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Software 2.0: Who will own the platform?

Yann LeCun
Director of AI Research,

Facebook

Andrej Karpathy
Director of AI,
Tesla

Chris Lattner
Senior Director,

TensorFlow, TPU
(Google)

OK, Deep Learning has outlived its usefulness as a
buzz-phrase.

Deep Learning est mort. Vive Differentiable
Programming!

Software 2.0: Write a rough skeleton of the code, and
use the computational resources at our disposal to search
this space for a program that works.

Julia is another great language with an open and active
community. They are currently investing in machine
learning technigues. The Julia community shares many
common values as with our project.




3 Posters at NeurIPS 2018 (MLSys Workshop)

ﬂ% Julia on TPUs
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Zygote.jl: General Purpose Automatic Differentiation

function foo(W, Y, x) function Vfoo(W, Y, x)
Z=W*Y Z=W?*Y
a=2Z%Xx a=2Z%"x

b=Y *Xx b=Y *Xx
¢ = tanh.(b) % Zngte ¢, Jtanh = Vtanh.(b)

r=a+c a + ¢, function (Ar)
returnr
end

{Ntarnh AWK — Ttanhi(/N\~)
IAL\C N - LI\ AL,
P o o s e T A Nt o L S Szt e Rocd

- * *
o—

(nothing, AW, AY, Ax)
M. Innes. Don't Unroll Adjoint: end

C_] Differentiating SSA-Form Programs end
(QXiv.1810.07901)




Celeste.jl: Julia at Peta-scale
Cori: 650,000 cores. 1.3M threads. 60 TB of data.

Cataloging the Visible Universe through Bayesian Inference at Petascale

Jeffrey Regier®, Kiran Pamnany’, Keno Fischer’, Andreas Noack’, Maximilian Lam®, Jarrett Revels®,
Steve Howard¥, Ryan Giordano¥, David Schlegel’, Jon McAuliffe¥, Rollin Thomas', Prabhat

*Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
' Parallel Computing Lab, Intel Corporation
*Julia Computing
SComputer Science and Al Laboratories, Massachusetts Institute of Technology
qDeparlmem of Statistics, University of California, Berkeley
Lawrence Berkeley National Laboratory
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Celeste: Custom sparsity patterns and storage
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CUDAnNative.jl: Native code generation on GPUs

function vadd(gpu, a, b, ¢) julia> @device code ptx @cuda vadd(l, a, a, a)
i = Phreadrdx().x + BLockDim().x * //
~ ((bIoekTax().x-1) + (gpu-1) * // Generated by LLVM NVPTX Back-End
gridpim() .x) 7.7
@inbounds c[i] = a[i] + b[i]
return .visible .entry ptxcall vadd 23(
end .param .u64 ptxcall vadd 23 param 0,
: .param .align 8 .Db8
a, b, c = (CuArray(...) for _ 1in 1:3) ptxcall vadd 23 param 1[16],
@cuda threads=length(a) vadd(l, a, b, c) .param .align 8 .b8
ptxcall vadd 23 param 2[16],
Provide_s__:A | | | .param .align 8 .Db8
CUDA intrinsics ptxcall vadd 23 param 3[16]

SPMD Programming model z

GPU memory management mov.u32 $rl, stid.x;
mov.u3?2 $r2, %ntid.x;
mov.u32 $r3, %ctaid.x;

rr=;] Besard et al. Effective Extensible Programming:
—) Unleashing Julia on GPUs (arXiv:1712.03112)




CUDAnNative.jl: As fast as CUDA C
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Julia runs on Google TPUs

- HOMIe0B w0 CNp O TPU Coe O pid 1)
Step
v XLA Ops

w iSO Chip O TPU Coe 1 (pd )
Step
v XLA Ops

- NEIeBG-w-0 Cip 1: TPU Core 0 (pid 4)
Step
» XLA Ops

- ALB5-wO Cip 1 TPU Care t pd §)
Step
v XLA Ops

v MG wOChp 2 TPUCo O pe T)
Step
v XLA Ops

- AlAEwd Chp 2 TPU Coe ! DO ®)
Step
v XLA Ops

Fischer et al. Automatic Full Compilation of Julia
Programs and ML Models to Cloud TPUs




Google.al Lead Jetf Dean on Julia

g seroens :
@JeffDean |

Julia + TPUs = fast and easily expressible ML
computations!

Keno Fischer @KenoFischer

Our new paper today: arxiv.org/abs/1810.09868. Compile your #julialang code
straight to @Google's #CloudTPU. Must go faster! We'll have an (alpha quality) repo
up soon for people to start playing with this.

6:23 AM - 24 Oct 2018

240 Retweets 617Lkes P @ @B & & ‘ ®

¥ 617 )
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Best in class packages in many domains
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Differential Equations  Graph Processing Data Science Image Processing

iﬂux 7% JUMP ha gt

Deep Learning Operations Research Signal Processing Computational Biology




Composability: DifferentialEquations.jl + Flux.jl
Neural ODEs

@,_J Rackauckas et al. DiffEqFlux.jl - A Julia Library for Neural Differential Equations
(arXiv:1902.02




Composability: DifferentialEquations.j| + Measurements. |l

t Define the problem
function pendulum(du, u, p, t)
6 = u[l]
de = u[2]
du[1l] = d©
du[2] = -(g/L)*6 ! 1T Namerical
end ‘14 o' Analytic

6
¥ Pass to solvers
prop = ODEProblem(pendulum, uo, tspan) . Rackauckas et al. DifferentialEquations.jl — A Performant and Feature-Rich

sol = solve ( prob, Tsit5 ( ) , reltol = le- 6) Ecosystem for Solving Differential Equations in
- Julia. 2017. (Joumal of Open Research Software)

# Analytic solution 1 Giordano. Uncertainty propagation with functionally correlated quantities
U = uo[2] .* cos.(sgrt(g/L) .* sol.t) : (arXiv:1610.08716)




Personalized Medicine in Partnership with UMB

| i
dobia sy o Prescribers  \F bl
data (eMR) and other Real-time access to othevr zcu‘:n‘m.c ;.m
external scientific KNOWSedee 10 meke using quantitative
information Informed patient decisions. therapeutic principles

»

Joga Gobburu _Application
Professor, School of Pharmacy (UMB) Deveiop front-end tools

¥ for enabling knowledge

ex-Director, Division of Pharmacometrics, US FDA to guide prescriber
decisions

Accurate personalized drug dosage calculation
Clinical trial at Johns Hopkins with Vancomycin

Demonstrate savings. Average cost of stay is $25,000.
Vijay Ivaturi 20% savings expected.
Professor, School of Pharmacy (UMB)

FDA approval and roll-out




Neural SDEs in Finance
The future for optimizing portfolios of hundreds of thousands of options

Chris Rackauckas et al.

