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ABSTRACT 

Azure SQL Database and the upcoming release of SQL Server 

introduce a novel database recovery mechanism that combines 

traditional ARIES recovery with multi-version concurrency 

control to achieve database recovery in constant time, regardless 

of the size of user transactions. Additionally, our algorithm 

enables continuous transaction log truncation, even in the 

presence of long running transactions, thereby allowing large data 

modifications using only a small, constant amount of log space. 

These capabilities are particularly important for any Cloud 

database service given a) the constantly increasing database sizes, 

b) the frequent failures of commodity hardware, c) the strict 

availability requirements of modern, global applications and d) 

the fact that software upgrades and other maintenance tasks are 

managed by the Cloud platform, introducing unexpected failures 

for the users. This paper describes the design of our recovery 

algorithm and demonstrates how it allowed us to improve the 

availability of Azure SQL Database by guaranteeing consistent 

recovery times of under 3 minutes for 99.999% of recovery cases 

in production. 
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1. INTRODUCTION 
Database recovery is a critical component of every DBMS, 

guaranteeing data consistency and availability after unexpected 

failures. Despite being an area of research for over three decades, 

most commercial database systems, including SQL Server, still 

depend on the ARIES [9] recovery protocol, an algorithm that 

leverages Write-Ahead Logging (WAL) and defines distinct 

recovery phases to eliminate ad-hoc recovery techniques.  

Even though ARIES simplifies the recovery process and allows it 

to be generic for all transactional operations, recovering the 

database to a consistent state requires undoing all operations 

performed by uncommitted transactions which makes the cost of 

recovery proportional to the work performed by these 

transactions. This significantly impacts database availability since 

recovering a long running transaction can take several hours. A 

recent example that demonstrates the severity of this problem is a 

case where an unexpected failure occurred while one of our 

customers was attempting to load hundreds of millions of rows in 

a single transaction. The database required 12 hours to recover 

while the corresponding tables were completely inaccessible due 

to the exclusive locks held by the transaction performing the data 

load. Even though this is an extreme case, when a service like 

Azure SQL Database is responsible for millions of databases, long 

running recoveries are a common pain point. 

To mitigate this issue, SQL Server has previously depended on 

targeted optimizations that speed up each phase of recovery, for 

example leveraging parallelism, but has not made any 

fundamental changes to the recovery algorithm itself. Although 

these optimizations proved to be adequate for on-premise 

environments, where the DBMS is running on high-end servers 

and failures are generally planned, the transition to the Cloud reset 

the expectations around database availability and recovery 

because of: 

• The rapid growth in database sizes which also translates 

to longer transactions. 

• The more frequent failures of commodity hardware used 

in Cloud architectures, resulting in frequent failovers 

that also depend on the recovery process. 

• The fact that software upgrades and other maintenance 

tasks are now managed by the Cloud provider, making it 

hard to ensure that the user workload can adjust to 

minimize downtime, for example by preventing long 

running transactions during maintenance windows. 

To meet our availability SLAs in the Cloud and improve the 

quality of our service, we designed a novel database recovery 

algorithm that combines ARIES with multi-version concurrency 

control (MVCC) to achieve recovery in constant time regardless 

of the user workload and the transaction sizes. Our algorithm 
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depends on Write-Ahead logging and the recovery phases defined 

by ARIES, but takes advantage of generating row versions for the 

most common database operations (e.g. inserts, updates, deletes) 

to avoid having to undo them when rolling back uncommitted 

transactions. This allows us to bring the database to a consistent 

state in constant time and release all locks held by uncommitted 

transactions, making the database fully accessible and eliminating 

the main disadvantage of ARIES. Using the same versioning 

technique, our algorithm also allows instant rollback of individual 

transactions and enables aggressively truncating the transaction 

log, even in the presence of long running transactions, therefore 

allowing large data loads and modifications using only a small, 

constant amount of log space. 

This paper describes the overall design of “Constant Time 

Recovery” (CTR) in the upcoming release of SQL Server (also 

publicly known as “Accelerated Database Recovery” [7]) and 

demonstrates how it allows us to significantly improve the 

availability of Azure SQL Database. Section 2 begins with some 

background around the recovery process in the earlier releases of 

SQL Server. Section 3 outlines the architecture of CTR and 

provides the detailed design of its components. Section 4 presents 

our experimental results regarding the performance and resource 

usage of our recovery scheme. Finally, Section 5 covers the 

results and experience from enabling CTR in production in Azure 

SQL Database. 

2. BACKGROUND ON SQL SERVER  
This section provides a summary of the recovery process and 

MVCC implementation in the earlier releases of SQL Server 

which is required to better understand the architecture and design 

choices for CTR. More detailed information regarding both areas 

can be found in the public documentation of SQL Server [3]. 

2.1 Database Recovery  
The database recovery process in SQL Server is based on the 

ARIES recovery algorithm. Data and log are stored separately, 

using WAL to log all operations to the transaction log before 

performing any modifications to the corresponding data pages.  

All log records written to the transaction log are uniquely 

identified using their Log Sequence Number (LSN) which is an 

incremental identifier based on the physical location of the log 

record in the log file. Other than details about the operation 

performed (e.g. deletion of key X), each log record also contains 

information about the page modified (Page Id), the transaction 

that performed the operation (Transaction Id), and the LSN of the 

previous log record (Previous LSN) for the same transaction.  
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Figure 1. Representation of a data page and its log records. 

Data is stored in pages of 8KB that reside in the data files. The 

Page Id that identifies each page is also based on the physical 

location of the page in the data file. Other than the data and other 

information about the page content, each page also maintains the 

LSN of the log record corresponding to the last modification to 

this page (Page LSN). Figure 1 provides an example of a data 

page and the corresponding log records that have updated it. 

For performance reasons, data pages are cached in memory in the 

Buffer Pool. Transactions update the data only in-memory and a 

background checkpoint process is responsible for periodically 

writing all dirty pages to disk, after guaranteeing that the 

corresponding log records have also been flushed to disk to 

preserve WAL semantics. The checkpoint process additionally 

captures a) the state of all active transactions at the time of the 

checkpoint and b) the LSN of the oldest dirty page in the system 

(Oldest Dirty Page LSN), which will be used for the purposes of 

recovery. Following ARIES, the SQL Server recovery process has 

three distinct phases. Figure 2 demonstrates these phases and the 

portion of the log they process.  
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Figure 2. The phases of the recovery process. 

2.1.1 Analysis 
Analysis is the first phase of recovery and is responsible for 

identifying a) any transactions that must be rolled back because 

they had not committed when the failure occurred and b) the LSN 

of the oldest dirty page in the system. Since the checkpoint 

process captured all active transactions and the oldest dirty page 

LSN at the time of the checkpoint, Analysis can scan the log 

starting from the minimum of the beginning of the last completed 

checkpoint (Checkpoint Begin LSN) and the Oldest Dirty Page 

LSN to reconstruct the required information. 

