is randomly
initialized 256D vectors. The dataset we use is SST-2.

Fig. 4 visualizes the saliency maps of models trained with
different L2 normalization penalty value α. Our method
shows that the information encoded in a model decreases
with increasing regularization weight α. For example, the
model with the largest α (α = 1 × 10−4) only encodes
the word rare in the last hidden layer. By decreasing α to
5× 10−5, the Transformer encodes one more word: charm.
Although these models tend to encode the most important
words, some other important words (e.g., memorable) are
ignored because of their large α. This may be a reason why
these models have lower accuracy. By using our information-
based measure, we can quickly identify that 1) the models
with large α (α ≥ 5× 10−5) contain too little information
and that 2) we should decrease α to improve the performan-
ce. In comparison, it is very difficult for the gradient method
to provide similar guidance on hyperparameter tuning.

5. Understanding Neural Models in NLP
A variety of deep neural models have blossomed in NLP.
The goal of this study is to understand these models by

Table 2. Summary of model performance on different datasets.
Best results are highlighted in bold. Here, Acc stands for accuracy
and MCC is the Matthews correlation coefficient.

SST-2 (Acc) CoLA (MCC) QQP (Acc)

BERT 0.9323 0.6110 0.9129
Transformer 0.8245 0.1560 0.7637

LSTM 0.8486 0.1296 0.8658
CNN 0.8200 0.0985 0.8099

addressing three questions: 1) what information is leveraged
by the models for prediction, 2) how does the information
flow through layers in different models, and 3) how do
different models evolve during training? In particular, we
study four widely used models: BERT (Devlin et al., 2018),
Transformer (Vaswani et al., 2017), LSTM (Hochreiter &
Schmidhuber, 1997), and CNN (Kim, 2014).

We train the four models on three public accessible datasets
from different domains:

• SST-2 (Socher et al., 2013) is the sentiment analysis
benchmark we introduce in Sec. 4.2.

• CoLA (Warstadt et al., 2018) stands for the Corpus
of Linguistic Acceptability. It consists of English sen-
tences and binary labels about whether the sentences
are linguistically acceptable or not.

• QQP (Iyer et al., 2018) is the Quora Question Pairs
dataset. Each sample in the dataset contains two ques-
tions asked on Quora and a binary label about whether
the two questions are semantically equivalent.

Table 2 summarizes how the models perform on different
datasets. We can see that BERT consistently outperforms
the other three models on different datasets.

5.1. What Information is Leveraged for Prediction?

To analyze what information the models use for prediction,
we consider s as the hidden state used by the output layer
(the input to the final softmax function). For BERT, s is the
[CLS] token in the last hidden layer. The results are shown
in Fig. 5. We make the following observations.

Pre-trained v.s. not pre-trained. Fig. 5 shows that the pre-
trained model (BERT) can easily discriminate stopwords
from important words in all datasets. We further verify this
observation by sampling 100 sentences in each dataset and
calculating the frequent words used for prediction. Fig. 6
shows the results on the SST-2 dataset. We can see that
BERT learns to focus on meaningful words (e.g., film, litt-
le, and comedy) while other models usually focus on stop-
words (e.g., and, the, a). The capability to discriminate
stopwords is useful for various tasks. This may be one rea-
son why BERT achieves state-of-the-art performance on 11
tasks (Devlin et al., 2018).
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CoLASST-2 QQP

Figure 5. Words that different models use for prediction. For QQP, we only show the first question from the question pair.

Figure 6. Words leveraged by each model for prediction (100 sampled sentences in SST-2 dataset).

Effects of different model architectures. Fig. 5 shows that
LSTM and CNN tend to use sub-sequences of consecutive
words for prediction, while models based on self-attention
layers (BERT and Transformer) tend to use multiple word
segments. For LSTM and CNN, their smooth nature may be
a reason for not performing well. For example, when predic-
ting whether a sentence is linguistically acceptable (CoLA),
LSTM focus almost on the whole sentence. A potential re-
ason is that its recurrent structure limits its ability to filter
several noisy words from the whole sequence. Although
Transformer does not have similar constraints in structure,
it appears that it only uses information of few words. BERT
is able to resolve this problem because it is pre-trained on
tasks such as language modeling.

5.2. How Does the Information Flow Through Layers?

We investigate how information flows through layers from
two perspectives. First, we study how much information of a
word is leveraged by different layers of a model (Sec. 5.2.1).
Next, we perform fine-grained analysis on which word attri-
butes are used (Sec. 5.2.2). For each layer, we concatenate
its hidden states at different timestamps as one vector and
consider the concatenated vector as s.