® Semilinear Parabolic Form ® Financial Quants optimize portfolios through
PDEs: Hamilton-Jacobi-Bellman, Nonlinear
Black-Scholes.

High dimensional PDEs are unsolvable by

Then the solution of Eq. 1 satisfies the following BSDE (¢f., e.g., traditional m¢Chan|3mS. 3

refs. 8 and 9): New (2018) idea: transform it into a Backwards
stochastic differential equation with a neural

s i e N network inside of it.
[ (3 Ko u(0, X)o7 (0, Xo) Vo, Xi) ) ds New computational challenge: get neural

| /"Vcn 5. X)IT a(s, X.) dW, : networks working inside of fancy mathematical
! (adaptive high order etc.) stochastic differential
equation libraries.

Ju

(=
) (t.x) 4 )ll(r'r"lf.ru”v\".uh!_x')o\.';'V r)-plt. x)
gt Y 4

tf(frulfllnllflbv”lf‘tl‘) 0 (1)

ul(t, .\',-) — ull), .\-n)

We solve this by differentiating an existing library!

Solving high-dimensional partial differential equations
using deep learning, 2018, PNAS, Han, Jentzen, E




Neural SDEs in action
Neural SDEs in action: nonlinearly extrapolate time series with error bounds

See DiffEqFlux.jl Blog Post
For Code Examples

https://aithub.com/FluxML/model-zoo

Julia is the only language with fast SDE solvers

And

Julia is the only language which can
differentiate all of its differential equation
solvers.

The next generation of tools for quants
Is in Julia!
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Fixing Boston's school buses with

A2 | Saturday/Sunday, August 12 - 13, 2017

route optimization

THE WALL STREET JOURNAL.

U.S. NEWS

THE NUMBERS | By Jo Craven McGinty

How Do You Fix School Bus Routes? Call MIT

A trio of

MIT research-

ers recently

tackled a

tricky vehicle-

routing prob-
lem when they set out to im-
prove the efficiency of the
Boston Public Schools bus
system.

Last year, more than
30,000 students rode 650
buses to 230 schools at a
cost of $120 million.

In hopes of spending less
this year, the school system
offered $15,000 in prize
money in a contest that chal-
lenged competitors to reduce
the number of buses.

The winners—Dimitris
Bertsimas, co-director of
MIT's Operations Research
Center and doctoral students
Arthur Delarue and Sebas-
tien Martin—devised an al-
gorithm that drops as many
as 75 bus routes.

The school system says
the plan, which will eliminate

weeks to complete.

“They have been doing it
manually many years,” Dr.
Bertsimas sald, “Our whole
running time is in minutes, If
things change, we can re-op-
timize.”

The task of plotting
school-bus routes resembles
the classic math exercise
known as the Traveling
Salesman Problem, where the
goal is to find the shortest
path through a series of cit-
les, visiting each only once,
before returning home.

ntuitively, traveling to

the closest destination

first and then the next
closest after that until the
tour ends would seem to
guarantee the most efficient
route.

But in practice, the near
est-neighbor solution rarely
produces the shortest route.
In one 42-city example that
starts in Phoenix, following
the nearest-neighbor ap-

Road Test

Route planners often grapple with some form of the Traveling
Salesman Problem where the solution is the shortest route that
passes through each city once before returning home. Traveling to
the nearest neighbor seems logical, but usually isn't optimal

Nearest neighbor tour Optimal tour ﬂ

matics at the Limits of Com-
putation.”

One of the largest routes
Dr. Cook has optimized
stopped at 49,603 historic
sites in the U.S, “It took 1789
computing years to solve,
running on a 310-processor
computing cluster from
March through November
2016," he said.

Algorithms help speed up
the work. An iPhone app Dr.
Cook helped develop can cal-
culate the optimal route for a
50-city tour in seconds.

But the Boston Public
Schools conundrum was
more complex than the basic
Traveling Salesman Problem.

The MIT researchers had
to optimize multiple routes
that accounted for traffic,
different-size buses, students
with special needs such as
wheelchair access, and stag-
gered school days that start
at 7:30 a.m., 8:30
a.m, or 9:30 a.m.

They first paired clusters

overall system,” Dr. Bertsi-
mas sald.

Individual students may
be on a bus for more or less
time than last year, but in
keeping with school-system
rules, no bus trip should last
more than one hour, Mr,
Delarue said.

hether the plan will

work as predicted

remains to be seen.
A previous effort to auto-
mate the system failed in
2011 when buses following
routes created with software
ran perpetually late.

To avert similar problems
this year, the school system's
transportation staff vetted
the MIT routes, making
tweaks as needed.

“We wanted to make sure
we were not picking up stu-
dents on small streets with
big buses,” said John Hanlon,
chief of operations for Bos-
ton Public Schools, noting
one adjustment his staff has




%g JUMP Climate modeling and Energy Optimization

MIT News

New climate model to be built from the ground up Study: Adding power choices reduces cost and risk
Scientists and engineers will collaborate in a new Climate Modeling Alliance to of carbon-free eleCtriCity

advance climate modeling and prediction. To curb greenhouse gas emissions, nations, states, and cities should aim for a mix of
fuel-saving, flexible, and highly reliable sources.,




How to implement all that?

Easy, generic, fast: pick two

Common approaches

e Heroic C++ template code plus Python/R wrapper

e Problem-specific compilers




Key idea

Language for describing what to specialize on.

e Design descriptive types for the domain at hand
e Write methods for whatever cases you can handle
e Compiler generates specializations

e These need to be de-coupled




Sliding scale of specialization

Array Some kind of array

Array{Int} Element type known to be Int
Array{Int,2} ... and 2-dimensional
Array{<:Any,2} ... or unknown element type
Array{<:Real, 2} ... or unknown, but Real, element type

SArray{(2,3),Float64,2} 2d Float64 with dimensions 2x3




Other special matrix types

Diagonal

UniformScaling

Symmetric, Hermitian

LowerTriangular, UpperTriangular
Bidiagonal, Tridiagonal, SymTridiagonal

Adjoint, Transpose




Example: one-hot vector type

struct OneHotVector <: AbstractVector{Bool}
index: :Int
len: :Int

end

size(xs: :0OneHotVector)

getindex(xs: :OneHotVector, i::Integer)

A::AbstractMatrix * b::0neHotVector




Other special matrix types

Diagonal

UniformScaling

Symmetric, Hermitian

LowerTriangular, UpperTriangular
Bidiagonal, Tridiagonal, SymTridiagonal

Adjoint, Transpose




Representing layers of VGG19 neural net

ImmutableChain{Tuple{Conv{typeof(relu),Array{Float32,4},Array{Float32,1}, (1,
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Metalhead.f42,Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1,
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Metalhead.f43,Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1,
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Metalhead.f44,Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1,
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Metalhead.f45,Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1,
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},
Conv{typeof(relu),Array{Float32,4},Array{Float32,1},(1, 1),(1, 1),(1, 1)},

