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ABSTRACT
Motivated by applications such as viral marketing, the prob-

lem of influence maximization (IM) has been extensively

studied in the literature. The goal is to select a small number

of users to adopt an item such that it results in a large cascade

of adoptions by others. Existing works have three key limita-

tions. (1) They do not account for economic considerations

of a user in buying/adopting items. (2) Most studies on mul-

tiple items focus on competition, with complementary items

receiving limited attention. (3) For the network owner, maxi-

mizing social welfare is important to ensure customer loyalty,

which is not addressed in prior work in the IM literature.

In this paper, we address all three limitations and propose

a novel model called UIC that combines utility-driven item

adoption with influence propagation over networks. Focus-

ing on the mutually complementary setting, we formulate

the problem of social welfare maximization in this novel

setting. We show that while the objective function is neither

submodular nor supermodular, surprisingly a simple greedy

allocation algorithm achieves a factor of (1 − 1/e − ϵ) of
the optimum expected social welfare. We develop bundle-

GRD, a scalable version of this approximation algorithm,

and demonstrate, with comprehensive experiments on real

and synthetic datasets, that it significantly outperforms all

baselines.
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1 INTRODUCTION
Motivated by applications such as viral marketing, the prob-

lem of influence maximization has been extensively studied

in the literature [29]. The seminal paper of Kempe et al. [25]

formulated influence maximization (IM) as a discrete opti-

mization problem: given a directed graphG = (V ,E,p), with
nodes V , edges E, a function p : E → [0, 1] associating influ-

ence weights with edges, a stochastic diffusion modelM , and

a seed budget k , select a set S ⊂ V of up to k seed nodes such

that by activating the nodes S , the expected number of nodes

ofG that get activated underM is maximized. Two fundamen-

tal diffusion models are independent cascade (IC) and linear

threshold (LT) [25]. Most of the work on IM has focused

on a single item or phenomenon propagating through the

network, and has developed efficient and scalable heuristic

and approximation algorithms for IM [7, 14, 15, 39].

Subsequent work studies multiple campaigns propagating

through a network [4, 8, 10, 19, 30, 31, 36], mostly focusing on

competing campaigns. One exception is the Com-IC model

by Lu et al. [31], which studied the effect of complementary
products propagating through a network. A significant omis-

sion from the literature on IM and viral marketing is a study

with item adoptions grounded in a sound economic footing.

Adoption of items by users is a well-studied concept in

economics [33, 35]: item adoption by a user is driven by the

utility that the user can derive from the item (or itemset).

Precisely, a user’s utility for an item(set) is the difference

between the valuation that the user has for the item(set) and

the price she pays. A rich body of literature in combinatorial

auctions (e.g., see [18, 24, 27]) studies the optimal allocation

of goods to users, given the users’ valuation for various sets

of goods. These studies are not concerned with the influence

propagation in networks, whereby users’ desire of items

arises due to the influence from their network neighbors

who already adopted items, and then these users may in
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turn adopt the items if they could obtain positive utility

from them and start influencing their neighbors about these

items. Considering such network propagation is important

for applications such as viral marketing [25].

This paper takes the first step to combine viral marketing

(influence maximization) with a framework of item adop-

tion grounded in the economic principle of item utility. We

propose a novel and powerful framework for capturing the

interaction between these two paradigms, and study the so-
cial welfare maximization in this context, i.e., maximize the

sum of utilities of itemsets adopted by users at the end of

a campaign, in expectation. The utility of an itemset is de-

fined to be the valuation of the itemset minus the price of

the itemset. Social welfare is well studied in combinatorial

auctions, but it has not been well studied in the context of

network propagation and viral marketing.

In this paper, we focus on a setting where the items are

mutually complementary, by modeling user valuation for

itemsets as a supermodular function (definition in §2). Su-

permodularity captures the intuition that between comple-

mentary items, the marginal value-gain of an item w.r.t. a

set of items increases as the set grows. Many companies

offer complementary products, e.g., Apple offers iPhone, and

AirPod. The marginal value-gain of AirPod is higher for a

user who has bought an iPhone, compared to a user who

hasn’t. Complementary items have been well studied in the

economics literature and supermodular function is a typical

way for modeling their valuations (e.g., see [9, 40]). As a

preview, our experiments show that complementary items

are natural and that their valuation is indeed supermodular

(Section 6.4). We study adoptions of complementary items,

by combining a basic stochastic diffusion model with the

utility model for item adoption.

In practice, prices of items may be known, but our knowl-

edge of users’ valuation for items may be uncertain. Thus,

we further add a random noise to the utility function. We

formulate the optimization problem of finding the optimal

allocation of items to seed nodes under item budget con-

straints so as to maximize the expected social welfare. The

task is NP-hard, but more challenging is our result that the

expected social welfare is neither submodular nor supermod-

ular under the reasonable assumption that price and noise

are additive. We show that we can still design an efficient

algorithm that achieves a (1 − 1/e − ϵ)-approximation to the

optimal expected social welfare, for any small ϵ > 0. While

our main algorithm is still based on the greedy approach

for solving submodular function maximization, its analysis

is far from trivial, because the objective function is neither

submodular nor supermodular. As part of our proof strategy,

we develop a novel block accounting method for reasoning

about expected social welfare for properly defined blocks of

items.

An important feature of our algorithm is that it does not

require the valuations or prices of items as the input, and

merely the fact that item valuation is supermodular while

price and noise are additive is sufficient to guarantee the

approximation ratio. This means that we do not need to

obtain the valuations or marginal valuations of items, which

may not be straightforward to get in practice.

To summarize, in this paper, we study the problem of opti-

mal allocation of items to seeds subject to item budgets, such

that after network propagation the expected social welfare

is maximized, and we make the following contributions:

1. We incorporate utility-based item adoption with in-

fluence diffusion into a novel multi-item diffusion model,

Utility-driven IC (UIC) model. UIC can support any mix of

competing and complementary items. In this paper, we study

the social welfare maximization problem for mutually com-

plementary items (§3).

2. We propose a greedy allocation algorithm, and show

that the algorithm achieves a (1−1/e−ϵ)-approximation ratio,

even though the social welfare function is neither submodu-

lar nor supermodular (§4 and §5). Our main technical con-

tribution is the block accounting method, which distributes

social welfare to properly defined item blocks. The analysis

is highly nontrivial and may be of independent interest to

other studies.

3. We design a prefix-preserving seed selection algorithm

for multi-item IM that may be of independent interest, with

running time and memory usage in the same order as the

scalable approximation algorithm IMM [39] on themaximum

budgeted item, regardless of the number of items (§5).

4. We conduct detailed experiments comparing the per-

formance of our algorithm with baselines on five large real

networks, with both real and synthetic utility configurations.

Our results show that our algorithm significantly dominates

the baselines in terms of running time or expected social

welfare or both (§6).

All proofs and additional examples that are omitted here

for the lack of space, can be found in our full report [3].

2 BACKGROUND & RELATEDWORK
Single Item IM: A social network is represented as a di-

rected graph G = (V ,E,p) as described in §1. Two of the

classic diffusion models are independent cascade (IC) and

linear threshold (LT).

We briefly review the IC model. Given a set S ⊂ V of

seeds, diffusion proceeds in discrete time steps. At t = 0,

only the seeds are active. At every time t > 0, each node

u that became active at time t − 1 makes one attempt at

activating each of its inactive out-neighbors v , i.e., it tests if
the edge (u,v) is “live” or “blocked”. The attempt succeeds

(the edge (u,v) is live) with probability puv := p(u,v). The
diffusion stops when no more nodes become active. We refer



the reader to [16, 25] for details. The influence spread of a

seed set S , denoted σ (S), is the expected number of active

nodes after the diffusion that starts from the seed set S ends.

Influence maximization (IM) is the problem of finding, for

a seed budget k and a diffusion model, a set S ⊂ V of at most

k seeds that maximizes the influence spread σ (S) [25]. A set

function f : 2
U → R is monotone if f (S) ≤ f (T ) whenever

S ⊆ T ⊆ U ; submodular if for any S ⊆ T ⊆ U and any x ∈
U \T , f (S∪{x})− f (S) ≥ f (T∪{x})− f (T ); f is supermodular
if the inequality above is reversed; and f is modular if it is
both submodular and supermodular. Under both IC and LT

models, IM is intractable [14, 15, 25], but σ (·) is monotone
and submodular for both models. Thus, a simple greedy seed

selection algorithm together withMonte Carlo simulation for

estimating the spread, achieves an (1−1/e−ϵ)-approximation,

for any ϵ > 0 [24, 25]. Several heuristics for IM and its

extensions were proposed over the years [12, 14, 15, 23, 26,

28]. Building on the notion of RR sets, proposed by Borgs

et al. [7], a family of scalable approximation algorithms such

as IMM and SSA have been developed for IM [21, 34, 39].

Multi-item IM: Recent studies on IM allow formultiple cam-

paigns, covering both independent (thus, non-competing)

items [17], and competing items [4, 8, 19, 30, 36] (see [16]

for a survey), where a user adopts at most one item from the

set of items being propagated.

Lu et al. [31] introduced a model called Com-IC capturing

both competition and complementarity between a pair of

items. Their model subsumes perfect complementarity and

pure competition as special cases. However, they do not con-

sider item adoption driven by utility considerations, and only

use probability parameters for adoption. Their main study

is confined to the diffusion of two items, and a straightfor-

ward extension to multiple items would need an exponential

number of probability parameters in the number of items.

Different from us, the above works on multi-item IM focus

on maximizing expected number of item adoptions.

Combinatorial Auctions: In economics, adoption of items

by users is modeled in terms of the utility that the user

derives from the adoption [33, 35]. A classic problem is

givenm users and n items and the utility functions of users

for various subsets of items, find an allocation of items to

users such that the social welfare, i.e., the sum of utilities

of users for allocated itemsets, is maximized. This is in-

tractable and approximation algorithms have been developed

[18, 24, 27]. These works are not concerned with the inter-

action of utility-maximizing item adoption with recursive

propagation through a network.

Welfare maximization on social networks: There are a
few studies related to welfare maximization on social net-

works, but they all have significant differences with our

model and problem setting. Sun et al. [37] study participa-

tion maximization in the context of online discussion forums.

An item in that context is a discussion topic, and adopting an

item means posting or replying on the topic. Item adoptions

do propagate in the network, but (a) item propagations are

independent (i.e., valuation of itemsets is additive rather than

supermodular or submodular), and (b) they have a budget on

the number of items each seed node can be allocated with,

rather than on the number of seeds each item can be allocated

to as studied in our model. Bhattacharya et al. [5] consider

item allocations to nodes for welfare maximization in a net-

work with network externalities, but the major differences

with our problem are: (a) they use network externalities to

model social influence, i.e., a user’s valuation of an item is

affected by the number of her one- or two-hop neighbors

in the network adopting the same item, but network exter-

nalities do not model the propagation of influence and item

adoptions, our main focus in modeling the viral marketing

effect; (b) they consider unit demand or bounded demand on

each node, which means items are competing against one

another on every node, while our study focuses on the case

of complementary items rather than competing items, and

item bundling is a key component in our solution; (c) they

do not have budget on items so an item could be allocated to

any number of nodes, while we have a budget on the number

of nodes that can be allocated to an item as seeds and we rely

on propagation for more nodes to adopt items. Despite these

major differences, we will do an empirical comparison of our

algorithm versus their algorithms.Abramowitz and Anshele-

vich [2] study network formation with various constraints

to maximize social welfare, but it has no item allocation, no

item complementarity, and no influence propagation, and

thus is further away from our work. In summary, to our

knowledge, our study is the only one addressing social wel-

fare maximization in a network with influence propagation,

complementary items, and budget limits on items.