2.1.2 Redo 
The Redo phase is responsible for bringing the database back to 

the state it was at the time of the failure. This is achieved by 

processing the transaction log and redoing all operations that 

might not have been persisted to disk. Since Analysis has 

recomputed the Oldest Dirty Page LSN, Redo should only process 

the log from this point as any previous updates have already been 

flushed to disk. When processing a log record, Redo compares the 

Page LSN with the LSN of the current log record and only applies 

the operation if the Page LSN is lower, which indicates that the 

current image of the page is older.  

Even though redoing this smaller portion of the log suffices to 

bring the data pages to the required state, SQL Server’s Redo 

processes the log starting from the beginning of the oldest active 

transaction. This allows recovery to reacquire all the locks held by 

active transactions and make the database available at the end of 

Redo for improved availability. However, this causes the Redo 

process to be proportional to the size of the longest active 

transaction. To improve performance, in the latest releases of SQL 

Server, Redo has been parallelized, but still preserves the 

invariant that all operations corresponding to a specific page are 

applied in LSN order. 



2.1.3 Undo 
Undo is the last phase of recovery and is responsible for rolling 

back any transactions that were active at the time of the failure. 

As Redo has reacquired the locks required by these transactions, 

the Undo process can be performed while the database is available 

and user queries will be blocked only if they attempt to access the 

data modified by the transactions pending undo.  

For each active transaction, Undo will scan the log backwards, 

starting from the last log record generated by this transaction and 

undo the operation performed by each log record. This makes the 

cost of Undo proportional to the size of uncommitted transactions. 

Undoing these operations is also logged using Compensation Log 

Records (CLR) to guarantee that the database is recoverable even 

after a failure in the middle of the Undo process. The log records 

for each transaction can be efficiently traversed using the Previous 

LSN stored in each log record. Once a transaction is rolled back, 

its locks are released.  

2.2 Multi-version Concurrency Control 
SQL Server introduced multi-version concurrency control in 2005 

to enable Snapshot Isolation (SI). Versioning is performed at the 

row level: for every user data update, SQL Server updates the row 

in-place in the data page and pushes the old version of the row to 

an append-only version store, linking the current row version to 

the previous version. Further updates generate newer versions, 

thereby creating a chain of versions that might be visible to 

different transactions following the SI semantics. Each version is 

associated to the transaction that generated it, using the 

Transaction Id, which is then associated to the commit timestamp 

of the transaction. The versions are linked to each other using 

their physical locator (Page Id, Slot id). Figure 3 provides an 

example of a row linked to two earlier versions. 

 

Figure 3. Example of MVCC row version chain. 

Upon visiting a row, a transaction traverses the chain of versions 

and determines the visibility of each version by comparing the 

transaction’s snapshot timestamp, established at the beginning of 

the transaction, with the commit timestamp of the transaction that 

generated the version. Once older snapshot transactions commit, 

older versions become permanently invisible and the version store 

can get truncated to free up space. Given that these versions are 

only used for the purposes of SI, the version store doesn’t need to 

be preserved across restarts and is stored in SQL Server’s 

“TempDB”, a system database that is recycled every time the 

SQL Server process restarts. This allows for efficient version 

generation, as these operations are not logged. 

3. CONSTANT TIME RECOVERY 

3.1 Overview 
Azure SQL Database and the upcoming release of SQL Server 

introduce Constant Time Recovery (CTR), a novel database 

recovery algorithm that depends on ARIES but leverages the row 

versions generated for MVCC to support: 

• Database recovery in constant time, regardless of the 

user workload and transaction sizes.  

• Transaction rollback in constant time regardless of the 

transaction size. 

• Continuous transaction log truncation, even in the 

presence of long running transactions. 

CTR achieves these by separating transactional operations into 

three distinct categories and handling their recovery using the 

most appropriate mechanism. 

3.1.1 Data Modifications 
Data modifications refer to regular DML operations that update 

user data. CTR leverages MVCC versions to instantly undo data 

updates without having to undo every operation independently 

using the transaction log. All data modifications are versioned, 

storing the earlier versions of each row in the version store that is 

now redesigned to be persistent and recoverable. Each version is 

marked with the Transaction Id of the transaction that generated it 

which allows us to identify the state of the corresponding 

transaction (active, committed or aborted). When a transaction 

rolls back, it is simply marked as “aborted”, indicating that any 

new transactions should ignore the versions generated by this 

transaction and access the earlier committed versions. During 

database recovery, Analysis identifies the state of every 

transaction and Redo recovers the row and the version store 

content as of the time of the failure. Then Undo marks the 

uncommitted transactions as aborted making all updates by these 

transactions invisible. This allows Undo to complete in constant 

time, regardless of the transaction sizes. 

3.1.2 System Operations 
System operations refer to internal operations the DBMS uses to 

maintain its internal data structures, such as space allocation and 

deallocation, B-Tree page splits, etc. These operations cannot be 

easily versioned because they update system data structures that 

have been designed to be highly efficient, using bitmaps and other 

compacted data structures that do not allow maintaining the 

required versioning information. Additionally, these operations 

are usually tied to user data modifications and can be a significant 

percentage of the operations performed by a long-running 

transaction. For example, a large data load allocates a large 

number of pages. In CTR, these operations are always performed 

by short-lived, system transactions that update the internal data 

structures and immediately commit. Based on that, when a failure 

occurs, these operations will not be undone as part of a long-

running user transaction. Instead, the allocated space and other 

updated data structures will be lazily reclaimed and fixed up in the 

background. 

3.1.3 Logical and Other Non-versioned Operations 
This last category refers to operations that cannot be versioned 

because they are either a) logical, such as lock acquisition 

operations that indicate that a certain lock must be acquired during 

recovery or cache invalidation operations that are responsible for 

invalidating in-memory caches when a transaction rolls back, or 

b) they are modifying data structures that need to be accessed 

when starting up the database, before recovery has started, and, 

therefore, must maintain a very specific format that does not allow 

versioning. Even though redoing and undoing these operations 



still require the transaction log, CTR leverages an additional log 

stream, SLog, that allows tracking only the relevant operations 

and not having to process the full transaction log for the 

corresponding transactions. Given that such operations are 

generally associated with schema changes and not data 

manipulation, their volume is several orders of magnitude lower 

than the previous categories and can be practically redone/undone 

in minimal time. 

3.2 Persistent Version Store 
Persistent Version Store (PVS) is a new implementation of SQL 

Server’s version store that allows persisting and recovering earlier 

versions of each row after any type of failure or a full database 

restart. PVS versions contain the same data and are chained in the 

same way as the ones stored in TempDB. However, since they are 

recoverable, they can be used for accessing earlier versions of 

each row after a failure. CTR leverages this to allow user 

transactions to access the committed version of each row without 

having to undo the modifications performed by uncommitted 

transactions. 