Metalhead.f46,Metalhead. f47,Dense{typeof(relu),LinearAlgebra.Adjoint{Float32,Array{Float32,2}},Array{F
loat32,1}},Dense{typeof(relu),LinearAlgebra.Adjoint{Float32,Array{Float32,2}},Array{Float32,1}},Dense{
typeof(identity),LinearAlgebra.Adjoint{Float32,Array{Float32,2}},Array{Float32,1}}, typeof(softmax)}}




Recent work: type system formalization

g] Julia Subtyping: a Rational Reconstruction

F. Zappa Nardelli, J. Belyakova, A. Pelenitsyn, B. Chung, J. Bezanson, J. Vitek

OOPSLA 2018

Paper: https://www.di.ens.fr/~zappa/projects/lambdajulia/




[ TUPLE]
’/ 4
Eta; <:a; FE; .. E,_1}Fa, <: a, FE,

[ToP] [REFL]
consistent( E,,)

EFt <: Any FE ErFa<:alrE Er Tuple{ay, ..,ap} <: Tuple{a;. piiay BBy

| TUPLE_LIFT_UNION] | TUPLE_UNLIFT_UNION]

t' = lift_union(Tuple{ay, ..,a,}) t" = unlift_union(Union{t;, .., t,})
Ert <:trE Ert<:t v FE
EF Tuple{ay, ..,an} <: t v E EFt <: Union{ty, ...t} F E

|UNION_LEFT] |UNION_RIGHT]

EFti <:t FE .. reset occg(En-1) 1ty <: t +E, djErt <: 4 HE
EkFUnion{ty, ...t} <: 1 F nzax_occglngn(E,,) EFt <: Union{ty, .., th} F E

|appP_INV] |APP_SUPER]

n<m Ey = add(Barrier, E) name{T1, .. . Tms ..} <: t"" € tds
VO<isn Ejgztra <:atVFE A EFa <:aFE Evrt'la/Ty..am/Tm] <: t' F F

E v name{ay, ..,am} <: name{ay, ..,a,} \ del(Barrier, E,) E v+ name{ay, ..,am} <: t' v E

[R_INTRO|

[L_inTRO] add®T}E) vt <: ' v
add(LT:i.E) Ft <:t' FE consistent(T, E’)
EF twhere ) <:T<:t, <: t' + del(T,E") Ert <: t'where t;<:T<:ty + delT, E’)




Recent work: type system formalization

@] Julia Subtyping: a Rational Reconstruction

F. Zappa Nardelli, J. Belyakova, A. Pelenitsyn, B. Chung, J. Bezanson, J. Vitek

OOPSLA 2018

Paper: https://www.di.ens.fr/~zappa/projects/lambdajulia/




[TUPLE]

’/ 4

consistent{ E,,)

EFt <: Any FE Eta <: atvE EF+ Tuple{ay, .., ap} <: TUDIG{G;~ oy ln}y b Ey

[ToP] [REFL]

| TUPLE_LIFT_UNION] | TUPLE_UNLIFT_UNION]

t' = lift_union(Tuple{ay, ..,a,}) t" = unlift_union(Union{t;, .., t,})
Ert <:trE Ert<:t v FE
EF Tuple{ay, ..,an} <: t v E EFt <: Union{ty, ...t} F E

|UNION_LEFT] |uNION_RIGHT]

EFt; <:t FE .. reset occg(En-1) 1ty <: t FE, djiErt <: 4 HE
EF Union{ty, ..,th} <: t F max_occgl_.gn(E,,) Ert <: Union{ty, .., th} F E

|aPP_INV] |APP_suUPER]

n<m Ey = add(Barrier, E) name{T1, ... Tms .. } <: t"”" € tds
VO<isn E.yvra <:atFE A EFa <: aFE Ert'la/Ty..am/Tm] <: t' F F

E v name{ay, ..,am} <: name{ay, ..,a,} \ del(Barrier, E,) E v+ name{ay, ..,am} <: t' v E

[R_IiNTRO]

[L_inTRO] add®T2,E) vt <: ' v E
add(’“T:i.E) Ft <:t' FE consistent(T, E")
EF twhere tj <:T<:t, <: t' + del(T,E") Ert <: t'where tj<:T<:ty + deT,E")




|L_LEFT] |L_RriGHT] search(T{,E) = RT,Z search(T,, E) =
search(T,E) = LT;‘ search(T, E) = LT;‘ outside(T1, T2, E) = Ev+ us <: b + E
Eru<:t+rE Ert <:lFE Eru <: L v E”

. / : ’ . T, R+ W ’
EFT <:tFE ErFt <:TVFE EFTy <: T2 F upd( T‘Union{T,.I,}’E)

|R_RIGHT]

[R_ver] search(T, E) = KT

search(T,E) = RT;‘ (is_var(t) A search(t,E) = LS;:') = —outside(T, S, E)
Erl <:t+E ErFt <:ubvrE

EFT <: tF upd"T,E) Ert <: TF upd(RTGnion{“},E')

| TYPE_LEFT] | TYPE_RIGHT]
—is_var(ay) is_kind(ty) is_var(ty)
E+ typeofla;) <: to v E EF Type{T} whereT <: Type{ts} F E’
Et+ Type{ay} <: t F E Ert; <: Type{ty} + E

| Tyre_TypE]
add(Barrier,E)F a; <: a3 FE E Fay <: a1 v E’
EF Type{a;} <: Type{az} + del(Barrier, E"")




Exploring novel data types: BFloatl16

New numeric type used for machine learning on TPUs

8 mantissa bits, 8 exponent bits
Efficient Julia implementation is <100 LOC

Harmonic sum in floating point (Source: Nick Higham's blog)

Arithmetic Computed Sum Number of terms
bfloat16 5.0625 65
fp16 7.0859 213

fp32 15.404 2097152

fp64 34.122 98] -.. x 10




A Global Community
Over 3 Million Downloads. 2,500 Packages.
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A Growing Community

Julia GitHub Stars
Julia Language Only - Does Not Include Julia Packages 19.472

18,150
16,830
O 15,540

14,250

11,640
10,350
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Algorithms for
Optimization

Mykel J. Kochenderfer and Tim A. Wheeler




Sufficient decrease

If d is a valid descent direction, then there must exist a sufficiently small step
size that satisfies the sufficient decrease condition. We can thus start with a large
step size and decrease it by a constant reduction factor until the sufficient decrease

condition is satisfied. This algorithm is known as backtracking line search® because
of how it backtracks along the descent direction. Backtracking line search is shown
in figure 4.2 and implemented in algorithm 4.2. We walk through the procedure

in example 4.2.

function backtracking line search(f, Vf, x, d, a; p=0.5, B=1le-4)
Y, § f(x), Vf(x)
while f(Xx a“‘d) y B a*(g-d)
Qa P
end
o

Figure 4.1. The sufficient decrease
condition, the first Wolfe condition,
can always be satisfied by a suffi-
ciently small step size along a de-
scent direction.