3 UIC MODEL
In this section, we propose a novel model called utility driven
independent cascade model (UIC for short) that combines the

diffusion dynamics of the classic IC model with an item

adoption framework where decisions are governed by utility.

Table 5 (Appendix A.1) summarizes the notations.

Utility based adoption. Utility is a widely studied concept

in economics and is used to model item adoption decisions

of users [18, 33, 35].

We let I denote a finite universe of items. The utility of

a set of items I ⊆ I for a user is the pay-off of I to the user

and depends on the aggregate effect of three components:

the price P that the user needs to pay, the valuationV that

the user has for I and a random noise termN , used to model

the uncertainty in our knowledge of the user’s valuation on

items, where P, V and N are all set functions over items.

For an item i ∈ I, P(i) > 0 denotes its price. We assume that



price is additive, i.e., for an itemset I ⊆ I, P(I ) =
∑

i ∈I P(i).
Although UIC can handle any generic valuation function, in

this paper we focus on complementary products. Hence we

assume thatV is supermodular (definition in §2), meaning

that the marginal value of an item with respect to an itemset

I increases as I grows. We also assumeV is monotone since

it is a natural property for valuations. For i ∈ I, N(i) ∼ Di
denotes the noise term associated with item i , where the

noise may be drawn from any distribution Di having a zero

mean. Every item has an independent noise distribution. For

a set of items I ⊆ I, we assume the noise is additive, i.e.,

the noise of I , N(I ) :=
∑

i ∈I N(i). Similar assumptions on

additive noise are used in economics theory [20, 22].

Finally, the utility of an itemset I isU(I ) = V(I ) − P(I ) +
N(I ). Since noise is a random variable, utility is also ran-

dom. Since noise is drawn from a zero mean distribution,

E[U(I )] = V(I ) − P(I ). We assumeV(∅) = 0.

Seed allocation. Let
®b = (b1, ...,b |I |) be a vector of natural

numbers representing the budgets associated with the items.

An item’s budget specifies the number of seed nodes that

may be assigned to that item. We sometimes abuse notation

and write bi ∈ ®b to indicate that bi is one of the item budgets.

We denote the maximum budget as b := max{bi | bi ∈ ®b}.
We define an allocation as a relation 𝒮 ⊂ V × I such that

∀i ∈ I : |{(v, i) | v ∈ V }| ≤ bi . In words, each item is

assigned a set of nodes whose size is under the item’s budget.

We refer to the nodes S𝒮i := {v | (v, i) ∈ 𝒮} as the seed nodes
of 𝒮 for item i and to the nodes S𝒮 :=

⋃
i ∈I S

𝒮
i as the seed

nodes of 𝒮 . We denote the set of items allocated to a node

v ∈ V as I𝒮v := {i ∈ I | (v, i) ∈ 𝒮}.
Desire and adoption. Every node maintains two sets of

items – desire set and adoption set. Desire set is the set

of items that the node has been informed about (and thus

potentially desires), via propagation or seeding. Adoption

set is the subset of the desire set that the node adopts. At any

time a node selects, from its desire set at that time, the subset

of items that maximizes the utility, and adopts it. If there

is a tie in the maximum utility between itemsets, then it is

broken in favor of larger itemsets. We later show in Lemma

1 of §4 that breaking ties in this way results in a well-defined

adoption behavior of the nodes. We consider a progressive

model: once a node desires an item, it remains in the node’s

desire set forever; similarly, once an item is adopted by a

node, it cannot be unadopted later.

For a node u, R𝒮(u, t) denotes its desire set and A𝒮(u, t)
denotes its adoption set at time t , pertinent to an allocation

𝒮 . We omit the time argument t to refer to the sets at the

end of diffusion. We now present the diffusion under UIC.

Diffusion model. In the beginning of any diffusion, the

noise terms of all items are sampled, which are then used

till the diffusion terminates. The diffusion then proceeds in

discrete time steps, starting from t = 1. Given an allocation

𝒮 at t = 1, the seed nodes have their desire sets initialized :

∀v ∈ S𝒮 , R𝒮(v, 1) = I𝒮v . Seed nodes then adopt the subset of

items from the desire set that maximizes the utility, breaking

ties if needed in favor of sets of larger cardinality. Thus, a

seed node may adopt just a subset of items allocated to it.

Once a seed node u ′ adopts an item i , it influences its out-
neighbor u with probability pu′,u , and if it succeeds, then i
is added to the desire set of u at time t = 2. The rest of the

diffusion process is described in Fig. 1.

1. Edge transition. At every time step t > 1, for a node u′ that has adopted
at least one new item at t − 1, its outgoing edges are tested for transition.

For an untested edge (u′, u), flip a biased coin independently: (u′, u) is live
w.p. pu′,u and blocked w.p. 1 − pu′,u . Each edge is tested at most once in
the entire diffusion process and its status is remembered for the duration of

a diffusion process.

Then for each node u that has at least one in-neighbor u′ (with a live edge

(u′, u)) which adopted at least one item at t −1,u is tested for possible item

adoption (2-3 below).

2. Generating desire Set The desire set of node u at time t , R𝒮 (u, t ) =
R𝒮 (u, t − 1) ∪u′∈N−(u) (A

𝒮 (u′, t − 1)), where N −(u) = {u′ |
(u′, u) is live} denotes the set of in-neighbors of u having a live edge con-

necting to u .
3. Node adoption. Node u determines the utilities for all subsets of items

of the desire set R𝒮 (u, t ). u then adopts a set T ∗ ⊆ R𝒮 (u, t ) such that

T ∗ = argmax
T ∈2R𝒮 (u,t )

{U(T ) | T ⊇ A𝒮 (u, t − 1) ∧ U(T ) ≥ 0}.

A𝒮 (u, t ) is set to T ∗ .

Figure 1: Diffusion dynamics under UIC model

We illustrate the diffusion under UIC using an example

shown in Figure 2. The graph G with edge probabilities and

the utilities of the two items after sampling the noise terms,

are shown on the left side. At time t = 1, node v1 is seeded
with item i1 and v3 with i2, hence they desire those items

respectively. Since i1 (resp. i2) has a positive (resp. negative)
individual utility, v1 adopts i1 (resp. v3 does not adopt i2).
However i2 remains in the desire set of v3. Then at t = 2,

outgoing edges of v1 are tested for transition: edge (v1,v3)
fails (shown as red dotted line), but edge (v1,v2) succeeds
(green solid line). Consequentlyv2 desires and adopts i1. Next
at t = 3, v2’s outgoing edge (v2,v3) is tested. As it succeeds,
v3 desires i1. Since it already had i2 in its desire set, it adopts

the set {i1, i2}. Propagation ends at v3.
Social welfare Maximization. Let G = (V ,E,p) be a so-
cial network, I the universe of items under consideration.

Here, we consider a novel utility-based objective called so-
cial welfare, which is the sum of all users’ utilities of item-

sets adopted by them after propagation converges. Formally,

E[U(A𝒮(u))] is the expected utility that a useru enjoys for a

seed allocation 𝒮 after propagation ends. Then the expected
social welfare (also known as “consumer surplus” in algo-

rithmic game theory) for 𝒮 , is ρ(𝒮) =
∑
u ∈V E[U(A

𝒮(u))],
where the expectation is over both the randomness of prop-

agation and randomness of noise.
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Figure 2: Illustrating propagation of items under UIC model; for simplicity, we assume noise is zero.

We define the problem of maximizing expected social wel-

fare (WelMax) as follows. We refer toV,P,N , as the model

parameters and denote them collectively as Param.

Problem 1 (WelMax). Given G = (V ,E,p), the set of model
parameters Param, and budget vector ®b, find a seed alloca-
tion 𝒮∗, such that ∀i ∈ I, |S𝒮

∗

i | ≤ bi and 𝒮∗ maximizes the
expected social welfare, i.e., 𝒮∗ = argmax𝒮 ρ(𝒮).

Proposition 1. WelMax in the UIC model is NP-hard.
Function types. Notice that the functions V and U are

functions over sets of items, whereas σ is a function over sets

of network nodes, and ρ is a function over allocations, which

are sets of (node, item) pairs. When we speak of a certain

property (e.g., submodularity) of a function of a given type,

the property is meant w.r.t. the applicable type. E.g., σ is

monotone and submodular w.r.t. sets of nodes.

Design choices. In the UIC model, the desire set of a user

is triggered either by seeding or by the influence on a user

as her peers adopt items. Following standard practices in IM

models, we keep it progressive: a desire set never shrinks.

On the other hand, the adoption decisions are driven by a

standard assumption in economics [6], that users aim to max-

imize the utility when they adopt item(sets). This assumption

governs adoption decisions of the users. In UIC, we assume

price is additive. There are different ways of pricing a bundle

of items: additivity is a simple and natural pricing model in

the absence of discounts [11]. Further, we use supermodu-

lar value functions to model the effect of complementarity

among products, again following standard practice in the

economics literature [32, 40]. Finally, our way of modeling

the noise can be viewed as reflecting the uncertainty in the

population’s reaction to an item. One may further introduce

personalized noise to model individual uncertainty, but this

would make algorithm design and analysis more difficult.

Our approximation bound would not hold when noise is per-

sonalized and when valuation is not supermodular. Although

we make specific design choices in this paper for simplicity

and tractability of the model, the UIC model can encompass

any general form of value, price, and noise parameters and

works for any triggering model [25].

4 PROPERTIES OF UIC
Since WelMax is NP-hard, we explore properties of the wel-

fare function – monotonicity and submodularity, which can

help us design efficient approximation strategies. We begin

with an equivalent possible world model to help our analysis.

Possible world model. Given an instance ⟨G,Param⟩ of
UIC, where G = (V ,E,p), we define a possible world associ-

ated with the instance, as a pairW = (W E ,W N ), whereW E

is an edge possible world (edge world), andW N
is a noise pos-

sible world (noise world);W E
is a sample graph drawn from

the distribution associated with G by sampling edges, and

W N
is a sample of noise terms for each item in I, drawn from

the corresponding item’s noise distribution in Param. As all

the random terms are sampled, propagation and adoption

inW is fully deterministic. For nodes u,v ∈ V , we say v is

reachable from u inW if there is a directed path from u to v
in the deterministic graphW E

. NW (i) denotes the sampled

noise for item i andUW (I ) denotes the (deterministic) utility

of itemset I , in worldW . For a node u and an allocation 𝒮 ,

we denote its desire and adoption sets at time t in worldW
as R𝒮

W (u, t) and A
𝒮
W (u, t) respectively. When only the noise

terms are sampled, i.e., in a noise worldW N
, the utilities are

deterministic, but the propagation remains random.

Given a possible worldW = (W E ,W N ) and an allocation

𝒮 , a node v ∈ V adopts a set of items as follows: (i) if v
is a seed node, then it desires I𝒮v at time t = 1 and adopts

an itemset A𝒮
W (v, 1) := argmax{UW (I ) | I ⊆ I𝒮v }; (ii) if v

is a non-seed node, and t > 1, then it desires the itemset

R𝒮
W (v, t) := (

⋃
u ∈N −1W (v)

A𝒮
W (u, t − 1)) ∪ R

𝒮
W (v, t − 1), where

N −1W (v) denotes the in-neighbors of v in the deterministic

graphW E
, i.e., at time t , node v desires items that it desired

at (t − 1) as well as items any of its in-neighbors in W E

adopted at (t−1); nodev then adopts the itemsetA𝒮
W (v, t) :=

argmax{UW (I ) | I ⊆ R
𝒮
W (v, t) & A

𝒮
W (v, t −1) ⊆ I }. If there

ismore than one itemset inR𝒮
W (v, t)with the samemaximum

utility, we assume that v breaks ties in favor of the set with

the larger cardinality.