PVS allows row versions to be recoverable by storing them in the 

user database and logging them in the transaction log as regular 

user data. Hence, at the end of Redo all versions are fully 

recovered and can be accessed by user transactions. In CTR, 

versions are needed for recovery purposes and have to be 

preserved until the committed version of each row has been 

brought back to the data page. This process occurs lazily in the 

background (described in Section 3.7) and, therefore, causes the 

size of PVS to be higher than the TempDB version store which is 

only used for SI and can be truncated aggressively. Additionally, 

logging the versions introduces a performance overhead for the 

user transactions that generate them. To address both the 

performance and the storage impact of PVS, we separated it into 

two layers. 

3.2.1 In-row Version Store 
The in-row version store is an optimization that allows the earlier 

version of a row to be stored together with the latest version in the 

main data page. The row contains the latest version, but also the 

required information to reconstruct the earlier version. Since in 

most cases the difference between the two versions is small (for 

example when only a few columns are updated), we can simply 

store the diff between the two versions. Even though computing 

and reapplying the diff requires additional CPU cycles, the cost of 

generating an off-row version, by accessing another page and 

logging the version as a separate operation, is significantly higher. 

This makes in-row versioning a great solution for reducing the 

storage overhead, but also the cost for logging the generated 

version, as a) we effectively log the version together with the data 

modification and b) we only increase the log generated by the size 

of the diff. At the same time, in-row versioning improves read 

access performance, since the earlier version of a row can be 

reconstructed without having to access another page that might 

not be in the cache. 

Figure 4 demonstrates an example of a row that contains the 

current version of the row together with the diff and required 

information to reconstruct the earlier version. When a row is 

deleted, TempDB version store creates a copy of the row in the 

version store and replaces the row on the data page with a stub 

indicating that the row was deleted. With in-row versioning, we 

simply mark the row as deleted, while retaining the original 

content to be served as the earlier version. Similarly, updates 

modify the row in-place, but also append the byte-diff between 

the old and the new versions to allow reconstructing the earlier 

version.  

 

Figure 4. Example of a row that contains in-row versioning 

information for an earlier version. 

Despite its benefits in most common cases, in-row versioning can 

negatively impact the performance of the system if it significantly 

increases the size of rows in the data pages. This is particularly 

problematic for B-Trees as it can lead to page splits, which are 

expensive, but also deteriorate the quality of the data structure, 

making future accesses more expensive. To mitigate this issue, the 

size of in-row versions is capped both in terms of the size of the 

diff, as well as the size of the row it can be applied to. When these 

exceed certain thresholds, PVS will fall back to generating off-

row versions, on a different page. 

3.2.2 Off-row Version Store 
Off-row version store is the mechanism for persisting versions 

that did not qualify to be stored in-row. It is implemented as an 

internal table that has no indexes since all version accesses are 

based on the version’s physical locator (Page Id, Slot Id). Each 

database has a single off-row PVS table that maintains the 

versions for all user tables in the database. Each version of user 

data is stored as a separate row in this table, having some columns 

for persisting version metadata and a generic binary column that 

contains the full version content, regardless of the schema of the 

user table this version belongs to. Generating a version is 

effectively an insertion into the off-row PVS table, while 

accessing a version is a read using the version’s physical locator. 

By leveraging regular logging, off-row PVS is recovered using the 

traditional recovery mechanisms. When older versions are no 

longer needed, the corresponding rows are deleted from the table 

and their space is deallocated. Details regarding the off-row PVS 

cleanup process are described in Section 3.7.   

The off-row PVS leverages the table infrastructure to simplify 

storing and accessing versions but is highly optimized for 

concurrent inserts. The accessors required to read or write to this 

table are cached and partitioned per core, while inserts are logged 

in a non-transactional manner (logged as redo-only operations) to 

avoid instantiating additional transactions. Threads running in 

parallel can insert rows into different sets of pages to eliminate 

contention. Finally, space is pre-allocated to avoid having to 

perform allocations as part of generating a version.  

3.3 Logical Revert 

3.3.1 Overview 
CTR leverages the persistent row versions in PVS to instantly roll 

back data modifications (inserts, updates, deletes) without having 

to undo individual row operations from the transaction log. Every 

data modification in CTR is versioned, updating the row in-place 

and pushing the previous version into the version store. Also, 

similar to MVCC (Figure 3), each version of the row is marked 

with the Transaction Id of the transaction that generated it.  

When a query accesses a row, it first checks the state (active, 

committed or aborted) of the transaction that generated the latest 

version, based on the Transaction Id, and decides whether this 



version is visible. If the transaction is active or has been 

committed, visibility depends on the query isolation level, but if 

the transaction is aborted, this version is definitely not visible and 

the query traverses the version chain to identify the version that 

belongs to a committed transaction and is visible.  

This algorithm allows queries to access transactionally consistent 

data in the presence of aborted transactions; however, this state is 

not ideal in terms of performance since queries traverse multiple 

versions to access the committed data. Additionally, if a new 

transaction updates a row with an aborted version, it must first 

revert the effects of the aborted transaction before proceeding 

with the update. To address these and limit the time that aborted 

transactions are tracked in the system, CTR implements two 

different mechanisms for reverting the updates performed by 

aborted transactions: 

• Logical Revert is the process of bringing the committed 

version of a row back to the main row in the data page, 

so that all queries can access it directly and versions in 

the version store are no longer required. This process 

compares the state of the aborted and committed 

versions and performs the required compensating 

operation (insert, update or delete) to get the row to the 

committed state. The operations performed by Logical 

Revert are not versioned and are executed in system 

transactions that are undone normally using the 

transaction log. Since these transactions only revert a 

row at a time, they are guaranteed to be short-lived and 

don’t affect recovery time. Figure 5 provides an 

example of a Logical Revert operation. Logical Revert 

is used by a background cleanup process, described in 

detail in Section 3.7, to eliminate all updates performed 

by aborted transactions and eventually remove the 

aborted transactions from the system. 

• When a new transaction updates a row that has an 

aborted version, instead of using Logical Revert on 

demand, which would be expensive, it can leverage an 

optimization to overwrite the aborted version with the 

new version it is generating, while linking this new 

version to the previously committed version. Figure 6 

presents an example of this optimization. This process 

minimizes the overhead for these operations and allows 

them to be almost as fast as if there was no aborted 

version.  

Using these mechanisms, both reads and writes can access or 

update any row immediately after a transaction that updated it 

rolls back. The same process applies during recovery, eliminating 

the costly Undo process that undoes each operation performed by 

uncommitted transactions. Instead, in CTR, the database is fully 

available, releasing all locks, while row versions are lazily 

cleaned up in the background.  

It is also important to note that although CTR depends on MVCC 

for recovery purposes, it still preserves the locking semantics of 

SQL Server, for both reads and writes, and supports all isolation 

levels without any changes in their semantics. 

3.3.2 Transaction State Management 
As described in the previous section, each query decides whether 

a version is visible by checking the transaction state based on the 

Transaction Id stored in the version. For SI, visibility depends on 

the commit timestamp of the transaction that generated the 

version. Since SQL Server does not allow snapshot transactions to 

span server restarts, the commit timestamps can be stored in 

memory and need not be recovered. CTR, however, requires 

tracking the state of aborted transactions until all their versions 

have been logically reverted and are no longer accessible. This 

depends on the background cleanup process (Section 3.7) that 

performs Logical Revert for all aborted versions in the database 

and can be interrupted by unexpected failures. Because of that, the 

state of aborted transactions must be recovered after any type of 

failure or server restarts. 