5.2.1. WORD INFORMATION

Fig. 7 shows how different models process words through
layers. Here, we show an example sentence from the SST-2
dataset. For all models other than CNN, the information
gradually decreases through layers. BERT tends to discard
information about meaningless words first (e.g., to, it). At
the last layers, it discard information about words that are
less related with the task (e.g., enough). Most words that
are important for deciding the sentiment of the sentence
are remained (e.g., charm, memorable). Compared with

BERT, Transformer is less reasonable. It fails to discrimi-
nate meaningless words such as to with meaningful words
such as bird. It seems that Transformer achieves reasonably
good accuracy by focusing more on task related words (e.g.,
memorable). However, the information considered by Trans-
former is much more noisy compared with that in BERT.
This again demonstrates the usefulness of the pre-training
process. LSTM gradually focuses on the first part of sen-
tence (i.e., rare bird has more than enough charm). This
is reasonable, as the first part of the sentence is useful for
sentiment prediction. However, an important word in the
second part of the sentence (memorable) is ignored because
of the smooth nature of LSTM. CNN has the most distinct
behavior because four of its layers are independent with
each other. The four layers (K1, K3, K5, K7) correspond to
kernels with different widths. These layers detect important
sub-sequences of different lengths. We can see that although
Transformer, LSTM and CNN have similar accuracy, the
word information they leverage and their inner work mecha-
nisms are quite different.

5.2.2. WORD ATTRIBUTES

In this part, we provide a fine-grained analysis of word at-
tributes on different models in the SST-2 dataset. The word
we use is unhappiness from sentence domestic tension and
unhappiness. Fig. 8 shows ri,c calculated from Eq. (8) and
Eq. (9) in every layer. The attributes are collected from
Microsoft Concept Graph (Wu et al., 2012) and manually
refined to eliminate errors. The figure shows that for all the
models, ri,c decreases when layer number increases, which
means that the hidden states in last layers utilize the concept
attribute of certain words more. However, the attributes of
unhappiness that is leveraged by different models are diffe-
rent. Among four models, BERT use concept attributes more
and distinguish attributes the best. All models except for
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Figure 7. Layerwise analysis of word information. For all models other than CNN, the information gradually decreases through layers.

Figure 8. Layerwise analysis of word attributes. The models tend to gradually emphasize the information of word attributes through layers.
The Transformer fails to learn which attribute of the word unhappiness is important for sentiment analysis.

Figure 9. Mutual Information change of each layer during training
process of BERT and LSTM.

Transformer leverages attribute negative emotion the most,
and the attributes such as noun and all words, which are not
relative to unhappiness, are relatively less likely to be lever-
aged by these models. LSTM and CNN appear to collapse
concepts because of the scale of the vertical axis (wider
ranges compared with that of BERT). They actually can
distinguish concepts relatively well, with max(ri,c)

min(ri,c)
>1.2.

Transformer, however, fails to effectively utilize the fine-
grained attribute information inside unhappiness. That may
be a reason why it performs poorly on this dataset.

5.3. How Do the Models Evolve During Training?

Fig. 9 shows how mutual information changes during the
training processes on all layers of LSTM and BERT. We
can see that, the mutual information in BERT is more stable
than that in LSTM during training, with only some adjust-
ments at several last layers. We also observe that LSTM
experiences an information expansion state at the start of
training, during which the mutual information will increase.
After that, LSTM compresses its information. It can be ex-

plained that during training, LSTM will first pass as much
input information as possible to last layers for prediction,
and then discard unimportant input information to further
boost up its performance.

5.4. Summary and Takeaways

The major takeaways of our comparative study are three-
folds. In terms of understanding, we find that the good
performance of BERT stems from its ability to discard mea-
ningless words at first layers, reasonably utilize word attri-
butes, and fine-tune stablely. With respect to diagnosis, we
show that different models have different drawbacks. LSTM
and CNN tend to focus on sub-sequences and are easy to
use information of noisy words. Transformer tends to focus
on individual words and may be too flexible to learn well.
Such analysis leads to suggestions on future refinement.
For example, to improve LSTM and CNN, we may focus on
how to eliminate their inclination on noisy words (e.g., in-
crease model flexibility). For Transformer, we may focus on
pre-training, which may alleviate its over-flexibility issue.