V(·) is supermodular while P(·) and NW (·) are additive

and hence modular, so it immediately follows that UW (·)

is supermodular with respect to sets of items. Thus the ex-

pectation of utility w.r.t. edge worlds is supermodular. How-

ever, UW N is not monotone, because adding an item with

a very high price may decrease the utility. We will show

that in any possible world, given a set of items that a node



desires, there is a unique set of items that it adopts. Specifi-

cally, if there are multiple sets tied for utility, the node will

adopt their union. For a set function f : 2
U → R, we de-

fine f (T | S) = f (S ∪ T ) − f (S). We say that an item-

set A is a local maximum w.r.t. the utility function UW , if

the utility of A is the maximum among all its subsets, i.e.,

UW (A) = maxA′⊆AUW (A
′). The following lemma is based

on simple algebraic manipulations on the definitions of su-

permodularity and local maximum.

Lemma 1. (Local maximum). LetW be a possible world and
A,B ⊆ I be any itemsets such thatA and B are local maximum
with respect toUW . Then (A∪B) is also a local maximumwith
respect toUW , i.e.,UW (A ∪ B) = maxC⊆A∪BUW (C).

An immediate consequence of Lemma 1 is that when two

itemsets have the same largest utility, their union must also

have the largest utility, and thus our tie-breaking rule is

well-defined. Another consequence is the following lemma.

Lemma2. For any nodeu and any time t , the itemset adopted
by u at time t , A𝒮

W (u, t), must be a local maximum.

Our next result shows that in any given possible world,

adoption of items propagates through reachability. Reachabil-

ity is a key property to be used later in Lemmas 5 and 7 while

establishing the approximation guarantee of our algorithm.

Lemma 3. (Reachability). For any item i and any possible
world W , if a node u adopts i under allocation 𝒮 , then all
nodes that are reachable from u in the worldW also adopt i .
The social welfare of an allocation 𝒮 in a possible world

W = (W E ,W N ) is defined as the sum of utilities of item-

sets adopted by nodes, i.e., ρW (𝒮) :=
∑
v ∈V U(A

𝒮
W (v)).

The expected social welfare of an allocation 𝒮 is ρ(𝒮) :=
EW E [EW N [ρW (𝒮)]] = EW N [EW E [ρW (𝒮)]]. It is straightfor-
ward to show that the expected social welfare of allocation

𝒮 defined in §3 is equivalent to the above definition.

Properties of social welfare. The following theorem sum-

marizes the property of social welfare function. It is not

submodular because the valuation is supermodular, and it

is not supermodular because the propagation based on IC

model would have submodular influence coverage.

Theorem1. Expected social welfare is monotone with respect
to the sets of node-item allocation pairs. However it is neither
submodular nor supermodular.

5 APPROXIMATION ALGORITHM
5.1 Greedy algorithm overview
Given that the welfare function is neither submodular nor

supermodular, designing an approximation algorithm for

WelMax is challenging. Nevertheless, in this section we show

that for any given ϵ > 0 and number ℓ ≥ 1, a (1 − 1

e − ϵ)-
approximation to the optimal social welfare can be achieved

Algorithm 1: bundleGRD(I, ®b,G, ϵ, ℓ)
1 𝒮Grd ← ∅;

2 SGrd ← PRIMA( ®b, G, ϵ, ℓ)
3 for i ∈ I do
4 Assign item i to the first bi nodes of the ranked set SGrd

, i.e.,

SGrd
i ← top bi nodes from SGrd

5 𝒮Grd ← 𝒮Grd ∪ (SGrd
i × {i })

6 return 𝒮Grd
as the final allocation

with probability at least 1− 1

|V |ℓ , using a simple greedy algo-

rithm. To the best of our knowledge, this is the first instance

in the context of viral marketing where an efficient approxi-
mation algorithm is proposed for a non-submodular objective,
at the same level as submodular objectives. We first present

our algorithm and then analyze its correctness and efficiency.

Our algorithm, called bundleGRD (for bundle greedy) and

shown in Algorithm 1, is based on a greedy allocation of

seed nodes to items. Given a graph G, the universe of items

I, item budget vector
®b, ϵ , and ℓ, bundleGRD first selects

(line 2) the top-b seed nodes SGrd := Sb for the IC model

(disregarding item utilities), where b = max{bi | bi ∈ ®b}.
Then, (line 4) for each item i with budget bi , it assigns the
top-bi nodes from SGrd to i . We will show that this allocation

achieves a (1− 1

e −ϵ)-approximation to the optimal expected

social welfare. For this to work, bundleGRDmust ensure that

the b seeds selected, Sb , satisfy a prefix-preserving property.

We define the property and present the PRIMA algorithm

(invoked in line 2 of Algorithm 1), in §5.3. The following is

the main result for the bundleGRD algorithm.

Theorem 2. Let 𝒮Grd be the greedy allocation generated by
bundleGRD, and 𝒮OPT be the optimal allocation. Given ϵ > 0

and ℓ > 0, with probability at least 1 − 1

|V |ℓ , we have

ρ(𝒮Grd) ≥ (1 −
1

e
− ϵ) · ρ(𝒮OPT ). (1)

The running time is O((b + ℓ + logn | ®b |)(m + n) logn/ϵ
2).

Wenote that our bundleGRD algorithm has the interesting

property that it does not need the valuation functions, prices,

and the distributions of noises as input, and thus works for

all possible utility settings. It reflects the power of bundling

in the complementary setting.

5.2 Block accounting for bundleGRD
The analysis of the algorithm is highly non-trivial, because it

needs to consider all possible seed allocations, propagation

scenarios, with budgets possibly being non-uniform among

items. Our main idea is a “block” based accounting method:

we break the set of items into a sequence of “atomic” blocks,

such that each block has non-negative marginal utility given

previous blocks, and it can be counted as an atomic unit

in the diffusion process. Then we account for each block’s



contribution to the social welfare during a propagation, and

argue that for every block, the contribution of the block

achieved by the greedy allocation is always at least (1−1/e−
ϵ) times the contribution under any allocation. In §5.2.1 we

first introduce the block generation process. Using block

based accounting, in §5.2.2 we establish the welfare produced

by bundleGRD, and in §5.2.3, show an upper bound on the

welfare produced by any arbitrary allocation. The technical

subtlety includes properly defining the blocks, showing why

each block can be accounted for as an atomic unit separately,

dealing with partial item propagation within blocks, etc.

In the rest of the analysis, we fix the noise worldW N
, and

prove that ρW N (𝒮Grd) ≥ (1 − 1

e − ϵ) · ρW N (𝒮OPT ), where

ρW N denotes the expected social welfare under the fixed

noise worldW N
. We then take another expectation over the

distribution ofW N
to obtain Inequality (1). LetUW N be the

utility function under the noise possible worldW N
.

GivenW N
, let I∗W N ⊆ I be the subset of items that gives the

largest utility inW N
, with ties broken in favor of larger sets.

By Lemma 1, I∗W N is unique. This implies that the marginal

utility of any (non-empty) subset of I \ I∗W N given I∗W N is

strictly negative. Further recall thatUW N is supermodular.

Hence the marginal utility of any subset of I \ I∗W N given

any subset of I∗W N is strictly negative, which means no items

in I \ I∗W N can ever be adopted by any user under the noise

worldW N
. Thus, once we fixW N

, we can safely remove all

items in I \ I∗W N from consideration. In the rest of §5.2, for

simplicity we use I∗ as a shorthand for I∗W N .

5.2.1 Block generation process.We divide items in I∗ into
a sequence of disjoint blocks such that each block has a non-

negative marginal utility w.r.t. the union of all its preceding

blocks. We also need to carefully arrange items according to

their budgets for later accounting analysis. We next discuss

how the blocks are generated.

Let I∗ = {i1, ..., i |I∗ |}. We order the items in non-increasing

order of their budgets, i.e., b1 ≥ b2 ≥ · · · ≥ b |I∗ | . Figure 3
shows the process of generating the blocks. Note that this

block generation process is solely used for our accounting anal-
ysis and is not part of our seed allocation algorithm. Given I∗

andW N
, we first generate a global sequence I of all non-

empty subsets of I∗, following a precedence order ≺ (Step

2).
For two distinct subsets S, S ′ ⊆ I∗, arrange items in each

of S, S ′ in decreasing order of item indices. Compare items in

S, S ′, starting from the highest indexed items of S and S ′. If
they match, compare the second highest indexed items and

so on until one of the following rules applies:

1. One of S or S ′ exhausts. If say S exhausts first, then S ≺ S ′.
2. The current pair of items in S and S ′ do not match. Then

S ≺ S ′, if the current item of S has a lower index than the

current item of S ′.

1. Input for the process contains I∗ andW N
.

2. Generate the 2
|I∗ | − 1 non-empty subsets of I∗

Sort the subsets following the precendence order ≺. Put the sorted subsets

in sequence I

B ← ∅; B ← the first entry in I

3. Repeat the following steps until I is empty

(1) If UWN (B |
⋃
B) ≥ 0 then,

B ← B ⊕ B i.e., append B at the end of sequence B

remove all sets B′ from I with B′ ∩ B , ∅
B ← the first entry in I

(2) Else B ← the next entry in I after B
4. B is the final sequence of blocks

Figure 3: The block generation process

Example 1 (Generation of I). Suppose we have three items

I∗ = {i1, i2, i3} with b1 ≥ b2 ≥ b3, then we order the subsets

in the following way: I = ({i1}, {i2}, {i1, i2}, {i3}, {i1, i3},
{i2, i3}, {i1, i2, i3}). Between subsets {i3} and {i1, i3}, {i3} is
ordered first according to rule 1, whereas between {i1, i2}
and {i3}, {i1, i2} is ordered first according to rule 2. �

The sequence I has the following useful property:

Property 1. For any subsets S andT in the sequence I, if (a)
T is a proper subset of S , or (b) the highest index among all
items in T is strictly lower than the highest index among all
items in S , then T appears before S in I.

From I, blocks are selected following an iterative process,

as shown in Step 3 of Figure 3.

By the fact that I∗ is a local maximum, it is easy to

see that the blocks generated form a partition of I∗. Let
B ={B1,B2, . . . ,Bt } be the sequence of blocks generated,

where t is the number of blocks in the block partition. We

define the marginal gain of each block Bi as

∆i = UW N (Bi | ∪
i−1
j=1Bj ). (2)

Marginal gains have the following properties.

Property 2. ∀i ∈ [t], ∆i ≥ 0 , andUW N (I∗) =
∑t

i=1 ∆i .
Let A ⊆ I∗ be an arbitrary subset of items. We partition

A based on block partition B: Define Ai = A ∩ Bi ,∀i ∈ [t].
If Ai = Bi , we call Ai a full block, if Ai = ∅, then it is an

empty block, otherwise, we call it a partial block. Define

∆A
i = UW N (Ai | A1 ∪ . . .∪Ai−1). By Property 1 and the fact

that Bi is the first block in I with non-negative marginal

utility w.r.t.

⋃i−1
j=1 Bj , it follows that

Property 3. ∀i ∈ [t], ∆A
i ≤ ∆i , andUW N (A) =

∑t
i=1 ∆

A
i .

Using this property, we devise our accounting where each

Ai contributes ∆
A
i in its social welfare.

5.2.2 Social welfare under greedy allocation. We are

now ready to analyze the social welfare of our greedy al-

location (Algorithm 1) using block accounting. We first show

that, before the propagation starts, each seed node would

adopt exactly the prefix of full blocks allocated until the first



non-full block, and then show that all these adopted full

blocks will propagate together, so we can exactly account for

the contribution of each block to the expected social welfare.

The following lemma gives the exact statement of the first

part.

Lemma4. Under the greedy allocation, suppose that at a seed
node v , Ai is the first non-full block assigned to v , then before
the propagation starts, v adopts exactly B1 ∪ ... ∪ Bi−1.