CTR stores the aborted transaction information in the “Aborted 

Transaction Map” (ATM), a hash table that allows fast access 

based on the Transaction Id. When a transaction aborts, before 

releasing any locks, it will add its Transaction Id to the ATM and 

generate an “ABORT” log record indicating that it was aborted. 

When a checkpoint occurs, the full content of the ATM is 

serialized into the transaction log as part of the checkpoint 

information. Since Analysis starts processing the log from the 

Checkpoint Begin LSN of the last successful checkpoint, or 

earlier, it will process this information regarding the aborted 

transactions and reconstruct the ATM. Any transactions that 

aborted after the last checkpoint will not be included in the 

checkpoint, but Analysis will process their ABORT log records 

and add them to the map. Following this process, Analysis can 

reconstruct the ATM as of the time of the failure, so that it is 

available when the database becomes available at the end of Redo. 

As part of the Undo phase, any uncommitted transactions will also 

be marked as aborted, generating the corresponding ABORT log 

records, and added to the ATM.  

Once all versions generated by an aborted transaction have been 

reverted, the transaction is no longer interesting for recovery and 

can be removed from the ATM. Removing a transaction is also a 

logged operation, using a “FORGET” log record, to guarantee that 

the content of the ATM is recovered correctly. 
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Figure 5. Example of a row before and after Logical Revert. 
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Figure 6. Optimization to overwrite an aborted version. 

3.3.3 Short Transaction Optimization 
Despite the benefits of Logical Revert, maintaining the Aborted 

Transaction Map and forcing queries to visit additional versions 

incur a performance penalty. This overhead is well justified for 

long running transactions that are generally rare, but significantly 

impact recovery time. However, it can be problematic for high-



volume, short OLTP transactions as they would significantly 

increase the size of the ATM, leading to high memory footprint 

and inefficient checkpoints serializing the ATM into the 

transaction log.  At the same time, undoing such short-running 

transactions using the transaction log would only take a few 

milliseconds, while allowing the system to remove aborted 

versions and avoid performance impact to future queries. 

To optimize for both scenarios, CTR dynamically decides, based 

on the transaction size, whether a transaction should be marked as 

aborted, using the CTR mechanisms, or undone using the 

transaction log. When a transaction attempts to roll back, we 

evaluate the number of operations it performed and the amount of 

log it generated and qualify it as “short” if these don’t exceed 

certain thresholds. Short transactions will not go through the CTR 

rollback process, but use traditional undo, so that they are 

immediately removed from the system. 

3.4 Non-versioned Operations 
Although Logical Revert allows us to eliminate undo for any data 

modifications that are versioned, SQL Server has a wide variety 

of operations that cannot be versioned because they are:  

• Logical, such as acquiring coarse-grained locks at the 

table or index level, invalidating various caches when a 

transaction rolls back or accumulating row and page 

statistics for Bulk operations. 

• Updating system metadata in data structures that are 

highly compacted, such as information about which 

pages are allocated. 

• Updating critical system metadata required for starting 

up the database, before recovery can reconstruct 

versioning information, such as updates to the “boot 

page”, a special page that contains the core information 

required for initialization. 

To handle these operations while guaranteeing recovery in 

constant time, we are leveraging two different mechanisms:  

3.4.1 SLog: A Secondary Log Stream 
SLog is a secondary log stream designed to only track non-

versioned operations that must be redone or undone using 

information from the corresponding log records. This allows us to 

efficiently process relevant log records without having to scan the 

full transaction log. Given that such operations are generally 

associated with schema changes and other rare database 

operations, such as changing various database options, the volume 

of log records written to the SLog is several orders of magnitude 

lower than the total volume of the transaction log, allowing us to 

process these operations in minimal time. For example, when 

altering the data type of a column in a large table, the transaction 

will have to update millions of rows, but SLog will only contain a 

handful log records, for acquiring the exclusive lock and 

invalidating metadata caches. 

SLog is used during Undo to roll back any outstanding non-

versioned operations, but it is also used by the Redo phase to redo 

logical operations, such as reacquiring coarse-grained locks, 

without having to process the transaction log from the beginning 

of the oldest uncommitted transaction, as described in Section 2.1. 

Because of this, SLog must be stored in a data structure that can 

be recovered before Redo starts. This cannot be easily achieved 

using traditional database data structures (Heaps, B-Trees, etc.) as 

these depend on WAL and recovery. Instead, SLog is 

implemented as an in-memory log stream that is persisted to disk 

by being serialized into the traditional transaction log. In memory, 

SLog is stored as a linked list of log records, ordered based on 

their LSNs to allow efficient traversal from the oldest to the 

newest LSN during Redo. Additionally, to allow efficient 

processing during Undo, SLog records are also linked backwards 

pointing to the previous log record generated by the same 

transaction. Figure 7 provides an example of SLog with 5 log 

records corresponding to two transactions.  

LSN 
100

Tran Id 
5

LSN 
130

Tran Id 
8

LSN 
200

Tran Id 
5

LSN 
260

Tran Id 
5

LSN 
320

Tran Id 
8

End of 
SLog

 

Figure 7. In-memory SLog structure. 

As SQL Server generates the log records corresponding to non-

versioned operations, they get written to the transaction log, as 

usual, but they also get appended to the in-memory SLog. When a 

checkpoint occurs, all in-memory records with LSN ≤ the 

Checkpoint Begin LSN get serialized and written into the 

transaction log. During recovery, the Analysis phase will process 

the transaction log starting from at least the Checkpoint Begin 

LSN of the last completed checkpoint, and can now additionally 

reconstruct the portion of the SLog that was serialized to the 

transaction log as part of the checkpoint. Furthermore, any log 

records with higher LSNs will also be visited by Analysis and will 

be appended to the in-memory SLog.  

With this algorithm, at the end of Analysis, we have reconstructed 

the SLog as of the time of the failure and can use it for the Redo 

and Undo phases. The Redo process is split into two phases: 

a) For the portion of the log between the Begin LSN of the 

oldest uncommitted transaction and the min(Oldest 

Dirty Page LSN, Checkpoint Begin LSN), Redo 

processes the log using the SLog since it only has to 

redo logical operations as all physical page operations 

had been flushed to disk. The number of log records in 

the SLog should be minimal and, therefore, redone 

almost instantly, regardless of the size of the oldest 

uncommitted transaction. 

b) For the portion of the log after the min(Oldest Dirty 

Page LSN, Checkpoint Begin LSN) and until the end of 

the log, Redo will follow the regular process of redoing 

all operations from the transaction log. Since the 

database engine takes checkpoints frequently, regardless 

of the user workload, we can guarantee that this portion 

of the log will always be bounded and redone in 

constant time.  