* Also known as Armijo line search,
L. Armijo, “Minimization of Func-
tions Having Lipschitz Continu-
ous First Partial Derivatives,” Pa-
cific Journal of Mathematics, vol. 16,
no. 1, pp. 1-3, 1966.

Algorithm 4.2. The backtracking
line search algorithm, which takes
objective function f, its gradient
Vf, the current design point x, a
descent direction d, and the maxi-
mum step size a. We can optionally
specify the reduction factor p and
the first Wolfe condition parameter

8.




Algorithm 7.8. DIRECT, which
takes the multidimensional objec-
tive function f, vector of lower

function direct(f, a, b, €, k max)
g reparameterize to unit hypercube(f, a, b)
interval Interval :
& a S o s() bounds a, vector of upper bounds
n ength(a) b, tolerance parameter €, and num-

C I ] (0.5, n) ber of iterations k max. It returns
interval Interval(c, g(c), filL1(©, n)) the best coordinate.

add interval!(intervals, interval)
c best, y best /(interval.c), interval.y

for K i1n 1 K max
S = get opt intervals(intervals, €, y best)
to add Intervall]
for interval in S
(to add, divide(g, interval))
dequeue! (intervals[min depth(interval)])

interval in to add
add interval!(intervals, interval)
1.f interval.y < y best
¢ best, y best py(interval.c), interval.y
end

end

return rev unit hypercube parameterization(c best, a, b)

end




Figure 7.20. The DIRECT method
after 16 iterations on the Branin
function, appendix B.3. Each cell is
bordered by white lines. The cells
are much denser around the min-
ima of the Branin function, as the
DIRECT method procedurally in-

creases its resolution in those re-

gions.




Some of the Universities Teaching Julia
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James H. Wilkinson Prize for Numerical Software
Jeff Bezanson, Stefan Karpinski, Viral Shah (2019)

For the development of Julia, an innovative environment for the creation of high-performance tools that
enable the analysis and solution of computational science problems.

Julia allows researchers to write high-level code in an intuitive syntax and produce code with the speed of
production programming languages. Julia has been widely adopted by the scientific computing community
for application areas that include astronomy, economics, deep learning, energy optimization, and medicine.

In particular, the Federal Aviation Administration has chosen Julia as the language for the next generation
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Bk A main goal in designing a language should be to plan
for growth. The language must start small, and the

language must grow as the set of users grows.

Guy Steele, “Growing a language”, 1998
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An Introduction'to Zygote: Linear Regression

In this notebook, we will define Linear Regression in Zygote from scratch, showing how easy it is to take derivatives of custom code.

T

In [1]: 1 # Initialize environment in current directory, to load
2 import Pkg; Pkg.activate(@ DIR ); Pkg.instantiate()
3 using Zygote, LinearAlgebra

This example will showcase how we do a simple linear fit with Zygote, making use of complex datastructures, a home-grown stochastic gradient descent
optimizer, and some good old-fashioned math. We start with the problem statement: We wish to learn the mapping f£(X) -> Y, where X is a matrix of
vector observations, f£() is a linear mapping function and Y is a vector of scalar observations.

Because we like complex objects, we will define our linear regression as the following object:

In [2]: # LinearRegression object, containing multiple fields, some of which will be learned.
mutable struct LinearRegression

# These values will be implicitly learned

weights::Matrix

5 bias::Floatéd

= AN N =

] # These values will not be learned
8 name: :String
L Y end



@ Chrome File Edit View History Bookmarks People Window Help N & ® ¢ =g [<}Charged <> % & 11:01 Mon 03 L[]

L ter ® oo - ™ Zyg X & Di & Zy &S htty > y \ Ra\ < | & Imz - -+

=

C @ localhost:8889/not

: Ju pyter Zygote Linear Regression Last Checkpoint: 12 hours ago (unsaved changes) ‘Q. Logout
File Edit View Insert Cell Kernel Help Trusted ¢ ] Julia 1.2.0-rc1 @
+ | A B 2 ¥ MRun B C MW | Code v | =3

This example will showcase how we do a simple linear fit with Zygote, making use of complex datastructures, a home-grown stochastic gradient descent
optimizer, and some good old-fashioned math. We start with the problem statement: We wish to learn the mapping £(X) -> Y, where X is a matrix of
vector observations, £() is a linear mapping function and Y is a vector of scalar observations.

Because we like complex objects, we will define our linear regression as the following object:

N

mutable struct LinearRegression

3 # These values will be implicitly learned
4 weights::Matrix

bias::Floaté64d I

MIn [2]: 1 # LinearRegression object, containing multiple fields, some of which will be learned.

| ] # These values will not be learned
name: :String

QO

9 end

L™

LinearRegression(nparams, name) = LinearRegression(randn(l, nparams), 0.0, name)

} Out[2]: LinearRegression

We will define two verbs to act upon a LinearRegression object; predict() , to perform the linear regression, and loss() to measure the £, norm
between a target and our current prediction.

In [3]: 1 # Our linear regression loocks very familiar; w*X + b
2 function predict(model::LinearRegression, X)
3 return model.weights * X .+ model.bias
i end
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MIn [8]: 1 # Now we begin our "training loop", where we take examples from X ,

2 # calculate loss with respect to the corresponding entry in 'Y , find the
3 # gradient upon our model, update the model, and continue. Before we jump
4 # in, let's look at what "Zygote.gradient() gives us:

5 model = LinearRegression(size(X, 1), "Example")

] # Calculate gradient upon model for the first example 1in our training set
g grads = Zygote.gradient(modeli do m

9 return loss(m, X[:,1], Y[%])]
10 end

Out[8]: (Base.RefValue{Any}((weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing)),)

The grads object is a Tuple containing one element per argument to gradient () , SO we take the first one to get the gradient upon model :

In [16]: I grads = grads[1l]

Out[16]: Base.RefValue{Any}((weights = [0.597277958228296 -1.41050189509322 0.5269798784518928 0.24937720677402483], bias = -
1.0, name = nothing))

Because our LinearRegression object is mutable, the gradient holds a reference to it, which we peel via grads[] :

In [17]: I grads = grads[]

Out[1/]: (weights = [0.597277958228296 -1.41050189509322 0.5269798784518928 0.24937720677402483), bias = -1.0, name = nothing)
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bias gt = 0.4

4»

# Generate a dataset of many observations
6 X = randn(length(weights gt), 10000)
' Y = weights gt * X .+ bias gt

# Add a little bit of noise to X so that we do not have an exact solution,
# but must instead do a least-squares fit:
X 4= 0.001.*fandn(size(X))

ok o
O O o —~

Out[6]: 4x10000 Array{Floaté64,62}:

-1.19203 1.91616 0.843466 .. -1.57857 0.246021 -0.597997
-0.48234 1.32798 -0.899407 0.043473 1.44814 -0.89648
1.55866 0.0718622 1.89751 0.994072 0.638415 -0.273722
-0.558112 -1.68074 0.954623 0.442166 -0.187531 -0.92237
In [8]: 1 # Now we begin our "training loop", where we take examples from X,

2 # calculate loss with respect to the corresponding entry in Y , find the
| 3 # gradient upon our model, update the model, and continue. Before we jump
| 4 # 1in, let's look at what "Zygote.gradient() glves us:

5 model = LinearRegression(size(X, 1), "Example")

] # Calculate gradient upon model ™ for the first example in our training set
8 grads = Zygote.gradient(model) do m

9 return loss(m, X[:,1], Y[1])

’ 10 end

Out[8]: (Base.RefValue{Any}((weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing)),)
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11 LinearRegression(nparams, name) = LinearRegression(randn(l, nparams), 0.0, name)

Out[4]: LinearRegression

We will define two verbs to act upon a LinearRegression object; predict() , to perform the linear regression, and loss() to measure the #> norm
between a target and our current prediction.

# Our linear regression looks very familiar; w*X + b
2 function predict(model::LinearRegression, X)

3 return model.weightﬂ:* X .+ model.bias

end

—t

MIn [5]:

# Our "loss" that must be minimized is the 12 norm between our current
1 # prediction and our ground-truth Y

8 function loss(model::LinearRegression, X, Y)

G return norm(predict(model, X) .- Y, 2)

10 end

1 1
L L

Out[5]: loss (generic function with 1 method)

In [6]: 1 # Our "ground truth" values (that we will learn, to prove that this works)
weights gt = [1.0, 2.7, 0.3, 1.2]'
bias gt = 0.4

N

U e W

# Generate a dataset of many observations
X = randn(length(weights gt), 10000)
Y = weights gt * X .+ bias gt

<
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1.55866 U.0/718622 1.89/51 0.9Y94072 U.63841>5 -U.27/3142
-0.558112 -1.68074 0.954623 0.442166 -0.187531 -0.92237
I MIn [8]: 1 # Now we begin our "training loop", where we take examples from X ,

| 2 # calculate loss with respect to the corresponding entry in Y , find the
# gradient upon our model, update the model, and continue. Before we jump
# 1in, let's look at what "Zygote.gradient() gives us:

model = LinearRegression(size(X, 1), "Example")

# Calculate gradient upon model”™ for the first example 1n our training set
8 grads = Zygote.gradient(model) do m
9 return loss(m, X[:,1], Y[1])

10 end|

Out[8]: (Base.RefValue{Any}((weights = [~-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing)),)

The grads object is a Tuple containing one element per argument to gradient () , so we take the first one to get the gradient upon model :
In [16]: 1 grads = grads[1l]

Out[1l6]: Base.RefValue{Any}((weights = [0.597277958228296 -1.41050189509322 0.5269798784518928 0.24937720677402483], bias = -
1.0, name = nothing))

Because our LinearRegression object is mutable, the gradient holds a reference to it, which we peel via grads[] :

¥n [17)= 1 grads = grads|]



Zygote.jl: General Purpose Automatic Differentiation

function foo(W, Y, x) function Vfoo(W, Y, x)
Z=W*Y Z=W?*Y
a=2Z%Xx a=2%Xx

b=Y *x b=Y *Xx
¢ = tanh.(b) % Zygote ¢, Jtanh = Vtanh.(b)

r=a+c a + ¢, function (Ar)
returnr
end (Atanh, Ab) = Jtanh(Ac)
X', Y'* ADb)

(nothing, AW, AY, Ax)

M. Innes. Don't Unroll Adjoint: end
Differentiating SSA-Form Programs end

(arXiv:1810.07951)
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Zygote.jl: General Purpose Automatic Differentiation

function foo(W, Y, x) function Vfoo(W, Y, x)
Z=W*Y Z=W?*Y
a=2Z%Xx a=2%Xx

b=Y *x b=Y *Xx
¢ = tanh.(b) % Zygote ¢, Jtanh = Vtanh.(b)

r=a+c a + ¢, function (Ar)
returnr
end (Atanh, Ab) = Jtanh(Ac)
X', Y'* ADb)

(nothing, AW, AY, Ax)

M. Innes. Don't Unroll Adjoint: end
Differentiating SSA-Form Programs end

(arXiv:1810.07951)
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ﬁ 3 # gradient upon our model, update the model, and continue. Before we jump ‘

4 # in, let's look at what "Zygote.gradient() gives us:
5 model = LinearRegression(size(X, 1), "Example")

] # Calculate gradient upon model ™ for the first example in our training set
8 grads = Zygote.gradient(model) do m

9 return loss(m, X[:,1], Y[1])

10 end

Out[8]: (Base.RefValue{Any}((weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing)),)

The grads object is a Tuple containing one element per argument to gradient () , so we take the first one to get the gradient upon model :
In [16]: I grads = grads[1l]
Out[16]: Base.RefValue{Any}((weights = [0.597277958228296 -1.41050189509322 0.5269798784518928 0.24937720677402483], bias = -

1.0, name = nothing))

Because our LinearRegression object is mutable, the gradient holds a reference to it, which we peel via grads[] :

In [17]: 1 grads = grads|]
Out{17]: (weights = [0.597277958228296 -1.41050189509322 0.5269798784518928 0.24937720677402483], bias = -1.0, name = nothing)

We now get a NamedTuple so we can now do things like grads.weights . Note that while weights and bias have gradients, name just naturally
has a gradient of nothing , because it was not involved in the calculation of the output loss.
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# Calculate gradient upon "model”™ for the first example in our training set
8 grads = Zygote.gradient(model) do m
9 return loss(m, X[:,1], Y[1])
10 end

Out[8]: (Base.RefValue{Any}((weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing)),)

The grads object is a Tuple containing one element per argument to gradient () , so we take the first one to get the gradient upon model :

In [9]: I grads = grads[1]

Out[9]: Base.RefValue{Any}((weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing))

Because our LinearRegression object is mutable, the gradient holds a reference to it, which we peel via grads|[] :

| ) 1n [17]: 1 prads = grads[]
Out[17]: (weights = [0.597277958228296 -1.41050189509322 0.5269798784518928 0.24937720677402483), bias = -1.0, name = nothing) |

We now get a NamedTuple SO we can now do things like grads.weights . Note that while weights and bias have gradients, name just naturally
has a gradient of nothing , because it was not involved in the calculation of the output loss.