Effective budget of blocks. For a block Bi , we define its
effective budget ei = minj ∈B1∪···∪Bi bj . In bundleGRD (Algo-

rithm 1), the first ei seed nodes of SGrd are assigned all the

full blocks {B1 ∪ ... ∪ Bi }. By Lemma 4, only those nodes

actually adopt the block Bi before the propagation starts.

Such seed nodes are called effective seed nodes of block Bi
and denoted as SGrdEBi

. Thus in summary, under the greedy

allocation, before the propagation starts, all seed nodes in

SGrdEBi
adopt Bi together with B1, . . . ,Bi−1, and none of the

seed nodes outside SGrdEBi
adopts any items in Bi ,Bi+1, . . . ,Bt .

We now show the social welfare of bundleGRD.

Lemma 5. Let 𝒮Grd be the greedy allocation obtained using
Algorithm 1. Then the expected social welfare of 𝒮Grd inW N

is ρW N (𝒮Grd) =
∑

i ∈[t ] σ (S
GrdE
Bi
) · ∆i , where SGrdEBi

are the ef-
fective seed nodes of block Bi under allocation 𝒮Grd , σ (·) is
the expected spread function under the IC model, and ∆i is as
defined in Eq. (2).

5.2.3 Social welfare under an arbitrary allocation. Un-
like greedy, in an arbitrary allocation, for the effective seed

nodes, we cannot conclude that a block Bi is offered with

all previous full blocks B1, . . . ,Bi−1. Thus our accounting
method needs to be adjusted. Our idea is to define the key

concept of an anchor item ai for every block Bi , which ap-

pears in B1 ∪ · · · ∪ Bi . We want to show that only when Bi
is co-adopted with ai by any node, Bi could contribute posi-

tive marginal social welfare (Lemma 6), and in this case its

marginal contribution is upper bounded by ∆i (Property 3).

Hence we only need to track the diffusion of the anchor item

ai to account for the marginal contribution of Bi . Finally by

showing that the budget of ai is exactly the effective budget

ei = |S
GrdE
Bi
| of Bi , we conclude that σ (Sai ) ≤ (1 − 1/e − ϵ)

σ (SGrdEBi
) by the prefix preserving property explained in §5.1.

We define the budget of a block to be the minimum budget

of any item in the block. Then the anchor block Bai , of a
block Bi is the block from B1, . . . ,Bi that has the minimum

budget. In case of a tie, the block having highest index is

chosen as the anchor block. Notice that anchor item ai is
the highest indexed and consequently minimum budgeted

item in its corresponding anchor block Bai . Notice that, by
definition, if block Bj is the anchor block of block Bi with
j < i , then block Bj is also the anchor block for all blocks

Bj ,Bj+1, . . . ,Bi . Moreover, the effective budget ei of a block
Bi , is the budget of its anchor item ai , i.e., the minimum

budget of all items in B1 ∪ · · · ∪ Bi .

Lemma 6. Let ai be the anchor item of Bi , and suppose ai
appears in Bj , j ≤ i . During the diffusion process from an
arbitrary seed allocation 𝒮 , let A be the set of items in Bj ∪
. . . ∪ Bi that have been adopted by v by time t . If ai < A and
A , ∅, thenUW N (A | B1 . . . ,Bj−1) < 0.

Using the above result, we establish the following lemma,

which upper bounds the welfare produced by an arbitrary

allocation.

Lemma 7. For any arbitrary seed allocation 𝒮 , the expected
social welfare inW N is ρW N (𝒮) ≤

∑
i ∈[t ] σ (Sai ) · ∆i , where

Sai is the seed set assigned to the anchor item ai of block Bi ,
and ∆i is as defined in Eq. (2).
Notice in Lemma 7, |Sai | ≤ ei , whereas in Lemma 5

|SGrdEBi
| = ei . Hence the combination of Lemma 5 and

Lemma 7, together with the fact that SGrdEBi
is a (1 − 1/e − ϵ)-

approximation of the optimal solution with ei seeds (by the

prefix-preserving property), leads to the approximation guar-

antee of bundleGRD (Eq. (1) of Theorem 2). In the next sec-

tion, we explain the component PRIMA that provides the

prefix preserving property.

5.3 Item-wise prefix preserving IMM
We first formally define the prefix-preserving property.

Definition 1. (Prefix-Preserving Property). Given
G = (V ,E,p) and budget vector ®b, an influence maximization
algorithmA is prefix-preserving w.r.t. ®b, if for any ϵ > 0 and
ℓ > 0,A returns an ordered set SGrd

b
of sizeb, such that with

probability at least 1− 1

|V |ℓ , for everybi ∈
®b, the top-bi nodes

of SGrd
b

, denoted SGrdbi
, satisfies σ (SGrdbi

) ≥ (1 − 1

e − ϵ)OPTbi ,
whereOPTbi is the optimal expected spread ofbi nodes.

Unfortunately, state-of-the-art IM algorithms such as IMM

[39], SSA [34], and OPIM [38] are not prefix-preserving out-

of-the-box. In this section, we present a non-trivial extension

of IMM [39], called PRIMA (PRefix preserving IM Algorithm)

(Algorithm 2), to make it prefix-preserving.

State-of-the-art IM algorithms including IMM use reverse

influence sampling (RIS) approach [7] governed by reverse-

reachable (RR) sets. An RR set is a random set of nodes sam-

pled from the graph by (a) first selecting a node v uniformly

at random from the graph, and (b) then simulating the re-

verse propagation of the model (e.g., IC model) and adding all

visited nodes into the RR set. The main property of a random

RR set R is that: influence spread σ (S) = n · E[I{S ∩ R , ∅}]
for any seed set S , where I is the indicator function. After
finding a large enough number of RR sets, the original influ-

ence maximization problem is turned into a k-max coverage



Algorithm 2: PRIMA (®b,G, ϵ, ℓ)

1 Initialize R = ∅, s = 1, n = |V |, i = 1, ϵ ′ =
√
2 · ϵ , budgetSwitch = false;

2 ℓ = ℓ + log 2/logn, ℓ′ = logn (n
ℓ · | ®b |);

3 while i ≤ log
2
(n) − 1 and s ≤ | ®b | do

4 k = bs , LB = 1;

5 x = n
2
i ; θi = λ

′
k /x , where λ

′
k is defined in Eq. (3);

6 while |R | ≤ θi do
7 Generate an RR set for a randomly selected node v of G and

insert in R;
8 if budgetSwitch then
9 Sk = the first k nodes in the ordered set Sbs−1 returned from

the previous call to NodeSelection

10 else
11 Sk = NodeSelection(R, k )
12 if n · FR (Sk ) ≥ (1 + ϵ ′) · x then
13 LB = n · FR(Sk )/(1 + ϵ

′);

14 θk = λ∗k /LB , where λ
∗
k is defined in Eq. (4);

15 while |R | < θk do
16 Generate an RR set for a randomly selected node v of G

and insert in R;
17 s = s + 1; budgetSwitch = true
18 else
19 i = i + 1; budgetSwitch = false
20 if s ≤ | ®b | then
21 θk = λ∗bs /LB ;
22 R = ∅;
23 while |R | < θk do
24 Generate an RR set for a randomly selected node v of G and insert in

R;

25 Sb = NodeSelection(R, b);

26 return Sb as the final seed set;

problem – finding a set of k nodes that covers the most num-

ber of RR sets, where a set S covers an RR set R if S ∩ R , ∅.
All RIS algorithms use the same well-known coverage pro-

cedure, denoted as NodeSelection(R,k) in [39], and thus we

omit its description here. Different RIS algorithms differ in

estimating the number of RR sets needed for the approxi-

mation guarantee. The number of RR sets generated is in

general not monotone in the budget k , making them not

prefix-preserving. Our PRIMA algorithm carefully addresses

this issue for IMM, even with nonuniform item budgets,

while keeping the efficiency of the algorithm. In §A.3, we

discuss how other RIS algorithms can be so extended.

PRIMA ingests four inputs, namely the budget vector
®b

sorted in non-increasing order, graph G, ϵ and ℓ (with ℓ′

derived from ℓ). Extending the bounding technique of [39],
for each budget k , we set

λ′k =
(2 + 2

3
ϵ ′) · (log

(n
k

)
+ ℓ′ · log n + log log

2
n) · n

ϵ ′2
, (3)

λ∗k = 2n · ((1 − 1/e) · α + βk )
2 · ϵ−2, (4)

where, α =
√
ℓ′ logn + log 2 is a constant independent of k ,

and βk =
√
(1 − 1/e) · (log

(n
k

)
+ ℓ′ log n + log 2). Note that

we use log without a base to represent the natural logarithm.

Flixster Douban-Book Douban-Movie Twitter Orkut

# nodes 7.6K 23.3K 34.9K 41.7M 3.07M
# edges 71.7K 141K 274K 1.47G 234M

avg. degree 9.43 6.5 7.9 70.5 77.5
type undirected directed directed directed undirected

Table 1: Network Statistics

The basic idea of PRIMA is to generate enough RR sets

such that for any budget k ∈ ®b, |R | ≥ λ∗k/OPTk , with proba-

bility at least 1 − 1/nℓ
′

. Since OPTk is unknown, we rely on

a good lower bound LBk of OPTk . PRIMA iterates through

all budgets in
®b to find the |R | = maxk ∈®bλ

∗
k/LBk . In that

process PRIMA efficiently reuses the RR-sets and the prefix

of the already found seed set, avoiding redundant calls to

the NodeSelection procedure.

Lastly, after determining |R |, thosemany RR sets are gener-

ated from scratch (line 23) on which the final NodeSelection

is invoked. This addresses a recently found issue of the origi-

nal IMM algorithm [13]. PRIMA then returns the top-b seeds

obtained from NodeSelection (line 25).

The correctness and the running time of the PRIMA algo-

rithm mainly follow the proof of the IMM algorithm [13, 39].

Intuitively, there are two changes in PRIMA’s running time.

The budget k of a single item of IMM is replaced with b,
the maximum budget of any item. Secondly, by applying

union bound on every individual item’s failure probability,

a factor of logn |
®b | is added to the sample complexity. Our

main Theorem 2 follows from the correctness of Algorithms

bundleGRD and PRIMA.

6 EXPERIMENTS
6.1 Experiment Setup
We perform extensive experiments on five real social net-

works. We first experiment with synthetic utility (value and

price) functions. For real utility functions, we learn the value

and noise distributions of items from the bidding data in

eBay, and obtain item prices from Craigslist and Facebook

groups to make them compatible with used items auctioned

in eBay. All experiments are performed on a Linux machine

with Intel Xeon 2.6 GHz CPU and 128 GB RAM.

6.1.1 Networks. Table 1 summarizes the networks and

their characteristics. Flixster is mined in [31] from a social

movie site and a strongly connected component is extracted.

Douban is a Chinese social network, where users rate books,

movies, music, etc. In [31] all movie and book ratings of

the users in the graph are crawled separately to derive two

datasets from book and movie ratings: Douban-Book and

Douban-Movie. Twitter and Orkut are two of the largest

public network datasets that can be obtained from [1].