During Undo, since regular DML operations are recovered using 

Logical Revert, we only undo non-versioned operations using the 

SLog. Since the SLog only collects a small subset of operations, 

undoing them should be almost instant, regardless of the size of 

the uncommitted transactions that are being rolled back. If the 

undo process performs any compensating non-versioned 

operations, the corresponding Compensating Log Records (CLRs) 

will also be appended to the SLog with their backlinks pointing to 

the next log record to be undone. This guarantees that Undo will 

never reprocess the same log records twice and can make forward 



progress even after repeated failures. As Undo completes for each 

uncommitted transaction, the transaction is added to the ATM and 

its locks are released. 

Figure 8 demonstrates the recovery process in CTR which 

leverages the SLog to complete each phase of recovery in constant 

time. If a transaction rolls back during normal transaction 

processing, while the database is online, CTR will also use the 

SLog to roll back the corresponding non-versioned operations, 

therefore completing the rollback almost instantly. 

Similar to the transaction log, SLog is only needed for recovery 

purposes and can be truncated as transactions commit or abort and 

are no longer interesting for recovery. When a checkpoint occurs, 

SQL Server calculates the Begin LSN of the oldest active 

transaction in the system and this is the low watermark used to 

truncate any SLog records with lower LSNs. Additionally, since 

SLog is maintained in memory and it is critical to reduce its 

footprint, we have introduced an aggressive cleanup process that 

will scan the full content of SLog and remove any records 

generated by transactions that are no longer active, regardless of 

their LSNs. Both truncation and cleanup have been designed to 

run in parallel with the workload that might be appending new 

records to the SLog and, therefore, do not impact user activity. 

Transaction 
Log

Phase 1: Analysis

Phase 3: SLog Undo 

Oldest 
Transaction 
Begin LSN

Min(Checkpoint Begin LSN, 
Oldest Dirty Page LSN)

End of Log

Phase 2a: 
SLog Redo

SLog

Phase 2b: 
Physical Redo

(Tran Log)

SLog Records
Checkpointed 
SLog Records

Log Records

 

 Figure 8. Recovery process in CTR. 

3.4.2 Leveraging System Transactions  
Even though SLog allows us to easily handle the recovery of any 

non-versioned operation, we want to minimize the amount of log 

records that are appended there because: 

• Both Redo and Undo process the corresponding SLog 

records and, therefore, recovery time depends on the 

size of SLog. 

• SLog is kept in expensive main memory. 

Space allocations and deallocations are the most common non-

versioned operations in the database, as they are tied to the user 

transaction sizes: the number of pages to be allocated or 

deallocated depends on the amount of data the user transaction 

inserts or deletes. In SQL Server, the information regarding 

whether a page is allocated and what object it belongs to is 

captured in special metadata pages that maintain a bitmap with the 

status of a range of pages in the file. Since the information is 

tightly packed, it is impractical to be versioned, making it 

impossible to handle their recovery using versioning and Logical 

Revert. To avoid using SLog, CTR performs all allocation and 

deallocations in system transactions that can commit immediately 

after performing the operation. These transactions don’t depend 

on versioning and are normally redone and undone using the 

transaction log. Due to their very small size, these transactions can 

be recovered in minimal time and do not affect the overall 

recovery time.  

More specifically, in CTR, all operations will allocate new pages 

in a system transaction that is committed immediately, but will 

also mark the page as “potentially containing unused space” so 

that they can be reclaimed if the user transaction rolls back. A 

background cleanup thread will periodically scan the database for 

such pages, evaluate whether they contain any data and deallocate 

them if they are empty. On the other hand, deallocations cannot be 

committed before the user transaction commits, since in case of 

rollback all deallocated pages contain valid data that should be 

accessible. CTR addresses this by deferring all deallocations until 

after the user transaction that deallocated the space is committed. 

The user transaction will only mark a large set of pages as 

“deferred deallocated”, using an operation logged in SLog, while 

the actual deallocation will be performed by a background thread 

only after the user transaction has committed. The background 

thread deallocates the deferred pages in batches using short-lived 

system transactions that are recovered using the transaction log 

and do not depend on versioning or SLog. If the user transaction 

rolls back, as part of undoing the SLog, it will unmark the 

corresponding pages as “deferred deallocated” and, therefore, they 

will remain allocated as expected.  

3.5 Redo Locking Optimization 
As described in Section 2.1, in order to reacquire all the locks held 

by uncommitted transactions, the Redo phase normally processes 

the transaction log from the beginning of the oldest uncommitted 

transaction. This allows making the database available before the 

Undo phase and is important in ARIES recovery because Undo 

can take significant time. Since Undo in CTR is extremely 

efficient, we could technically defer making the database 

available until Undo has completed and let Redo not acquire any 

locks. However, there are special cases of recovery that require 

allowing user access without performing Undo and rolling back 

uncommitted transactions: 

• Readable secondaries using physical replication [8] 

replay the transaction log generated by the primary and 

allow users to execute read queries. If a secondary 

crashes, it has to go through recovery to bring the 

database to a consistent state, but it will stop after the 

Redo phase since the transactions are still active on the 

primary. To allow queries after recovery, Redo 

reacquires any locks held by currently active 

transactions. 

• Unresolved distributed transactions are transactions 

where the database engine failed to contact the 

distributed transaction coordinator to retrieve their 

outcome and, therefore, cannot yet be declared as 

committed or aborted. To make the database available 

during this time, which is generally unbounded, Redo 

reacquires the locks held by these transactions.  

To address these scenarios, SLog is used to track and reacquire 

low-volume, coarse-grained locks, such as table or metadata 

object locks, during Redo, while a new locking mechanism is 

introduced at the transaction level to handle granular locking, at 

the page and row level, where the volume can be extremely high. 

More specifically, at the end of Redo, each uncommitted 

transaction will acquire an exclusive “Transaction” lock on its 



Transaction Id. As described in Section 2.2, each row version is 

marked with the Transaction Id of the transaction that generated 

it. When a new transaction attempts to access a row version, it 

will request a shared lock on the Transaction Id of this version and 

block if this transaction is still in recovery. Once the uncommitted 

transaction is committed or aborted, it will release its Transaction 

lock and allow any conflicting transactions to access the 

corresponding rows. This mechanism allows us to achieve row 

and page level locking during recovery without having to track 

and reacquire the locks for individual rows and pages. When all 

transactions that were in recovery have been committed or 

aborted, the database state is updated and any new row accesses 

will no longer request a Transaction lock, eliminating the 

performance overhead. 

3.6 Aggressive Log Truncation 
Despite the significant differences compared to ARIES recovery, 

CTR still depends on WAL and uses the transaction log for 

recovering the database. ARIES recovery uses the log to Undo 

uncommitted transactions, therefore, requiring it to be preserved 

from the Begin LSN of the oldest active transaction in the system 

and making the log size proportional to the transaction size. This 

is problematic because it requires users to carefully provision the 

log space based on their workloads and is particularly complex in 

the Cloud where the system automatically allocates the 

appropriate space without having visibility into the user workload. 