In [18]: | grads.weights

Out[18]: 1x4 Array{Float64,2}:
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In [9]: 1 grads = grads[1)]

Out[9]: Base.RefValue{Any}((weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias =
1.0, name = nothing))

Because our LinearRegression object is mutable, the gradient holds a reference to it, which we peel via grads([] :

MIn [10]: | grads = grads] |

Out[10]: (weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias = 1.0, name = nothin
g)

¢ L3

We now get a NamedTuple so we can now do things like grads.weights . Note that while weights and bias have gradients, name just naturally

has a gradient of nothing , because it was not involved in the calculation of the output loss.

In [18]: 1 grads.weights

Out[18]: 1x4 Array{Float64,2}:
0.597278 -1.4105 0.52698 0.249377

Next, we will define an update rule that will allow us to modify the weights of our model according to the gradients, using the simplest gradient descent update
rule. We'll then run a training loop to update our weights with the loss from the training set, as we would expect:

In [21]: 1 # Let's define
2 function sgd update! (model::LinearRegression, grads, n = 0.001)
L 3 model .weiaghts .-= n .* arads.weiahts 4



@ Chrome File Edit View History Bookmarks People Window Help N & ® ¢ b (<} Charged <> X%

o0 : r @ goc - P ) X & Di & Zyt & htty y > \ Ra\

C (@ localhost:8889/notebool

: Ju pyter Zygote Linear Regression Last Checkpoint: 12 hours ago (unsaved changes) .9‘ Logout
File Edit View insert Cell Kernel Help Trusted | Julia 1.2.0-rc1 O

B+ < A D 424 ¥ MBRun B C » | Code sl | =3

Out[10]: (weights = [-1.192026114794742 -0.482340240894484 1.5586551748882012 -0.5581118308574825], bias = 1.0, name = nothin
g)

We now get a NamedTuple so we can now do things like grads.weights . Note that while weights and bias have gradients, name just naturally
has a gradient of nothing , because it was not involved in the calculation of the output loss.

In [11]: | grads.weights
Out[11]: 1x4 Array{Floaté64,2}:
-1.19203 -0.48234 1.55866 -0.558112

Next, we will define an update rule that will allow us to modify the weights of our model according to the gradients, using the simplest gradient descent update
rule. We'll then run a training loop to update our weights with the loss from the training set, as we would expect:

MIn [21]: 1 # Let's define
2 function sgd update! (model::LinearRegression, grads, n = 0.001)
model.weights .-= 1 .* grads.weights
L model.bias -= 1 * grads.bias
5> end
Out{21]: sgd update! (generic function with 2 methods) R
In [22]: 1 # Now let's do that for each example in our training set:

2 @info("Running train loop for §$(size(X,2)) iterations")
3 for idx in l:size(X, 2)
4 grads = Zygote.gradient(m -> loss(m, X[:, idx], ¥[idx]), model)[1][]
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In [11]: | grads.weights
Out[1l]: 1x4 Array{Float64,2}:
-1.19203 -0.48234 1.55866 -0.558112

Next, we will define an update rule that will allow us to modify the weights of our model according to the gradients, using the simplest gradient descent update
rule. We'll then run a training loop to update our weights with the loss from the training set, as we would expect:

I MIn [21): 1 # Let's define
| 2 function sgd update! (model::LinearRegression, grads, n = 0.001)
| 3 model.weights .-= 1 .* grads.weights

model.bias -= 1 * grads.bias
o) end
Out[21]: sgd update! (generic function with 2 methods) Y
In [22]: 1 # Now let's do that for each example in our training set:

@info("Running train loop for $(size(X,2)) iterations")

for idx in 1l:size(X, 2)
4 grads = Zygote.gradient(m -> loss(m, X[:, 1idx], Y[idx]), model)[1l]][]
sgd update! (model, grads)

)

6 end

r Info: Running train loop for 10000 iterations
L @ Main In[22]:2

In [23]: 1 weights gt
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In [12]: # Let's define

function sgd update! (model::LinearRegression, grads, n = 0.001)
model.weights .-= 1 .* grads.weights

4 model.bias ~= 1 * grads.bias

5 end

Out[12]: sgd update! (generic function with 2 methods)

o
|

M In [22]: 1 # Now let's dy that for each example in our training set:
2 @info("Running train loop for $(size(X,2)) iterations")
for idx im 1l:size(X, 2)
? 4 grads = Zygote.gradient(m -> loss(m, X[:, 1dx], Y[ihx]), model)[1][]
> sgd update! (model, grads)
end

on L

Info: Running train loop for 10000 iterations
@ Main In[22]):2

rm

In [23]: ! weights gt

Out[23]: 1x4 Adjoint{Floaté64, Array{Float64,1}}:
120 237 03 12

In [24]: I model.weights

Out[24]: 1x4 Array{Floaté64,2}:
0.999031 2.69703 0.301551 1.20023

In [25]: I bias gt 2
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In [12]: 1 '# Let's define
2 function sgd update! (model::LinearRegression, grads, n = 0.001)
; model.weights .-= 1 .* grads.weights
4 model.bias -= 1 * grads.bias
5 end

Out[12]: sgd update! (generic function with 2 methods)

MIn [*]: 1 # Now let's do that for each example in our training set:
2 €info("Running train loop for $(size(X,2)) iterations")
for idx in 1l:size(X, 2)
grads = Zygote.gradient(m -> loss(m, X[:, 1idx], Y[idx]), model)[1l][]
sgd update! (model, grads)

U e W

6 end

In [23]: 1 weights gt
Out[23]: 1x4 Adjoint{Float64,Array{Floaté64,1}}:
1.0 257 003 1.2
In [24]: I model.weights
Out[24]: 1x4 Array{Float64,b2}:
0.999031 2.69703 0.301551 1.20023
In [25]: I bias gt

Out[25]: 0.4
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In [12]: 1 '# Let's define

function sgd update! (model::LinearRegression, grads, n = 0.001)
3 model.weights .-= 1 .* grads.weights
4 model.bias -= 1 * grads.bias
5 end

Out[12]: sgd update! (generic function with 2 methods)

MIn [13]: 1 # Now let's do that for each example in our training set:

2 @info("Running train loop for $(size(X,2)) iterations")

3 for idx in 1l:size(X, 2)

4 grads = Zygote.gradient(m -> loss(m, X[:, idx], ¥Y[idx]), model)[1l]][]
sgd update! (model, grads)

N ON

end
r Info: Running train loop for 10000 iterations
L @ Main In[13]:2
In [23]: I weights gt
Out[23]: 1x4 Adjoint{Floaté64, Array{Float64,1}}:
120 257 053 132
In [24]: I model.weights
Out[24]: 1x4 Array{Floaté64,2}:
0.999031 2.69703 0.301551 1.20023

In [25]: 1 bias gt



@ Chrome File Edit View History Bookmarks People Window Help H & ® ¢ =g e (<} Charged <> } & 11:12 Mon 03 L]