6.1.2 Algorithms compared. We compare bundleGRD

against six baselines – RR-SIM
+
, RR-CIM, item-disj,

bundle-disj, BDHS-Concave and BDHS-Step. RR-SIM
+
and

RR-CIM are two state-of-the art algorithms designed for
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Figure 4: Expected social welfare in four configurations (on the Douban-Movie network)

10 30 50

Budget of both items

103

105

107

Ru
nn

in
g

Ti
m

e
(m

se
c)

10 30 50

Budget of both items

103

105

107

Ru
nn

in
g

Ti
m

e
(m

se
c)

10 30 50

Budget of both items

103

105

107

Ru
nn

in
g

Ti
m

e
(m

se
c)

10 30 50

Budget of both items

25

50

75

100

125

150

Ru
nn

in
g

Ti
m

e
(s

ec
)

(a) Flixster (b) Douban-Book (c) Douban-Movie (d) Twitter

Figure 5: Running times of bundleGRD, RR-SIM+, RR-CIM, item-disj and bundle-disj (on Configuration 1)
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Figure 6: Expected social welfare in four configurations (on the Twitter network)
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Figure 7: (a) Impact of number of items on the running time and (b-d) Experiments using real Param (on the Twitter network)
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Figure 8: (a-c) Comparison against BDHS algorithms and (d) Scalability of bundleGRD

complementary products in the context of IM [31]. However,

they work only for two items. Extending the Com-IC frame-

work and the RR-SIM
+
and RR-CIM algorithms for more

than two items is highly non-trivial as that requires deal-

ing with automata with exponentially many states. Hence in

comparing the performance of bundleGRD against RR-SIM
+



and RR-CIM, we limit the number of items to two. Later we

experiment with more than two items. Below, by determinis-

tic utility of an itemset I , we meanV(I )−P(I ), i.e., its utility
with the noise term ignored.

6.1.2.1 Com-IC baselines. For two items i1 and i2, given
seed set of item i2 (resp. i1), RR-SIM

+
(resp. RR-CIM) finds

seed set of item i1 (resp. i2) such that expected number of

adoptions of i1 is maximized. Initial seeds of i2 (resp. i1) are
chosen using IMM [39].

6.1.2.2 Item-disjoint. Our next baseline item-disj allo-

cates only one item to every seed node. Given the set of

items I, item-disj finds

∑
i ∈I bi nodes, say L, using IMM [39],

where bi is the budget of item i . Then it visits items in L
in non-increasing order of budgets, assigns item i to first

bi nodes and removes those bi nodes from L. By explicitly

assigning every item to different seeds, item-disj does not

leverage the effect of supermodularity. However it benefits

from the network propagation: since the utilities are super-
modular, if more neighbors of a node adopt some item, it

is more likely that the node will also adopt an item. Thus,

when individual items have positive utility and hence can

be adopted and propagate on their own, by choosing more

seeds, item-disj makes use of the network propagation to

encourage more adoptions.

6.1.2.3 Bundle-disjoint. Baseline bundle-disj, aims to

leverage both supermodularity and network propagation.

It first orders the items I in non-increasing budget order

and determines successively minimum sized subsets with

non-negative deterministic utility, maintaining these subsets

(“bundles”) in a list. Items in each bundle B are allocated to a

new set of bB := min{bi | i ∈ B} seed nodes. The budget of

each item in B is decremented by bB , and items with budget 0

are removed. When no more bundles can be found, we revisit

each item i with a positive unused budget and repeatedly

allocate it to the seeds of the first existing bundle B which

does not contain i . If bB > bi (where bi is the current budget
of i after all deductions), then the first bi seeds from the seed

set of B are assigned to i . If an item i still has a surplus budget,
we select bi fresh seeds using IMM and assign them to i .

6.1.2.4 Welfare maximization baselines. Our last two
baselines, BDHS-Concave and BDHS-Step are two state-of-

the-art welfare maximization algorithms under network ex-

ternalities [5]. As discussed in § 2, their study has significant

differences from our study, but we still make an empirical

comparison with their algorithms with the goal to explore

what fraction of the budget is needed by our model with

network propagation to achieve the same social welfare as

their model which has network externality but no network

propagation. We defer the details of the comparison to § 6.4.

6.1.3 Default Parameters. Following previous works [21,

34] we set probability of edge e = (u,v) to 1/din(v). Unless

otherwise specified, we use ϵ = 0.5 and ℓ = 1 as our default

for all five methods as recommended in [31, 39]. The Com-IC

algorithms RR-SIM
+
and RR-CIM use adoption probabilities,

called GAP parameters [31], to model the interaction be-

tween items. The GAP parameters can be simulated within

the UIC framework using utilities shown in Eq. (5). The

derivation follows simple algebra. Here, qi1 | ∅ (resp., qi1 |i2 )
denotes the probability that a user adopts item i1 given that

it has adopted nothing (resp., item i2).

qi1 | ∅ = Pr[N(i1) ≥ P(i1) − V(i1)],

qi1 |i2 = Pr[N(i1) ≥ P(i1) − (V({i1, i2}) − V(i2))], (5)

qi2 | ∅ = Pr[N(i2) ≥ P(i2) − V(i2)],

qi2 |i1 = Pr[N(i2) ≥ P(i2) − (V({i1, i2}) − V(i1))].

6.2 Experiments on two items
We explore four different configurations corresponding to

the choice of the values, prices, noise distribution parameters,

and item budgets (see Table 2). While UIC does not assume

any specific distribution for noise, in our experiments we

use a Gaussian distribution for illustration.

In Configurations 1 and 2, individual items have non-

negative deterministic utility. In this setting item-disj and

bundle-disj are equivalent. In Configurations 3 and 4 one

item has a negative deterministic utility while the other item

has a non-negative one. In this setting, however, bundleGRD

and bundle-disj are equivalent. One may also consider con-

figurations where every individual item has negative de-

terministic utility. In such a setting, item-disj produces 0

welfare, which makes the comparison degenerates.

For every parameter setting, we consider two budget set-

tings, uniform (e.g., Configuration 1) and non-uniform (resp.

Configuration 2). In case of uniform budget, both items have

the same budget k , where k is varied from 10 to 50 in steps

of 10. For non-uniform budget, i1’s budget is fixed at 70, and

i2’s budget is varied from 30 to 110 in steps of 20.

6.2.1 Social Welfare. We compare the expected social wel-

fare achieved by all algorithms on all four configurations

(Fig. 4). We show the results only for Douban-Movie, since

the trend of the results is similar on other networks. In terms

of social welfare, bundleGRD achieves an expected social

welfare upto 5 times higher than item-disj (Fig. 4(d)). A sim-

ilar remark applies when bundle-disj and bundleGRD are

not equivalent (e.g., Fig. 4(b)). Further, notice that RR-SIM
+

and RR-CIM produce welfare similar to bundleGRD. It fol-

lows from Table 4 of [31] (full arxiv version) that under this

configuration, RR-SIM
+
and RR-CIM end up copying the

seeds of the other item. Hence their allocations are similar to

bundleGRD. However, as shown next, bundleGRD is much

more efficient than the other two algorithms, and easily sup-

ports more than two items, which makes bundleGRD more

suitable in practice for multiple items over large networks.



No Price Value Noise GAP Budget

1 i1 = 3

i2 = 4

{i1, i2 } = 7

i1 = 3, i2 = 4

{i1, i2 } = 8
i1 : N (0, 1)
i2 : N (0, 1)

{i1, i2 } : N (0, 2)

qi
1
|∅ = 0.5, qi

2
|∅ = 0.5

qi
1
|i
2
= 0.84, qi

2
|i
1
= 0.84

Uniform

2 Nonuniform

3 i1 = 3, i2 = 3

{i1, i2 } = 8

qi
1
|∅ = 0.5, qi

2
|∅ = 0.16

qi
1
|i
2
= 0.98, qi

2
|i
1
= 0.84

Uniform

4 Nonuniform

Table 2: Two item configurations

No Value Budget

5 Additive Uniform

6 Cone-max Non-uniform

7 Cone-min Non-uniform

8 Level-wise Uniform

Table 3: Multiple item configurations

6.2.2 Running time.We study the running time of all algo-

rithms using Configuration 1 as a representative case. The

results are shown in Fig. 5. As can be seen, bundleGRD and

bundle-disj are equivalent and hence have the same run-

ning time. However, bundleGRD significantly outperforms

all other baselines on every dataset. RR-SIM
+
and RR-CIM

are particularly slow. In fact, on the large Twitter network,

they could not finish even after our timeout after 6 hours

(hence they are omitted from Fig. 5(d)). In comparison with

the baselines, bundleGRD is upto 5 orders of magnitude

(resp. 1.5 times) faster than RR-CIM (resp. item-disj). Run-

ning times on other configurations show a similar trend, and

are omitted.

6.3 More than two items
We use the largest dataset Twitter for tests in this subsection.

6.3.1 The configurations. Having established the superior-
ity of bundleGRD for two items, we now consider more than

two items. Recall that RR-SIM
+
and RR-CIM cannot work

with more than two items, so we confine our comparison to

item-disj and bundle-disj. We gauge the performance of the

algorithms on social welfare and running time. We also study

the effect of budget distribution on social welfare. We design

four configurations corresponding to the choice of budget

and utility (see Table 3). For all configurations, we sample

noise terms from N (0, 1). Price and value are set in such a

way as to achieve certain shapes for the set of itemsets in

the lattice that have a positive utility (see below).

6.3.1.1 Configurations 5-7. Configuration 5 is the sim-

plest: every item has the same budget; price and value are

set such that every item has the same utility of 1 and utility

is additive. Thus, by design, this configuration gives minimal

advantage to any algorithm that tries to leverage supermod-

ularity. The next two configurations (6 and 7) model the

situation where a single “core” item is necessary in order to

make an itemset’s utility positive. E.g., a smartphone may

be a core item, without which its accessories do not have

a positive utility. We set the core item’s utility to 5. The

addition of any other item increases the utility by 2. Thus,

all supersets of the core item have a positive utility, while

all other subsets have a negative utility. Hence, the set of

subsets with positive utility forms a “cone” in the itemset

lattice. In Configuration 6 (resp. 7), the core item is the item

with maximum (resp. minimum) budget. Finally, we design

a more general configuration where the set of itemsets with

positive utility forms an arbitrary shape (see Configuration

8 below).

6.3.1.2 Configuration 8. We consider the itemset lattice,

with level t having subsets of size t . We randomly set the

prices and values of items in level 1 such that a random

subset of items have a non-negative utility. Let At be any

itemset at level t > 1 and i ∈ At any item. We choose a value

uniformly at random, ϵ ∼ U [1, 5], and define

V(i |At \ {i}) =maxB∈P(At \{i },t−2){V(i |B) + ϵ} (6)

where P(A,q) denotes the set of subsets of A of size q.
That is, the marginal gain of an item i w.r.t. At \ {i}
is set to be the maximum marginal gain of i w.r.t. sub-

sets of At of size t − 2, plus a randomly chosen boost

(ϵ). E.g., let A4 = {i, j,k, l}, t = 4 then, V(i |{j,k, l}) =
max{V(i |{j,k}),V(i |{k, l}),V(i |{j, l})} + ϵ .

Recall that the value computation proceeds level-wise

starting from level t = 0. Thus, for any itemset At in Eq.(6),

V(i |B) for subsets B is already defined.

Finally, we setV(At ) =maxi ∈At {V(At \ {i}) +V(i |At \

{i})}. Notice that this way of assigning values ensures that

the value function is well-defined and supermodular.

6.3.2 Social welfare. First, we study the social welfare

achieved by the algorithms, in each of the above configura-

tions, with the total budget varying from 500 to 1000 in steps

of 100. For Configurations 7 and 10, we set the budget uni-

formly for every item. For other configurations, the max and

min budget is set to 20% and 2% of the total budget. Remain-

ing budget is split uniformly. The results of the experiment

on Twitter network are shown in Fig. 6. Under Configura-

tions 8 and 9, bundleGRD and bundle-disj produces the same

allocation, hence the welfare is the same. However in gen-

eral bundleGRD outperforms every baseline in all the four

configurations by producing welfare up to 4 times higher

than baselines.

6.3.3 Running time vs number of items. Next, we study
the effect of the number of items on the running time of the

algorithms. For this experiment, we use Configuration 5. We

set the budget of every item to k = 50 and vary the number

of items s , from 1 to 10. Fig. 7(a) shows the running times

on the Twitter dataset. As the number of items increases

the number of seed nodes to be selected for item-disj and

bundle-disj increases. Notice both item-disj and bundle-disj

select the same number of seeds, which is k × s . item-disj

selects it by one invocation of IMM, with budget ks , while
bundle-disj invokes IMM s times with budget k for every

invocation. So their overall running times differ. By contrast,

the running time of bundleGRD only depends on the maxi-

mum budget and is independent of the number of items. E.g.,



when number of items is 10, bundleGRD is about 8 times

faster than bundle-disj and 2.5 times faster than item-disj.