By leveraging Logical Revert and the SLog, CTR only uses the 

portion of the log after the beginning of the last successful 

checkpoint to redo any updates; hence CTR no longer needs to 

Redo or Undo the log from the beginning of the oldest 

uncommitted user transaction. The log must still be preserved for 

undoing system transactions without versioning, but it can now be 

aggressively truncated up to the minimum of a) the Checkpoint 

Begin LSN of the last successful checkpoint, b) the Oldest Dirty 

Page LSN and c) the Begin LSN of the oldest active system 

transaction. Since system transactions are guaranteed to be short-

lived and checkpointing is managed by the DBMS and can occur 

at consistent intervals, the transaction log can be truncated 

continuously regardless of the size of the user transactions. This 

enables performing large data loads or modifications in a single 

transaction using only a small, constant amount of log space.  

Finally, to enable the “short transaction optimization” described in 

Section 3.3.3, if there are any active user transactions, CTR will 

allow the log to be preserved for at least 200 MBs, so that it can 

be used to roll back any “short” transactions that qualify for the 

optimization. When a transaction attempts to roll back, together 

with the criteria described earlier, we evaluate whether the 

required log is still available. If it is, we will follow the 

traditional, log-based rollback process, otherwise the transaction 

is marked as “aborted” and will be cleaned up lazily using Logical 

Revert. 

3.7 Background Cleanup 
In CTR, all data modification operations generate row versions 

which must be eventually cleaned up to free up space, but also 

eliminate the performance overhead for queries that traverse 

multiple versions to access the committed version of each row. In 

the case of committed transactions, earlier versions are not 

interesting for recovery purposes and can be immediately 

removed once they are no longer needed for SI. On the other 

hand, for aborted transactions, the committed data resides in the 

earlier versions, requiring Logical Revert to be performed before 

the older versions can be safely removed. Even though new user 

transactions participate in the cleanup process when an aborted 

version is updated, we need a mechanism to continuously remove 

unnecessary versions. CTR introduces a background cleanup task 

that is responsible for: 

• Logically reverting updates performed by aborted 

transactions. 

• Removing aborted transaction from the ATM once all 

their updates have been logically reverted. 

• Cleaning up in-row and off-row versions from PVS 

once they are no longer needed for recovery or SI. 

The process of performing Logical Revert and removing in-row 

PVS versions is different from the one that cleans up off-row PVS 

versions and, therefore, are described separately. 

3.7.1  Logical Revert and In-row Version Cleanup 
Both Logical Revert and in-row version cleanup are performed by 

accessing all data pages in the database that contain versions to 

logically revert the rows corresponding to aborted transactions 

and remove any unnecessary in-row versions. Once all versions 

generated by aborted transactions have been reverted, the 

corresponding aborted transactions can be safely removed from 

the ATM. 

To efficiently identify data pages requiring cleanup and avoid 

scanning the entire database, CTR introduces additional metadata 

for each data page indicating whether it contains versions that 

might be eligible for cleanup. This metadata is stored in special 

system pages that SQL Server maintains and are known as Page 

Free Space (PFS) pages since they are mainly used for tracking 

whether each page has space available. In CTR, before any data 

modification occurs on a data page, a bit indicating that this page 

contains versions is set in PFS. It is important for this to happen 

before the actual operation on the data page occurs, since, in case 

of failure, we must guarantee that the cleanup process is aware 

that this page might contain uncommitted data and must be 

cleaned up. To avoid repeatedly accessing the PFS pages to 

modify the version bit, the same state is also maintained on the 

data page itself, so that we only access the PFS page if the state 

for this page is changing.  

The cleanup process wakes up periodically, every few minutes, 

and proceeds as follows: 

• Takes a snapshot of the Transaction Ids for all the 

aborted transactions in the ATM. 

• Scans the PFS pages of the database and processes all 

data pages that are marked as containing versions. For 

every such page, a) performs Logical revert for any 

rows that have a version corresponding to an aborted 

transaction and b) removes any in-row versions that 

belong to earlier committed transactions and are no 

longer needed for SI. If all versions were successfully 

removed from the page, the bit indicating that this page 

contains versions is unset. The cleanup process operates 

at a low level, cleaning up pages incrementally, and 

does not conflict with concurrent user activity.  

• After successfully processing all the pages containing 

versions, the aborted transactions snapshotted at the 

beginning are removed from the ATM. The snapshot 

established at the beginning is necessary to make sure 



that we remove only the aborted transactions for which 

we have already logically reverted all their versions and 

not any new transactions that might have rolled back 

while the cleanup was active. 

Although the cleanup process can take a significant amount of 

time when a large portion of the database has been updated, it is 

important that it can remove all snapshotted aborted transactions 

in one pass. This allows us to execute the cleanup lazily in the 

background, providing it with only a limited amount of resources 

(CPU and IO/sec), to avoid impacting concurrent user workload. 

3.7.2 Off-row Version Cleanup 
In contrast to the Logical Revert cleanup which is necessary to 

remove aborted transactions from the system and eliminate the 

overhead of traversing additional versions, the off-row cleanup is 

only responsible for deleting earlier versions and freeing up space 

in the database. As described in Section 3.2, the off-row PVS 

stores all generated versions as rows in an internal table. Versions 

generated by any transaction and for all user tables in the database 

get inserted there. This simplifies the cleanup process because the 

pages containing off-row versions are effectively the pages that 

belong to this table. Additionally, since this table is optimized for 

inserts, it is designed to be append-only, allocating new pages to 

store newer versions. Hence the cleanup process can track the 

status of the generated versions at the page level, as each page 

gets filled with versions, and deallocate complete pages. 

To achieve that, CTR uses a hash map that tracks the status of 

each page containing off-row versions based on their Page Id. 

When a new page is allocated, a corresponding entry is added to 

the hash map. Since the versions are generated by different 

transactions, their lifetime is also different and requires us to 

maintain information about all transactions that inserted versions 

in each page. To minimize the information stored per page, we 

leverage the fact that SQL Server generates monotonically 

increasing Transaction Ids and only store the highest Transaction 

Id, which is indicating the newest transaction that inserted a 

version in this page. This is used to evaluate whether a page 

contains versions that might be still required for SI or recovery (if 

they still contain committed data for rows that were updated by 

aborted transactions). CTR globally maintains the lowest 

Transaction Id that is still accessible by ongoing snapshot 

transactions in the database and the lowest Transaction Id across 

all aborted transactions in the ATM. If a page’s aggregated 

Transaction Id is lower than both of these, the page can be 

deallocated.  

As the page gets filled with versions from various transactions, 

the hash map entry is updated to maintain the highest Transaction 

Id. When the page is full, the hash map entry indicates that the 

page is now eligible for cleanup. The cleanup process periodically 

visits all entries in the hash map and deallocates all pages that are 

eligible for cleanup and their Transaction Id indicates that they are 

no longer needed. 