L =, ter ® oo Hor > & Zyg X & Dif & Zyt S htty > y > \ Ra) < | = Imz : +
(& @ localhost:8889/notebooks/Zygote%20Linear%20Re 5sion.ipynb . .
o . .
_ Jupyter Zygote Linear Regression Last Checkpoint: 12 hours ago (autosaved) ‘@‘ Logout
File Edit View Insert Cell Kernel Help Trusted ¢ lJui‘:a*..Z.O-rc‘l O

+ = &A@ B A ¥ MRun B C MW | Code sl | =

= P P L e R K R e e

model.bias -= 1 * grads.bias
5 end

Out[12]: sgd update! (generic function with 2 methods)

In [13]: 1 # Now let's do that for each example in our training set:

@info("Running train loop for $(size(X,2)) iterations”)

3 for idx in l:size(X, 2)

4 grads = Zygote.gradient(m -> loss(m, X[:, idx], ¥Y[idx]), model)[1][]

N

5 sgd update! (model, grads)

6 end

r Info: Running train loop for 10000 iterations
L

@ Main In[13]:2

MIn [23]: 1 weights_gd I

Out[23]: 1x4 Adjoint{Float64,Array{Floaté4,1}}:
Ll 23 033 132
In [24]: | model.weights
Out[24]: 1x4 Array{Float64,2}:
0.999031 2.69703 0.301551 1.20023
In [25]: I bias gt

Out[25]: 0.4
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In [13]: 1 # Now let's do that for each example in our training set:
2 @info("Running train loop for $(size(X,2)) iterations")
3 for idx im l:size(X, 2)
4 grads = Zygote.gradient(m -> loss(m, X[:, idx], ¥Y[idx]), model)[1]]]
5 sgd update! (model, grads)
6 end
r Info: Running train loop for 10000 iterations
L @ Main In[13):2

MIn [14]: 1 weights gt

Out[14]: 1x4 Adjoint{Floaté64, Array{Float64,1}}:
120 257 03 12
In [24]: I model.weights
Out[24]: 1x4 Array{Float64,2}:
0.999031 2.69703 0.301551 1.20023
In [25]: 1 bias gt

Out[25]: 0.4

In [26]: ! model.bias

Out[26]: 0.39800000000000035
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6 end

<>
®

r Info: Running train loop for 10000 iterations
L @ Main In[13]:2

In [14]: I weights gt

Out[14]: 1x4 Adjoint{Floaté64,Array{Float64d,1}}:
1°0 2.7 0.3 1:2

In [15]: I model.weights

Out[15]: 1x4 Array{Float64,62}:
1.00142 2.70157 0.300252 1.20033

MIn [16]: 1 bias gt

Out[l6]: 0.4

In [17]: ! model.bias

Out[1/]: 0.3980000000000003
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Zygote Continued: A Differentiable Raytracer

We demonstrate in this notebook differentiating through a raytracer

In [1]: 1 # Initialize environment 1in current directory, to load
2 import Pkg; Pkg.activate(€ DIR ); Pkg.instantiate()
3 using RayTracer, Zygote, Flux, Images, Statistics, Interact

r Info: activating environment at “~/src/msr talk/Project.toml”.
L @ Pkg.API /Users/sabae/tmp/julia-build/julia-release-1.2/usr/share/julia/stdlib/v1.2/Pkg/src/API.jl:564

Updating registry at "~/.julia/registries/General”
Updating git-repo "https://github.com/JuliaRegistries/General.git"

r Warning: Some registries failed to update:
— /Users/sabae/.julia/registries/General — failed to fetch from repo
L @ Pkg.Types /Users/sabae/tmp/julia-build/julia-release-1.2/usr/share/julia/stdlib/v1.2/Pkg/src/Types.jl:1171

In [2}: 1 width = 200
2 height = 200

# Static camera configuration
5 cam = Camera(
& 6 # Center 4
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In [2]: 1 width = 200

2 height = 200

# Static camera configuration

oy B W

cam = Camera(

6 # Center

7 Vec3(0.0£f0, 0.0£0, -5.0£0),
8 # Target

9 Vec3(0.0£0, 0.0£f0, 0.0£0),
10 # Up
11 Vec3(0.0£f0, 1.0£0, 0.0£0),
12 # Filield of View
13 45.0f£0,
14 # Focus
15 1.0£0,
16 # Resolution
17 width, height,
18 | )
19 origin, direction = get primary rays(cam)

21 function render(scene, light)

22 packed image = raytrace(origin, direction, scene, light, origin, 0)

23 array image = reshape(hcat(packed image.x, packed image.y, packed image.z), (width, height, 3, 1))
24 return array image

25 end

27 function showimg(img)

28 return colorview(RGB, permutedims(img[:,:,:,1], (3,2,1)))

29 end
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In [*]): 1 # Initialize environment 1in current directory, to load '
2 import Pkg; Pkg.activate(@ DIR ); Pkg.instantiate()

using RayTracer, Zygote, Flux, Images, Statistics, Interact

r Info: activating environment at ~~/src/msr talk/Project.toml’.
L @ Pkg.API /Users/sabae/tmp/julia-build/julia-release-1.2/usr/share/julia/stdlib/v1.2/Pkg/src/API.jl:564

Updating registry at "~/.julia/registries/General’
Updating git-repo "https://github.com/JuliaRegistries/General.git’

r Info: Recompiling stale cache file /Users/sabae/.julia/compiled/v1.2/RayTracer/sUryZ.ji for RayTracer [60dacb86-48f
f-11e9-0£01-03ab8794bbc9]
L @ Base loading.jl:1240

| MIn [2]:| 1 width = 200
height = 200 i

4 # Static camera configuration
| 5 cam = Camera(

# Center

Vec3(0.0£0, 0.0£0, ~5.0£0),
8 # Target
B Vec3(0.0£0, 0.0£f0, 0.0£0),
10 # U
11 Vec3(0.0£f0, 1.0£f0, 0.0£0),

| 12 # Field of View

13 45.0£0,

& k 14 # Focus
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I Min [2]: 1 width = 200

# Static camera configuration
5 cam = Camera(

! 6 # Center
\ ] Vec3(0.0£0, 0.0£0, -5.0£0),
8 # Target

‘ 9 Vec3(0.0£0, 0.0£0, 0.0£f0),
10 # Up
11 Vec3(0.0£0, 1.0£f0, 0.0£0),
12 # Fleld of View
13 45.0£0,
14 # Focus

‘ 15 1.0£0,

| 16 # Resolution

17 width, height,

18 ) 1

19 origin, direction = get primary rays(cam)

21 function render(scene, light)

22 packed image = raytrace(origin, direction, scene, light, origin, 0)

23 array image = reshape(hcat(packed image.x, packed image.y, packed image.z), (width, height, 3, 1))
24 return array image