6.4 Experiment with real value, price, and
noise parameters

In this section, we conduct experiments on parameters (value,

price, and noise) learned from real data. We consider the

following 5 items: (1) Playstation 4, 500 GB console, denoted

ps , (2) Controller of the Playstation, denoted c , and (3-5)

Three different games compatible with ps , denoted д1, д2 and
д3 respectively. We next describe the method by which we

learn their parameters from real data.

6.4.1 Learning the value, price, andnoise. Jiang et al. [22]
showed that learning user’s valuations of items improves the

prediction accuracy of bids in auctions. Given the bidding

history of an item, their method learns a value distribution of

the item, by taking into account hidden/unobserved bids. We

use it to learn the values of itemsets from bidding histories.

In our model value is not random, instead noise models the

randomness in valuations. Hence we take the mean of the

learned distribution to be the value and the noise is set to

have 0mean and the same variance as the learnt distribution.

While UIC does not assume specific noise distributions, for

concreteness, we fit a Gaussian distribution to noise by taking

10, 000 independent random samples.

Itemset Price Value Noise eBay bidding link

{ps } 260 213 N (0, 4) https://ebay.to/2ym9Ioj

{ps, c } 280 220 N (0, 6) https://ebay.to/2Escb68

{ps, д1, д2, д3 } 275 258 N (0, 4) https://ebay.to/2QYpmxh

{ps, д1, д2, c } 290 292.5 N (0, 5) https://ebay.to/2ClEnF2

{ps, д1, д2, д3, c } 295 302 N (0, 7) https://ebay.to/2P60y99

Table 4: Learned parameters
We mine the bidding histories of itemsets from eBay. To

match the used products bidden in eBay, we use prices for

the used products on Craigslist and Facebook groups.

The price obtained is C$260 for ps , C$20 for c , and C$5

each for д1,д2 and д3. For some of the itemsets, we show

the learned parameters and the links to the corresponding

eBay bidding histories used in the learning, in Table 4. The

rest of the itemsets are omitted from the table for brevity.

We describe the parameters of those omitted itemsets here.

Firstly, any of c,д1,д2,д3, without the core item ps , is useless.
Hence values of those items are set to 0. Secondly, we did

not find any bidding record for an itemset consisting of ps, c
and a single game. This is perhaps because typically owners

of ps own multiple games and while selling they sell all

the games together with ps . Hence, we consider the itemset

with ps, c and a single game to have negative deterministic

utility. However, as the table shows, itemsets with ps, c and
two games have non-negative deterministic utility. Finding

the bidding history for the exact same games is difficult, so

since games д1–д3 are priced similarly and valued similarly

by users, we assume that any itemset with ps, c and any

two games has the same utility as that shown in the fourth

row of Table 4. From the value column, we can see that

the items indeed follow supermodular valuation, confirming

that in practice complementarity arises naturally. Lastly, the

only itemsets that have positive deterministic utility are

itemsets with ps, c and at least two games. All other itemsets

including the singleton items, have negative deterministic

utility. Consequently, we know that the allocation produced

by item-disj will have 0 expected social welfare, so we omit

item-disj from our experiments, discussed next.

6.4.2 Effect of total budget size.We compare bundleGRD

with bundle-disj on the Twitter dataset with different

sizes of total budgets. Given a total budget, we assign

30%, 30%, 20%, 10%, 10% of that to ps, c,д1,д2,д3 respectively.
Then we vary the total budget from 100 to 500 in steps of 100.

Fig. 7(b) shows the welfare: as can be seen, bundleGRD out-

performs bundle-disj in both high and low budgets. In fact

with higher budget, bundleGRD produces welfare more than

2 times that of bundle-disj. Next we report the running time

of the two algorithms in Fig. 7(c). Since bundle-disj makes

multiple calls to IMM, its running time is 1.5 times higher

than bundleGRD.

6.4.3 Effect of different item budget given the same to-
tal budget. Our next experiment studies the following ques-

tion. Suppose we have a fixed total budget which we must be

divided up among various items. How would the social wel-

fare and running time vary for different splits? Since we have

seen that in terms of social welfare bundleGRD dominates all

baselines, we use it to measure the welfare. Given a total bud-

get of 500, we split it across 5 items following three different

budget distributions, namely (i) Uniform: each item has the

same budget 100, (ii) Large skew: one item, ps has 82% of the

total budget and the remaining 18% is divided evenly among

the remaining 4 items; and (iii) Moderate skew: Budgets of

the 5 items are, [ps = 150, c = 150,д1 = 100,д2 = 50,д3 = 50].

Fig. 7(d) shows the expected social welfare and the running

time of bundleGRD under the three budget distributions on

the Twitter dataset. The welfare is the highest under uniform

and worst under large skew, with moderate skew in between.

Running time shows consistent trend, with uniform being

the fastest and large skew being the slowest. The findings

are consistent with the observation that with large skew, the

number of seeds to be selected increases and the allocation

cannot take full advantage of supermodularity.

6.4.4 Effect of propagation vs. network externality.We

next compare our bundleGRD against the other two base-

lines, BDHS-Concave and BDHS-Step (referred to as BDHS

algorithms for simplicity). BDHS-Concave and BDHS-Step

correspond to the concave and step externality algorithms

respectively (i.e. Alg 1 and 3 of [5]). Our overall approach is,

despite the differences between our model and BDHS model



as highlighted in §2, we try to convert our model in a rea-

sonable way to their model by means of restriction, and use

their algorithms to find the total social welfare that they can

achieve. Then we gradually increase the budget of items in

our model to see at which budget the social welfare achieved

by our solution reaches the social welfare achieved by their

solution that has no budget and assigns items to every node

directly. This would demonstrate the budget savings due to

our consideration of network propagation.

We now describe howwe convert ourmodel to their model.

First, our model uses network propagation with the UIC

model while their model uses network externality without

propagation. To align the twomodels, we try two alternatives.

The first alternative is to sample 10,000 live-edge graphs,

and the propagation on one live-edge graph bears similarity

with the 1-step function, and thus we use 1-step external-

ity function on each live-edge graph to compute the total

social welfare and then average over all live-edge graphs.

We refer to this alternative BDHS-Step. The second alterna-

tive works when we restrict our UIC model such that every

edge has the same propbability p. In this case, the activation

probability of a node v is 1 − (1 − p)k , where k is the num-

ber of active neighbors of v which is at most the size s of
its 2-neighborhood support set. This resembles the concave

function case in the BDHS model, and thus we use the con-

cave function 1 − (1 − p)s in their 2-hop model. We refer to

this alternative BDHS-Concave.

Second, to align their unit demand model with our model,

we treat each item subset as a virtual item in their model,

so that they can assign item subsets as one virtual item to

the nodes. Finally, their model has no budget, so they are

free to assign all item subsets to all nodes. We use this as a

benchmark of the total social welfare they can achieve, and

see at what fraction of the budget we can achieve the same

social welfare due to the network propagation effect.

We used the Orkut as one of the large networks in this

study, which also enables the study of the performance of

bundleGRD on a large network other than Twitter (which is

already used in Figure 5(d), 6, and 7).Fig. 8(a-c) shows the re-

sults on Orkut, Douban-Book and Douban-Movie networks

respectively. The x axis shows the fraction of the budget

needed by bundleGRD, where 100% corresponds to a budget

of n, i.e., #nodes in the network, which corresponds to the

setting of [5]. As can be seen, for dense networks like Orkut,

bundleGRD needs less than 35% as the budget. We found a

similar result on Flixster , not included here for the lack of

space. For a sparse graph like Douban-Book it needs 82%,

which is still less than the budget of BDHS. Further, since

propagation has a submodular growth, much of the budget

is used to increase the latter half of the welfare. E.g., even

on Douban-Book, 75% of BDHS’ welfare is obtained by only

using 50% budget. This test clearly demonstrates that our

bundleGRD could leverage the power of propagation, com-

pared to the BDHS approach that only considers externality.

6.4.5 Scalability test. Our next experiment shows the im-

pact of network size on bundleGRD using Orkut with two

types of edge probabilities: (1) 1/din(v) and (2) fixed 0.01.
We use a uniform budget of 50 for all items. We then use

breadth-first-search to progressively increase the network

size such that it includes a certain percentage of the total

nodes. The results are shown in Fig. 8(d). With increasing

network size, the running time in both cases roughly has

a linear increase, whereas the welfare depicts a sublinear

growth. It is worth noticing that even for the entire million-

sized network and fixed probability, bundleGRD requires

mere 129 (time 2) seconds to complete, which again attests

to its scalability.

6.4.6 Memory usage. Our experiment shows that

bundleGRD has a similar memory requirement as IMM. It

generates the same number of RR sets as IMM. We omit the

details for the lack of space.

7 SUMMARY & DISCUSSION
We propose a novel model combining influence diffusion

with utility-driven item adoption, which supports any mix

of competing and complementary items. Focusing on com-

plementary items, we study the problem of optimizing ex-

pected social welfare. Our objective function is monotone,

but neither submodular nor supermodular. Yet, we show

that a simple greedy allocation guarantees a (1 − 1/e − ϵ)-
approximation to the optimum. Based on this, we develop a

scalable approximation algorithm bundleGRD, which satis-

fies an interesting prefix preserving property. With extensive

experiments, we show that our algorithm outperforms the

state of the art baselines.

Our results and techniques carry over unchanged to any

triggering propagation model [25]. We assumed that price is

additive and valuations are supermodular. If we use submod-

ular prices, that would further favor item bundling. In this

case, utility remains supermodular and our results remain

intact. Independently of this, we could study competition

using submodular value functions. Orthogonally, we can

study the UIC model under personalized noise terms.

Acknowledgments. The research of the first and last au-

thor was supported in part by a Discovery grant and a Discov-

ery Accelerator Supplement grant from the Natural Sciences

and Engineering Research Council of Canada (NSERC). The

second author was partially supported by the National Natu-

ral Science Foundation of China (Grant No. 61433014). We

would like to thank Wei Lu and Ritika Jain for stimulating

discussions during the early stages of this research.



REFERENCES
[1] Twitter dataset. https://snap.stanford.edu/data/. Accessed: 2018-05-30.

[2] B. Abramowitz and E. Anshelevich. Utilitarians without utilities: Max-

imizing social welfare for graph problems using only ordinal prefer-

ences. In AAAI, pages 894–901, 2018.
[3] P. Banerjee et al. Maximizing welfare in social networks under a utility

driven influence diffusion model. https://arxiv.org/abs/1807.02502.

[4] S. Bharathi et al. Competitive influence maximization in social net-

works. In IWWIE, 2007.
[5] S. Bhattacharya et al. Welfare maximization with friends-of-friends

network externalities. Theory of Computing Systems, 61(4):948–986,
2017.

[6] R. W. Boadway and N. Bruce. Welfare economics. B. Blackwell New
York, 1984.

[7] C. Borgs et al. Maximizing social influence in nearly optimal time. In

SODA, 2014.
[8] C. Budak et al. Limiting the spread of misinformation in social net-

works. In WWW, 2011.

[9] R. Carbaugh. Contemporary Economics: An Applications Approach.
Routledge, 8th edition, 2016.

[10] P. Chalermsook et al. Social network monetization via sponsored viral

marketing. In SIGMETRICS, 2015.
[11] L. Chang and W. B. Fairley. Pricing automobile insurance under multi-

variate classification of risks: additive versus multiplicative. Journal
of Risk and Insurance, 1979.