Since the hash map is stored only in memory, in case of a failure, 

recovery is responsible for reconstructing its content. The off-row 

PVS pages are easily discoverable by identifying all pages that 

belong to the PVS internal table, an operation SQL Server 

supports natively [3]. Then, instead of attempting to recompute 

the exact Transaction Id for each page, recovery simply uses the 

highest Transaction Id that Analysis identified in the system. Even 

though this is too conservative, as the database starts accepting 

new transactions and Logical Revert cleanup removes earlier 

aborted transactions, all these pages will quickly become eligible 

to be deallocated. In this way, the off-row cleanup process can 

free up space in the database even in the presence of failures or 

restarts. 

4. EXPERIMENTAL RESULTS 
This section presents experimental results regarding the 

performance of the system when CTR is enabled. All our 

experiments are executed on a workstation with 4 sockets, 40 

cores (Intel® Xeon® Processor E7-4850, 2.00GHz) and 512GB 

of RAM. External storage consists of two 1.5TB SSDs for data 

and log respectively. 

4.1 Recovery and Transaction Rollback 
Our first set of experiments evaluates the performance of recovery 

and transaction rollback for transactions of different types and 

sizes. We simulate a long running transaction that inserts, updates 

or deletes a large number of rows in a table with a clustered index 

when a failure occurs.  Figure 9 presents the recovery and rollback 

times for CTR and traditional recovery. As we expected, in 

traditional recovery, both recovery and rollback times are 

proportional to the size of the transaction for all types of 

operations. Analysis is performed in constant time in all cases 

since it only processes the transaction log from the beginning of 

the last successful checkpoint. On the other hand, Redo, Undo and 

transaction rollback scale linearly to the size of the transaction as 

they need to process all operations it performed. When CTR is 

enabled, recovery completes in constant time for all cases. 

Analysis and Redo only process the log from the beginning of the 

last successful checkpoint and, therefore, complete in a small, 

constant amount of time. The small variance noticed among the 

experiments only depends on the exact time a background 

checkpoint occurs before the crash and is not related to the size or 

type of the transaction. Undo and transaction rollback are 

practically instant as all DML operations leverage Logical Revert 

and have no log records to be undone (SLog remains empty as 

there are no logical operations or updates to system metadata).  

During these experiments, we also measure the disk space usage 

for the transaction log and the version store. We measure the size 

of the version store as the combined overhead of in-row and off-

row versions in the database. Table 1 demonstrates the space 

usage after inserting, updating or deleting 10 and 50 million rows. 

The rows are 200 bytes wide and the update modifies an integer 

column of 4 bytes. Without CTR, the transaction log size grows 

linearly to the size of the transaction for all operations, consuming 

significant space. With CTR, however, once it reaches the limit of 

200MBs required by the short transaction optimization (Section 

3.6), it starts getting truncated, as checkpoints occur, and remains 

Table 1. The transaction log and the version store sizes with 

and without CTR. 

Operation Log size w/ 

CTR (MB) 

Log size w/o 

CTR (MB) 

PVS size w/ 

CTR (MB)  

10M Inserts 99 5101 0 

50M Inserts 185 25873 0 

10M Updates 162 3110 173 

50M Updates 78 15680 908 

10M Deletes 341 7771 0 

50M Deletes 147 38255 0 



   

Figure 9. Recovery and rollback times with and without CTR for different operations and number of rows.

stable regardless of the transaction size. The version store is 

empty for inserts as they do not generate additional versions. The 

same applies for deletes since, by leveraging in-row versioning, 

the information that a row is deleted and the Transaction Id of the 

transaction that deleted it are encoded as part of the existing 

versioning information and do not consume additional space. In-

row versioning also reduces the space overhead in the case of 

updates. The space is proportional to the number of rows updated, 

but by storing only the diff between the old and the new version, 

the version store size remains low. In fact, the aggregate space 

used for the transaction log and the version store is significantly 

lower than the log space required for traditional recovery in all 

cases.  

4.2 User Workload Performance 
Having analyzed the benefits of CTR around recovery, we also 

evaluate how it affects the performance of the system during 

online transaction processing. CTR clearly introduces some 

overhead by logging the generated versions to make them 

recoverable, checking for aborted transactions in the Aborted 

Transaction Map to determine row visibility and having 

background cleanup processes that consume resources. At the 

same time, we have performed various optimizations, such as in-

row versioning and the ability for future transactions to overwrite 

aborted versions. To validate these optimizations, we measure the 

throughput and the latency for the user workload when CTR is 

enabled.  

4.2.1 Throughput 
Since most of the overhead introduced by CTR is around 

generating versions and accessing rows that were recently updated 

by transactions that might have aborted, we evaluate the 

throughput of the system using update intensive OLTP workloads. 

Table 2 presents the throughput degradation introduced by CTR 

for a TPCC-like workload that is extremely update intensive and 

should be a worst-case scenario for CTR, and a TPCE-like 

workload that represents a more common ratio between reads and 

writes. These numbers are relative to the throughput of the system 

when using traditional versioning in TempDB. In these workloads 

we explicitly rollback 1% of transactions to simulate a realistic 

case where users abort and exercise the rollback and cleaner code 

paths. We also measure the throughput of the system when in-row 

versioning is disabled to evaluate its impact. 

These results show that the throughput degradation will be 

negligible for the vast majority of applications, which are 

generally not as update intensive as TPCC. As we anticipated, the 

overhead introduced by CTR is greater for more update intensive 

workloads that generate versions at a higher rate. According to the 

profile data we collected, CTR is spending more CPU cycles 

compared to versioning in TempDB when generating the diff for 

in-row versions, as well as inserting and logging off-row versions 

in the PVS table. The cleanup processes also consume additional 

resources (2-3% CPU) and contribute to this difference, however, 

their impact is relatively small since they are single-threaded and 

run lazily in the background. In-row versioning significantly 

improved the throughput for both workloads by allowing versions 

to be generated as part of the row modification, without having to 

perform additional inserts to the off-row version store. We are 

currently analyzing the profile data further to optimize all relevant 

code paths and reduce the overhead introduced by CTR.  

Table 2. Throughput degradation for TPCC and TPCE with 

and without in-row versioning. 

Workload With in-row Without in-row 

TPCC 13.8% 28% 

TPCE 2.4% 3.4% 

 

4.2.2 DML Latency 
In this section, we evaluate the impact of aborted transactions on 

future DML operations that update rows with aborted versions. 

This scenario is particularly interesting because it is common for 

an application to retry the same operation after a failure. Even 

though CTR allows the database to be available in constant time, 

we must guarantee that the performance of the system is similar to 

its original performance when there were no aborted versions for 

the updated rows. Table 3 demonstrates the latency of insert, 

update and delete operations targeting rows in a clustered index 

when the same operation rolled back earlier and is being retried. 

We compare this to the latency of the initial operation when there 

were no aborted versions for these rows. We measure only the 

cost of performing the operation after having located the row to be 

updated and exclude the cost of committing the user transaction 

that would be dominant and add approximately 0.35ms. 

Table 3. Latency of retrying an index row modification. 