6. Conclusion
We define a unified information-based measure to quanti-
tatively explain intermediate layers of deep neural models
in NLP. Compared with existing methods, our method can
provide consistent and faithful results across timestamps,
layers, and models (coherency). Moreover, it can be defined
with minimum assumptions (generality). We show how our
information-based measure can be used as a tool for compa-
ring different explanation methods and demonstrate how it
enriches our capability in understanding DNNs.
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1. Proof of H(X|s) =
∑
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2. Proof of the Maximum Likelihood Estimation of {σ1, . . . , σn}
We can roughly assume p(x̃|s) ≈ p(s̃|s) and s̃|s ∼ N (µ = s,Σ = σ2

sI) follows a Gaussian distribution, where we define
s̃ = Φ(x̃) ∈ Rd. Thus, we get

p(x̃|s) ≈ p(s̃|s) =
1√

(2π)d|Σ|
exp

[
− 1

2
(s̃− s)TΣ−1(s̃− s)

]
Therefore, we obtain

argmax{σ1,...,σn} log
∏

x̃i=xi+εi:

εi∼N(0,Σi)

p(x̃|s)

≈argmax{σ1,...,σn}
∑

x̃i=xi+εi:

εi∼N(0,Σi)

{
− log(

√
(2π)d|Σ|)− 1

2
(s̃− s)TΣ−1(s̃− s)

}

=argmin{σ1,...,σn}
∑

x̃i=xi+εi:

εi∼N(0,Σi)

‖s̃− s‖2

2σ2d
s

=argmin{σ1,...,σn}
∑

x̃i=xi+εi:

εi∼N(0,Σi)

‖s̃− s‖2

In this way, we can consider the minimization of ‖s̃− s‖2 as the MLE of {σ1, . . . , σn}.

3. Intuitive Explanation about Loss function
In this section, we provide an intuitive explanation to help understand our loss function:

L(σ) = Eε‖Φ(x̃)− s‖2 − λ
n∑
i=1

H(X̃i|s)|εi∼N (0,σ2
i I)

(1)
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Figure 1. An example for understanding our loss function L(σ). x represents the input word embeddings and x̃ = x + ε denotes the
perturbed word embeddings. The distribution of noise ε can be characterized by its standard deviation σ = [σ1, ...σ5], where σi ∈ R, ∀i.
The left part, which maximizes the conditional entropy H(X̃i|s) = K

2
log(2πe) +K log σi, tries to add as much as noise (enlarge σi) to

each word as possible. At the same time, the right part minimizes the difference between perturbed results Φ(x̃) and original hidden state
s. As a result, if an embedding of the i-th word can change a lot without impacting the hidden states, σi will be large (e.g., σ1 for word It).
If a word is important (e.g., funny), its σi will be small.

OursGradientPerturbationIntegrated Gradient

A

Figure 2. Saliency maps at different timestamps comparing with three baselines. The model we analyze learns to reverse sequences. Our
method shows a clear reverse pattern. Other methods also reveal this pattern, although not as clear as ours.

We illustrate the two terms of our loss (Maximum Entropy and MLE) in Fig. 1. Given sentence It is very funny!, x represents
its input word embeddings and x̃ = x + ε denotes the perturbed word embeddings. The distribution of noise ε can be
characterized by its standard deviation σ = [σ1, ...σ5], where σi ∈ R,∀i. The second term of the loss corresponds to the
left part of the figure, which aims at maximizing the conditional entropy H(X̃i|s) = K

2 log(2πe) +K log σi, tries to add as
much as noise (enlarge σi) to each word as possible. The first term Eε‖Φ(x̃)− s‖2 (MLE) corresponds to the right part
of the figure and minimizes the difference between perturbed results Φ(x̃) and original hidden state s. As a result, if an
embedding of the i-th word can change a lot without impacting the hidden states, σi will be large (e.g., σ1 for word It). If a
word is important, its σi will be small. In the example of Fig. 1, the information of word funny is largely kept (σ4 is small),
which means funny is important to hidden state s. The information of other stop words like It, very is largely discarded
(corresponding σi is large), which means hidden state s does not utilize much information of these words.

4. Results of Baseline (Sundararajan et al., 2017)
In this section, we show results of a more advanced method, Integrated Gradient (Sundararajan et al., 2017). It is based on
gradient and LRP method, and also suffers from coherent issues because of their heuristic assumptions. Following Sec. 4,
we use it for comparing different timestamps, layers and models. All the results bellow use the same experiment settings
(models and examples) in Sec. 4.

Fig. 2 shows the comparison of hidden states in different timestamps. The Integrated Gradient method also shows a reverse
pattern, but not as clear as other methods.

Fig. 3 shows the comparison of hidden states in different layers. The Integrated Gradient method fails to give coherent
results in this experiment setting, just like other baselines.

Fig. 4 shows the comparison of hidden states in different models. The Integrated Gradient method fails to give clearer
patterns, just like gradient method in Sec. 4.3.
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Figure 3. Saliency maps of different layers comparing with three baselines. Our method shows how information decreases through layers.
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Figure 4. Saliency maps for models with different hyperparameters. Here, α refers to the weight of the regularization term.

In conclusion, Integrated Gradient method also suffers from coherent problems.
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