[12] S. Chen et al. Online topic-aware influence maximization. In VLDB,
pages 666–677, 2015.

[13] W. Chen. An issue in the martingale analysis of the influence maxi-

mization algorithm imm. arXiv preprint arXiv:1808.09363, 2018.
[14] W. Chen et al. Scalable influence maximization for prevalent viral

marketing in large-scale social networks. In KDD, 2010.
[15] W. Chen et al. Scalable influence maximization in social networks

under the linear threshold model. In ICDM, 2010.

[16] W. Chen et al. Information and influence propagation in social networks.
Morgan & Claypool Publishers, 2013.

[17] S. Datta et al. Viral marketing for multiple products. In ICDM, 2010.

[18] U. Feige and J. Vondrák. The submodular welfare problemwith demand

queries. TOC, 2010.
[19] X. He et al. Influence blocking maximization in social networks under

the competitive linear threshold model. In ICDM, 2012.

[20] J. Hirshleifer. The private and social value of information and the

reward to inventive activity. In Uncertainty in Economics. 1978.
[21] K. Huang et al. Revisiting the stop-and-stare algorithms for influence

maximization. VLDB, 2017.
[22] A. X. Jiang and K. Leyton-Brown. Bidding agents for online auctions

with hidden bids. Machine Learning, 2007.
[23] K. Jung et al. Irie: Scalable and robust influence maximization in social

networks. In ICDM, 2012.

[24] M. Kapralov et al. Online submodular welfare maximization: Greedy

is optimal. In SODA, 2013.
[25] D. Kempe et al. Maximizing the spread of influence through a social

network. In KDD, 2003.
[26] J. Kim et al. Scalable and parallelizable processing of influence maxi-

mization for large-scale social networks? In ICDE, 2013.
[27] N. Korula et al. Online submodular welfare maximization: Greedy

beats 1/2 in random order. In TOC, 2015.
[28] H. Li et al. Conformity-aware influence maximization in online social

networks. In VLDB, pages 117–141, 2015.
[29] Y. Li et al. Influence maximization on social graphs: A survey. TKDE,

2018.

[30] W. Lu et al. The bang for the buck: fair competitive viral marketing

from the host perspective. In KDD, 2013.

[31] W. Lu et al. From competition to complementarity: Comparative

influence diffusion and maximization. In VLDB, 2016.
[32] P. Milgrom and J. Roberts. Complementarities and fit strategy, struc-

ture, and organizational change in manufacturing. Journal of account-
ing and economics, 1995.

[33] R. B. Myerson. Optimal auction design. Mathematics of operations
research, 1981.

[34] H. T. Nguyen et al. Stop-and-stare: Optimal sampling algorithms for

viral marketing in billion-scale networks. In SIGMOD, 2016.
[35] N. Nisan et al. Algorithmic game theory. Cambridge university press,

2007.

[36] N. Pathak et al. A generalized linear threshold model for multiple

cascades. In ICDM, 2010.

[37] T. Sun et al. Participation maximization based on social influence in

online discussion forums. In ICWSM, 2011.

[38] J. Tang et al. Online processing algorithms for influence maximization.

In SIGMOD, 2018.
[39] Y. Tang et al. Influence maximization in near-linear time: A martingale

approach. In SIGMOD, 2015.
[40] D. M. Topkis. Supermodularity and Complementarity. Princeton Uni-

versity Press, 1998.

A PROOFS AND ADDITIONAL
THEORETICAL ANALYSIS

We restate the theorems and lemmas with the original num-

bering for convenience.

A.1 Proofs for Properties of UIC (Section 4)
Lemma 1. (Local maximum). LetW be a possible world and
A,B ⊆ I be any itemsets such thatA and B are local maximum
with respect toUW . Then (A∪B) is also a local maximumwith
respect toUW , i.e.,UW (A ∪ B) = maxC⊆A∪BUW (C).

Proof. For any subset C ⊆ A ∪ B, we have

UW (C) = UW (C \ B | B ∩C) +UW (B ∩C)

≤ UW (C \ B | B) +UW (B)

= UW (C ∪ B) = UW (B | C \ B) +UW (C \ B)

≤ UW (B | A) +UW (A) = UW (A ∪ B).

�
Lemma2. For any nodeu and any time t , the itemset adopted
by u at time t , A𝒮

W (u, t), must be a local maximum.

Proof. We prove by an induction on t . The base case

of t = 1 is true because by the model, node u adopts

the local maximum among all subsets of items allocated

to it. For the induction step, suppose for a contradiction

that A𝒮
W (u, t) is not a local maximum but A𝒮

W (u, t − 1) is

a local maximum. Then there must exist a C ⊂ A𝒮
W (u, t)

that is a local maximum and UW (C) > UW (A
𝒮
W (u, t)). By

Lemma 1, C ∪ A𝒮
W (u, t − 1) is also a local maximum, and

thus C ∪ A𝒮
W (u, t − 1) cannot be A

𝒮
W (u, t). Since UW (C ∪

A𝒮
W (u, t − 1)) ≥ UW (C) > UW (A

𝒮
W (u, t)), u should adopt

C ∪ A𝒮
W (u, t − 1) instead of A𝒮

W (u, t), a contradiction. �
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G, V , E, n andm Graph, node set, edge set, number of nodes and number of edges p : E → [0, 1] Influence weight function

I Universe of items P, V , N and U Price, Value, Noise and Utility

®b Budget vector b Maximum budget

𝒮 Seed allocation, i.e. set of node-item pairs S Seed nodes

S𝒮
i Seed nodes of item i in allocation 𝒮 S𝒮

All seed nodes of allocation 𝒮
I𝒮v Items allocated to seed node v in allocation 𝒮 R𝒮 (u, t ) and A𝒮 (u, t ) Desire and adoption set of u at time t in allocation 𝒮

σ and ρ Expected adoption and social welfare W ,W E
,W N

Possible world, edge and noise possible world

Grd and OPT Greedy and optimal allocation B and B A block and a sequence of item disjoint blocks

ei Effective budget of block Bi Bai and ai Anchor block and anchor item of block Bi
Table 5: Table of notations

Lemma 3. (Reachability). For any item i and any possible
world W , if a node u adopts i under allocation 𝒮 , then all
nodes that are reachable from u in the worldW also adopt i .

Proof. Consider a possible worldW and a node u that

adopts item i . Consider any node v reachable from u inW
that does not adopt i . Let (u,v1, ...,vk ,v) be a path inW E

.

Assume w.l.o.g. that v is the first node on the path that

does not adopt i . A𝒮
W (vk , t) and A

𝒮
W (v, t + 1) respectively

are the itemsets adopted by vk at time t and by v at time

t + 1. Let J = A𝒮
W (vk , t) ∪ A

𝒮
W (v, t + 1). Clearly i ∈ J and

J ⊂ R𝒮
W (v, t + 1), desire set of v at t + 1. We know that

both A𝒮
W (vk , t) and A

𝒮
W (v, t + 1) are local maximums by

Lemma 2. Then by Lemma 1, J is also a local maximum,

hence utilW (J ) ≥ utilW (A𝒮
W (v, t + 1)), as A

𝒮
W (v, t + 1) ⊂ J .

Also, |J | > |A𝒮
W (v, t + 1)|, as J contains at least one more

item i . Thus as per our diffusion model v at time t should
adopt the larger cardinality set J . Hence i is adopted byv . �

Theorem1. Expected social welfare is monotone with respect
to the sets of node-item allocation pairs. However it is neither
submodular nor supermodular.

Proof. To prove monotonicity, we show by induction on

propagation time that the social welfare in any worldW
is monotone. The result follows upon taking expectation.

Consider allocations 𝒮 ⊆ 𝒮 ′ and any node v .
Base Case: At t = 1, desire happens by seeding. By as-

sumption, I𝒮v ⊆ I𝒮
′

v . Thus, R𝒮
W (v, 1) ⊆ R

𝒮′
W (v, 1), where

R𝒮
W (v, 1) denotes the desire set of v in world W under

allocation 𝒮 . Suppose J := A𝒮
W (v, 1) \ A

𝒮′
W (v, 1) is non-

empty. From the semantics of adoption of itemsets, we have

UW (J | A
𝒮
W (v, 1) \ J ) ≥ 0. Now, A𝒮

W (v, 1) \ J ⊆ A
𝒮′
W (v, 1).

By supermodularity of utility,UW (J | A
𝒮′
W (v, 1)) ≥ 0. Since

J ⊆ A𝒮
W (v, 1) ⊆ R

𝒮
W (v, 1) ⊆ R

𝒮′
W (v, 1), by the semantics of

itemset adoption, the set J ∪ A𝒮′
W (v, 1) will be adopted by v

at time 1, a contradiction to the assumption that A𝒮′
W (v, 1)

is the adopted itemset by v at time 1.

Induction: By Lemma 3, we know that once a node adopts an

item, all nodes reachable from it inW E
also adopt that item.

Furthermore, reachability is monotone in seed sets. From this,

it follows thatA𝒮
W (v,τ+1) ⊆ A

𝒮′
W (v,τ+1). DefineA

𝒮
W (v) :=⋃

t A
𝒮
W (v, t). By definition, an adopted itemset has a non-

negative utility, so we have ρW (𝒮) =
∑
v ∈V UW (A

𝒮
W (v)) ≤

∑
v ∈V UW (A

𝒮′
W (v)) = ρW (𝒮 ′). This shows that the social

welfare in any possible world is monotone.

For submodularity and supermodularity, we give coun-

terexamples. Consider a network with single node u and two

items i1 and i2. Let P(i1) > V(i1) and P(i2) > V(i2). How-
ever V({i1, i2}) > P(i1) + P(i2). Assume that noise terms

are bounded random variables, i.e., |N(i j )| ≤ |V(i j ) − P(i j )|,
j = 1, 2. Thus expected individual utility of i1 or i2 is negative,
but when they are offered together, the expected utility is

positive. Now consider two seed allocations 𝒮 = ∅ and 𝒮 ′ =
{(u, i1)}. Let the additional allocation pair be (u, i2). Now
ρ(𝒮∪{(u, i2)})−ρ(𝒮) = 0−0 = 0: for𝒮 , no items are adopted

and for 𝒮 ∪ {(u, i2)} the noise N(i2) cannot affect adoption
decision in any possible world, so i2 will not be adopted by

u in any world. However, ρ(𝒮 ′ ∪ {(u, i2)}) − ρ(𝒮 ′) > 0, as

under allocation 𝒮 ′, i1 is not adopted by u in any world,

while under allocation 𝒮 ′ ∪ {(u, i2)}, u will adopt {i1, i2} in
every world, resulting in positive social welfare and breaking

submodularity.

For supermodularity, consider a network consisting of

two nodes v1 and v2 with a single directed edge from v1 to
v2, with probability 1. Let there be one item i whose deter-
ministic utility is positive, i.e.,V(i) > P(i). Again, assume

that the noise term N(i) is a bounded random variable, i.e.,

|N(i)| ≤ |V(i) − P(i)|. Now consider two seed allocations

𝒮 = ∅ and𝒮 ′ = {(v1, i)}. Let the additional pair be (v2, i). Un-
der allocation 𝒮 ′, both nodes v1 and v2 will adopt i in every

possible world. Hence adding the additional pair (v2, i) does
not change item adoption in any world and consequently

the expected social welfare is unchanged. Thus we have,

ρ(𝒮 ∪ {(v2, i)}) − ρ(𝒮) = E[U(i1)] > 0

= ρ(𝒮 ′ ∪ {(v2, i)}) − ρ(𝒮 ′)

which breaks supermodularity. �

A.2 Proofs for Block Accounting (Section
5.2)

Lemma 7. For any arbitrary seed allocation 𝒮 , the expected
social welfare inW N is ρW N (𝒮) ≤

∑
i ∈[t ] σ (Sai ) · ∆i , where

Sai is the seed set assigned to the anchor item ai of block Bi ,
and ∆i is as defined in Eq. (2).