25 end

function showimg(img)
return colorview(RGB, permutedims(img[:,:,:,1], (3,2,1)))
end

’\\/
O 0 ~J
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A 12 loss = mean( (zeroonenorm(lmage rendered) .- zeroonenorm(limage gt))."Z)
;
| 14 # Show the current loss
} 15 @show loss
16
| 17 # Return this loss as what is to be minimized
18 return loss
19 end
20
21 # Update our light position and triangle color based upon those gradients
22 #update! (opt, scene[l].material.color.color, grads{l][1l].material.color.color)
23 update! (opt, light.position, grads[2].position)
24
25 if 1 % 10 ==
26 @info "$i iterations completed'| I
27 display(showimg(render(scene, light)))
28 end
29 end
In [29]: 1 light gt

Out[29]: PointLight{Float32}(Vec3{Array{Float32,1}}(Float32[1.0], Float32[1.0], Float32[0.0]), 20000.0£0, Vec3{Array{Float32,
1}}(Float32[3.6], Float32[3.0]), Float32[-10.0]))

In [30]: 1 light

Out[30]: PointLight{Float32}(Vec3{Array{Float32,1}}(Float32[1.0], Float32[1.0], Float32[0.0]), 20000.0£0, Vec3{Array{Float32,
1}}(Float32[4.18166], Float32[2.4189723], Float32[-9.362359]))
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m si # Show the current loss

§show loss

# Return this loss as what 1s to be minimized
18 return loss
19 end

21 # Update our light position and triangle color based upon those gradients
#update! (opt, scene[l].material.color.color, grads[1l][1l].material.color.color)
update! (opt, light.position, grads[2].position)

25 if 1 % 10 ==

26 €info "$1 iterations completed”

27 display(showimg(render(scene, light)))
28 end

29 end I

Y I
'V

loss = 0.003516449f0
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§ MIn [5]: | 'opt = ADAM(U.1)
| 2 1image gt = render(scene gt, light gt)
3 showimg(image gt)
5 for i im 1:51
6 # Takelﬁradient of the following function
g grads = gradient(scene, light) do S, L
8 # First, render according to our current light and scene
9 image rendered = render(S, L)
11 # Normalize
12 loss = mean( (zeroonenorm(image rendered) .-~ zeroonenorm(image gt))."2)
| 14 # Show the current loss
15 €show loss |
|
17 # Return this loss as what is to be minimized
| 18 return loss
19 end
20
21 # Update our light position and triangle color based upon those gradients
22 #update! (opt, scenefl].material.color.color, grads[l][1].material.color.color)
23 update! (opt, light.position, grads[2].position)
24
25 if 1 % 10 ==
26 finfo "$1 iterations completed”
27 display(showimg(render(scene, light)))
28 end

29 end|
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¥ Differentiable Programming...

function foo(W, Y, x) function Vfoo(W, Y, x)
Z=W*Y Z=W*Y
a=2Z"x a=2"x

b=Y*x b=Y*x
£ = R % Zngte c, Jtanh = Vtanh.(b)

a + ¢, function (Ar)
(AY, Ax) = (Ab* X', Y'* Ab)I
(AZ = Aa * X', Ax += Z' * Aa)

(nothing, AW, AY, Ax)

M. Innes. Don't Unroll Adjoint: end
Differentiating SSA-Form Programs end

(arXiv. 1810.07951)
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Loading your Trebuchet
Today we practice the ancient medieval art of throwing stuff. First up, we load our trebuchet simulator, Trebuchet.jl.

MIn [1]: 1 # Initialize environment in current directory, to load
2 import Pkg; Pkg.activate(€ DIR ); Pkg.instantiate()
3 using Trebuchet

r Info: activating environment at ~~/src/msr talk/Project.toml’.
L @ Pkg.API /Users/sabae/tmp/julia-build/julia-release-1.2/usr/share/julia/stdlib/v1.2/Pkg/src/API.jl:564

Updating registry at "~/.julia/registries/General”
Updating git-repo "https://github.com/JuliaRegistries/General.git’

r Info: Precompiling Trebuchet [98b73d46-197d-11e9-11eb-69%9a6ff759d3a]
L @ Base loading.jl:1242

We can see what the trebuchet looks like, by explicitly creating a trebuchet state, running a simulation, and visualising the trajectory.

In [2]: 1 t = TrebuchetState()
simulate(t)



@ Chrome File Edit View History Bookmarks People Window Help N e ®F | K bl | (<} Charged <> } & 11:29 Mon 03 []

e ter ® oo < & Zyo > ® Difff X & Zyt S htt; y > \ Ra\ < | = Imz ' +

=

< C @ localhost:8¢ notebooks/Differentiable’%20Trebuchet.ipynb# . W

: Ju pyte I Differentiable Trebuchet (unsaved changes) ‘®‘ Logout
File Edit View Insert Cell Kemel Help Not Trusted | Julia 1.2.0-rc1 @
+ < A B 4 ¥ MRun B C MW Code 5 | EB
Ve can see what the trebuchet I00Ks lIke, by expliCitly creating a trebuchet state, running a simulation, and visualising the trajectory.
In [*]: 1 t = TrebuchetState() '

2 simulate(t)
3 wvisualise(t)

For training and optimisation, we don't need the whole visualisation, just a simple function that accepts and produces numbers. The shoot function just takes a
wind speed, angle of release and counterweight mass, and tells us how far the projectile got.

MIn [3]: 1 function shoot(wind, angle, weight)
2 Trebuchet.shoot((wind, Trebuchet.degZ2rad(angle), weigIht))[Z]
i end

Out[3]: shoot (generic function with 1 method)

In [4]: 1 shoot(0, 30, 400)

Out[d4]: 98.60072421662711
It's worth playing with these parameters to see the impact they have. How far can you throw the projectile, tweaking only the angle of release?

There's actually a much better way of aiming the trebuchet. Let's load up a machine learning library, Flux, and see what we can do.

In [5]: | pathof(Trebuchet)

Out[5]: "/Users/sabae/.julia/packages/Trebuchet/dUl6T/src/Trebuchet.jl"
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We can see what the trebuchet looks like, by explicitly creating a trebuchet state, running a simulation, and visualising the trajectory.

| MIn [2]: 1 t = TrebuchetState()
2 simulate(t)
3 wvisualise(t)
|
Out[2]: k —)
|
1m/s
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MIn [22]: I t = TrebuchetState(release angle = deg2rad(19), wind speed = -10)
2 simulate(t)
visualise(t)

Out[22]:

-10m/s

.
’.
.l
.

Distance Om
Height Om
Time Om

Wind Speed -10m/s

Release Angle 19deg
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MIn [24]: 1 t = TrebuchetState()
2 simulate(t)
3 wvisualise(t, 50)

Out[24]:

Tm/s

FU
.
.
.

Distance Om