Operation Initial 

Latency 

Retry Latency Difference 

Insert 6.1 μs / row 5.8 μs / row -5% 

Update 4.9 μs / row 6.0 μs / row 22% 

Delete 3.7 μs / row 4.3 μs / row 16% 

Bulk Insert 4.2 μs / row 6.3 μs / row 50% 

 



In all cases, the latency of the retried operations is not 

significantly higher than the initial latency. This validates that the 

optimization which enables new operations to overwrite the 

aborted versions without performing Logical Revert (Section 3.3) 

allowed us to minimize the overhead for cleaning up the aborted 

versions. Insert becomes, in fact, slightly faster, as the initial 

operation already allocated the space for the row, allowing the 

retried operation to simply use this space without similar 

overhead. Bulk Insert, on the other hand, is 50% slower due to the 

fact that the initial operation could just allocate and fill up 

completely new pages, without having to locate the page in the 

index corresponding to each row. Since the pages have already 

been added to the index, the retried operation has to first locate 

each page before performing the insert. Despite that, this overhead 

should still be acceptable given the availability benefits of CTR 

that allow the table to be immediately accessible compared to 

going through a long running recovery where the table is 

exclusively locked by the bulk operation that is rolling back. 

4.3 Background Cleanup Performance 
As described in Section 3.7, it is important for the background 

cleanup processes to complete regularly to guarantee that the 

version store size remains stable and the number of aborted 

transactions in the system is bounded. Figure 10 presents the time 

required by the cleanup processes to logically revert all rows 

corresponding to a long running transaction and cleanup all 

unnecessary versions for different operations and number of 

updated rows.   

 

Figure 10. Background cleanup duration. 

As we expected, the time required for the cleanup is proportional 

to the number of rows to be processed.  Inserts and deletes can be 

reverted very efficiently because they only need to mark/unmark 

the row as deleted to compensate for the aborted operation. 

Updates, on the other hand, must perform a full update of the row 

to bring the content of the committed version back on the page, 

hence more expensive. We ran these experiments for a total 

database size of 200GB, but the overall database size does not 

affect the duration of the cleanup. Using the mechanisms 

described in Section 3.7, the pages that contain versions can be 

efficiently identified without having to scan the whole database. 

5. RESULTS AND EXPERIENCE FROM 

PRODUCTION 
As of May 2019, we have enabled CTR worldwide for over three 

million databases in Azure SQL Database. The results have been 

very promising, clearly indicating a significant improvement in 

recovery times and database availability.  

Table 4 demonstrates the difference in recovery times with and 

without CTR. In the common case, where there are no long 

running transactions at the time of the failure, the difference is 

negligible. However, CTR brings significant benefits for the cases 

where long running transactions would have normally caused 

recovery to take many minutes or even hours. Although the 

percentage of impacted databases might seem small, the absolute 

numbers are quite high given the millions of databases hosted in 

Azure. This causes major unavailability for the affected users, 

without any mitigation possible. The other advantage that is 

visible in our telemetry is that the log space usage has decreased 

dramatically for all databases that use CTR, as it no longer 

depends on the user workload. This has made it easier for our 

service to provision and manage the required space, but also 

improves the customer experience by eliminating out of log errors 

for long running transactions. 

Table 4. Recovery times with and without CTR. 

Configuration 99.9 

percentile 

99.99 

percentile 

99.999 

percentile  

With CTR 60 seconds 1.3 minutes 3 minutes 

Without CTR 68 seconds > 10 minutes > 1 hour 

 

Despite its benefits, CTR has presented a new set of challenges 

that must be addressed to guarantee the best possible experience 

for all user workloads. The main issues we have faced so far are 

around cases where the cleanup processes get blocked by user 

transactions, allowing the PVS size to grow and eventually run 

out of disk space. Since these processes are designed to be online 

and run in parallel with the user activity, it is natural to compete 

for system resources (CPU, I/O), as well as locks and latches for 

the objects that are being cleaned up. While keeping the cleanup 

processes minimally invasive, we must also ensure that they can 

successfully complete regularly, deallocate PVS space and 

remove aborted transactions. To achieve that, we have been fine 

tuning the resources allocated to the cleanup threads, while 

making additional optimizations to allow the cleanup processes to 

retry for any objects they failed to obtain the required locks for. 

Furthermore, we are introducing a new flavor of off-row version 

cleanup that aggressively removes versions which are not 

associated to aborted transactions and are, therefore, not needed 

for recovery purposes. This allows us to decouple the off-row 

cleanup from the Logical Revert cleanup and reclaim PVS space 

more aggressively.  

Based on our experiments, these improvements significantly 

reduce the cases where the cleanup processes cannot keep up, 

minimizing the risk of running out of disk space. However, we are 

continuously monitoring the service to identify potential issues 

and address them accordingly. 

6. RELATED WORK 
Database recovery has been an area of research for over three 

decades. While latest research has focused on redesigning 

recovery to leverage modern hardware, such as non-volatile 

memory (e.g. [1], [2], [4], [12], [15]), most commercial DBMSs 

still depend on the ARIES recovery algorithm developed by 

Mohan et al. [9] in the early 1990s. This is mainly because the 

latest proposals depend on specialized hardware and require 

making fundamental changes to the storage engine and transaction 



management components of the DBMS that are already complex 

and highly optimized. 

IBM DB2 [5] and MySQL [10] strictly follow the ARIES 

algorithm, going through the Analysis, Redo and Undo phases. 

The database becomes available at the end of Redo to improve 

availability, but locks are held until the end of Undo to prevent 

concurrent access to the uncommitted data. Amazon Aurora [14] 

eliminates the need for Redo by continuously redoing all 

operations at its distributed storage layer which remains available 

even in the presence of failures for the user database. However, 

Undo remain unchanged and, therefore, proportional to the user 

transaction sizes. Oracle [11] introduces an optimization where, if 

a new transaction attempts to access an uncommitted row while 

the corresponding transaction is rolling back, the new transaction 

will undo the operations on this page, on demand, to allow the 

row to be accessed without having to wait for the overall 

transaction to roll back. This optimization achieves similar results 

with CTR but introduces an overhead to new transactions that 

must first undo earlier changes. As described in Section 3.3, CTR 

allows new transactions to simply ignore and overwrite aborted 

versions without having to undo their changes, achieving 

performance similar to when there are no aborted versions. 

POSTGRES [13] has been designed from the beginning to 

leverage versioning and not generate Undo log. All database 

operations are versioned and new transactions can access earlier 

versions of each page/row to retrieve the committed data, after a 

transaction rolls back. Based on that, recovery no longer requires 

an Undo phase and the database is fully available after Redo. This 

achieves recovery in constant time, however leveraging this 

technique for an existing database engine that depends on Undo 

for a large number of logical and non-versioned operations would 

be extremely challenging. CTR combines traditional ARIES with 

MVCC versioning to improve recovery time without having to 

fundamentally redesign the storage engine. In-row versioning 

allows versions to be efficiently stored within the data pages, 

reducing the performance and storage overhead, similar to the 

version compression scheme applied in Immortal DB [6]. Finally, 

CTR introduces a novel mechanism for tracking and reverting 

aborted row versions in the background, without blocking the 

concurrent user workload or affecting its performance. 
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