Proof. For an edge possible worldW E
, suppose that after

the diffusion process underW E
, every nodev adopts item set



Av . LetAv,i = Av ∩Bi for all i ∈ [t], and ∆
Av
i = UW N (Av,i |

Av,1 ∪ . . . ∪Av,i−1). Thus, we have

ρW N (𝒮) = EW E

[∑
v ∈V

UW N (Av )

]
= EW E


∑
v ∈V

∑
i ∈[t ]

∆Av
i


=

∑
i ∈[t ]

EW E

[∑
v ∈V

∆Av
i

]
, (7)

where the expectation is taken over the randomness of the

edge possible worlds, and thus we use subscriptW E
under

the expectation sign to make it explicit. By switching the

summation signs and the expectation sign in the last equal-

ity above, we show that the expected social welfare can be

accounted as the summation among all blocks Bi of the ex-
pected marginal gain of block Bi on all nodes. We next bound

EW E

[∑
v ∈V ∆Av

i

]
for each block Bi .

Under the edge possible worldW E
, for each v ∈ V , there

are three possible cases forAv,i . In the first case,Av,i = ∅. In

this case, ∆Av
i = 0, so we do not need to count the marginal

gain ∆Av
i . In the second case, Av,i is not empty but it does

not co-occur with block Bi ’s anchor ai , that is ai < Av ,

and Av,i , ∅. In this case, Let A′ = A ∩ (Bj ∪ . . . ∪ Bi ),
where Bj is the anchor block of Bi . Then A′ is not empty

and we knowUW N (A′ | B1 ∪ . . . ∪ Bj−1) < 0. Since we have

UW N (A′ | B1∪ . . .∪Bj−1) =
∑i

j′=j ∆
Av
j′ . Thus the cumulative

marginal gain of ∆Av
j′ with j ≤ j ′ ≤ i is negative, so we can

relax them to 0, effectively not counting the marginal gain

of ∆Av
i either.

Finally,Av,i is non-empty and co-occur with its anchor ai ,

i.e. ai ∈ A andAv,i , ∅. SinceAv is a partial block, ∆Av
i ≤ ∆i ,

we relax ∆Av
i to ∆i . This relaxation occurs only on nodes

that adopt ai . A node v could adopt ai only when there is a

path inW E
from a seed node that adopts ai to node v . As

defined in the lemma, Sai is the set of seed nodes of ai . Let
Γ(Sai ,W

E ) be the set of nodes that are reachable from Sai in
W E

. Then, there are at most |Γ(Sai ,W
E )| nodes at which we

relax ∆Av
i to ∆i for block Bi . Hence,∑

v ∈V

∆Av
i ≤ |Γ(Sai ,W

E )| · ∆i . (8)

Furthermore, notice that EW E [|Γ(Sai ,W
E )|] = σ (Sai ), by the

live-edge representation of the IC model. Therefore, together

with Eq. (7) and (8), we have

ρW N (𝒮) ≤
∑
i ∈[t ]

EW E
[
|Γ(Sai ,W

E )| · ∆i
]
=

∑
i ∈[t ]

σ (Sai ) · ∆i .

This concludes the proof of the lemma. �

Theorem 3. (Correctness of bundleGRD) Let 𝒮Grd be
the greedy allocation and𝒮 be any arbitrary allocation. Given
ϵ > 0 and ℓ > 0, the expected social welfare ρ(𝒮Grd) ≥ (1 −
1

e − ϵ) · ρ(𝒮) with at least 1 − 1

|V |ℓ probability.

Proof. From Lemma 5 , we have for a possible world

W N = (W E ,W N ), ρW N (𝒮Grd) =
∑

i ∈[t ] σ (S
GrdE
Bi
) · ∆i , where

the size of SGrdEBi
is the effective budget of Bi .

For an arbitrary allocation 𝒮 , since ai is the anchor item
of Bi , by its definition we know that |Sai | = |S

GrdE
Bi
|. By the

correctness of the prefix-preserve influence maximization al-

gorithm we use in line 2 (Definition 1, to be instantiated

in §5.3), we have that with probability at least 1 − 1

|V |ℓ ,

σ (SGrdEBi
) ≥ (1 − 1

e − ϵ)σ (Sai ), for all blocks Bi ’s and their

corresponding anchors ai ’s.
Let the distribution of worldW N

be DN
. Then, together

with Lemma 7, we have that with probability at least 1− 1

|V |ℓ ,

ρ(𝒮Grd) = EW N ∼DN [ρW N (𝒮Grd)]

= EW N ∼DN


∑
i ∈[t ]

σ (SGrdEBi ) · ∆i


≥ EW N ∼DN


∑
i ∈[t ]

(1 −
1

e
− ϵ)σ (Sai ) · ∆i


≥ (1 −

1

e
− ϵ)EW N ∼DN [ρW N (𝒮)]

= (1 −
1

e
− ϵ)ρ(𝒮).

Therefore, the theorem holds. �

A.3 Proofs for Item-wise prefix preserving
IMM (Section 5.3)

Lemma 8. Let R be the final set of RR sets generated by
PRIMA at the end and let k ∈ ®b be any budget. Then |R | ≥
λ∗k/OPTk holds with probability at least 1 − 1/nℓ

′

.

Proof. Given x ∈ [1,n], ϵ ′ and δ3 ∈ (0, 1) and a bud-

get k . Let Sk be the seed set of size k obtained by invoking

NodeSelection(R,k), where,

|R | ≥
(2 + 2

3
ϵ ′) · (log

(n
k

)
+ log(1/δ3))

ϵ ′
·
n

x
. (9)

Then, from Lemma 6 of [39], if OPTk < x , then n · FR(Sk ) <
(1 + ϵ ′) · x with probability at least (1 − δ3). Now let j =
⌈log

2

n
OPTk
⌉. By union bound, we can infer that PRIMA has

probability at most (j−1)/(nℓ
′

· log
2
n) to satisfy the coverage

condition of line 12 for the budget k . Then by Lemma 7 of

[39] and the union bound, PRIMA will satisfy LBk ≤ OPTk

with probability at least 1 − nℓ
′

. We know that for any k ∈ ®b,
|R | ≥ λ∗k/LBk , hence the lemma follows. �

We are now ready to prove the correctness of PRIMA.

Lemma 9. PRIMA returns a prefix preserving (1 − 1/e − ϵ)-
approximate solution Sb to the optimal expected spread, with
probability at least 1 − 1/nℓ .



Proof. We know from Lemma 8 that the RR set sampling

for any budget can result in the coverage condition (Algo-

rithm 2, line 12) failing with probability at most 1/nℓ
′

. By

applying union bound over all the budgets, we have that the

failure probability of the coverage condition in PRIMA is at

most

∑
k ∈®b 1/n

ℓ′ = | ®b | · 1/nℓ
′

. By setting ℓ′ = logn(n
ℓ · | ®b |),

we bound this failure probability to at most 1/nℓ . Thus ℓ′ is
used for computing α and βk in Eq. (4). Further once θk is

determined, we generate those many RR set from scratch.

This follows the fix proposed in [13] for a bug in Theorem

1 of [39]. Without the fix, the top Sb nodes returned by the

last call to NodeSelection (line 25), cannot be shown to have

a (1− 1/e − ϵ)-approximate solution with probability at least

1 − 1/nℓ . For every budget bi ∈ ®b, we can then choose the

prefix of top-bi nodes of Sb and use that as a solution Sbi
for that budget, with the guarantee that with probability at

least 1− 1/nℓ each Sbi is a (1− 1/e −ϵ)-approximate solution

to OPTbi . By union bound, PRIMA returns a (1 − 1/e − ϵ)-
approximate prefix preserving solution with probability at

least 1 − 2/nℓ .
Finally by increasing ℓ to ℓ + log 2/logn in line 2, we raise

PRIMA’s probability of success to 1 − 1/nℓ . �

Running time
The running time of PRIMA essentially involves two parts:

the time needed to generate the set of RR sets R and the total

time of allNodeSelection invocations. From Lemma 9 of [39],

we have for any budget k , the set of RR sets generated for

that budget Rk satisfies,

E[|Rk |] ≤
3max{λ∗

b
, λ′

b
} · (1 + ϵ ′)2

(1 − 1/e) · OPTmin

= O((b + ℓ′)n log n · ϵ−2/OPTmin).

Further since PRIMA reuses the RR sets instead of gener-

ating them from scratch for every budget, for the RR set R

generated by PRIMA,

E[|R|] =maxk ∈®b {E[|Rk |]}

= O((b + ℓ′)n log n · ϵ−2/OPTmin). (10)

For an RR set R ∈ R, letw(R) denote the number of edges

in G pointing to nodes in R. If EPT is the expected value of

w(R), then we know, n ·EPT ≤ m ·OPTmin [39]. Hence using

Eq. (10), the expected total time to generate R is determined

by,

E[
∑
R∈R

w(R)] = E[|R|] · EPT

= O((b + ℓ′)(n +m) log n · ϵ−2). (11)

Notice that generating RR set from scratch for the final

node selection, following the fix of [13], only adds a multi-

plicative factor of 2. Hence the overall asymptotic running

time to generate R remains unaffected. Using Lemma 9 and

Eq. (11) we now prove the correctness and the running time

result of PRIMA.

Theorem 4. PRIMA is prefix preserving and returns a (1 −
1/e − ϵ)-approximate solution to IM with at least 1 − 1/nℓ

probability inO((b + ℓ+ logn | ®b |)(n+m) log n · ϵ−2) expected
time.

Proof. From Lemma 9, we have that PRIMA returns a

prefix preserving (1 − 1/e − ϵ)-approximate solution with

at least 1 − 1/nℓ probability. In that process PRIMA invokes

NodeSelection, log
2
n − 1 times in the while loop and once

to find the final seed set Sb . Note that, we intentionally avoid
redundant calls to NodeSelection when we switch budgets,

which saves | ®b | additional calls to NodeSelection.

Let Ri be the susbset of R used in the i-th iteration of the

loop. Since NodeSelection involves one pass over all RR set,

on a given input Ri , it takes O(
∑

R∈Ri |R |) time. Recall |Ri |

doubles with every increment of i . Hence it is a geometric

sequence with a common ratio of 2. Now from Theorem

3 of [39] and the fact that there is no additional calls to

NodeSelection during budget switch, we have total cost of

invoking all NodeSelection is O(E[
∑

R∈R |R |]).
Since |R | ≤ w(R), for any R ∈ R, then using Eq. (11) we

have,

O(E[
∑
R∈R

|R |]) = O(E[
∑
R∈R

w(R)])

= O((b + ℓ′)(n +m) log n · ϵ−2)

= O((b + ℓ + logn |
®b |)(n +m) log n · ϵ−2).

Hence the theorem follows. �

Combining Theorems 3 and 4 we get our main Theorem 2.

Prefix-preserving extensions to general RIS algo-
rithms. RIS algorithms have the following two steps:

1. Generate a sufficiently large set of random RR sets.

2. Find k nodes that covers the most number of RR sets.

In RIS algorithms that are designed for a single item prop-

agation, the stopping criterion of step 1 is tested for a single

budget. However, in the UIC model, we have a budget vector.

Hence we need to ensure that for any budget in the given

budget vector, the stopping criterion is met, i.e., there are

enough RR-sets sampled for every budget in the budget vec-

tor. A straightforward extension is to make a linear pass on

the vector, and sample more RR sets for a budget whenever

the number of RR sets is less than required for the current

budget. This increases the running time by a factor of the

size of the budget vector. In PRIMA, we have made a careful

extension to the IMM algorithm to avoid this overhead, by

reusing the seed set found in step 2 for previous budgets.

Investigation of similar efficient extensions for other RIS

algorithms is left for future research.
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