
Constant Time Recovery in Azure SQL Database
Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian Diaconu,

Raghavendra Thallam Kodandaramaih, Hanuma Kodavalla, Prashanth Purnananda,
Adrian-Leonard Radu, Chaitanya Sreenivas Ravella, Girish Mittur Venkataramanappa

Microsoft
One Microsoft Way

Redmond, WA 98052 USA

{panant, peterbyr, waync, cdiaconu, raghavt, hanumak, praspu,

aradu, ravellas, girishmv}@microsoft.com

ABSTRACT

Azure SQL Database and the upcoming release of SQL Server

introduce a novel database recovery mechanism that combines

traditional ARIES recovery with multi-version concurrency

control to achieve database recovery in constant time, regardless

of the size of user transactions. Additionally, our algorithm

enables continuous transaction log truncation, even in the

presence of long running transactions, thereby allowing large data

modifications using only a small, constant amount of log space.

These capabilities are particularly important for any Cloud

database service given a) the constantly increasing database sizes,

b) the frequent failures of commodity hardware, c) the strict

availability requirements of modern, global applications and d)

the fact that software upgrades and other maintenance tasks are

managed by the Cloud platform, introducing unexpected failures

for the users. This paper describes the design of our recovery

algorithm and demonstrates how it allowed us to improve the

availability of Azure SQL Database by guaranteeing consistent

recovery times of under 3 minutes for 99.999% of recovery cases

in production.

PVLDB Reference Format:

Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian

Diaconu, Raghavendra Thallam Kodandaramaih, Hanuma

Kodavalla, Prashanth Purnananda, Adrian-Leonard Radu,

Chaitanya Sreenivas Ravella, Girish Mittur Venkataramanappa.

Constant Time Recovery in Azure SQL Database. PVLDB, 12(12)

: xxxx-yyyy, 2019.

DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Database recovery is a critical component of every DBMS,

guaranteeing data consistency and availability after unexpected

failures. Despite being an area of research for over three decades,

most commercial database systems, including SQL Server, still

depend on the ARIES [9] recovery protocol, an algorithm that

leverages Write-Ahead Logging (WAL) and defines distinct

recovery phases to eliminate ad-hoc recovery techniques.

Even though ARIES simplifies the recovery process and allows it

to be generic for all transactional operations, recovering the

database to a consistent state requires undoing all operations

performed by uncommitted transactions which makes the cost of

recovery proportional to the work performed by these

transactions. This significantly impacts database availability since

recovering a long running transaction can take several hours. A

recent example that demonstrates the severity of this problem is a

case where an unexpected failure occurred while one of our

customers was attempting to load hundreds of millions of rows in

a single transaction. The database required 12 hours to recover

while the corresponding tables were completely inaccessible due

to the exclusive locks held by the transaction performing the data

load. Even though this is an extreme case, when a service like

Azure SQL Database is responsible for millions of databases, long

running recoveries are a common pain point.

To mitigate this issue, SQL Server has previously depended on

targeted optimizations that speed up each phase of recovery, for

example leveraging parallelism, but has not made any

fundamental changes to the recovery algorithm itself. Although

these optimizations proved to be adequate for on-premise

environments, where the DBMS is running on high-end servers

and failures are generally planned, the transition to the Cloud reset

the expectations around database availability and recovery

because of:

• The rapid growth in database sizes which also translates

to longer transactions.

• The more frequent failures of commodity hardware used

in Cloud architectures, resulting in frequent failovers

that also depend on the recovery process.

• The fact that software upgrades and other maintenance

tasks are now managed by the Cloud provider, making it

hard to ensure that the user workload can adjust to

minimize downtime, for example by preventing long

running transactions during maintenance windows.

To meet our availability SLAs in the Cloud and improve the

quality of our service, we designed a novel database recovery

algorithm that combines ARIES with multi-version concurrency

control (MVCC) to achieve recovery in constant time regardless

of the user workload and the transaction sizes. Our algorithm

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

https://doi.org/10.14778/xxxxxxx.xxxxxxx

depends on Write-Ahead logging and the recovery phases defined

by ARIES, but takes advantage of generating row versions for the

most common database operations (e.g. inserts, updates, deletes)

to avoid having to undo them when rolling back uncommitted

transactions. This allows us to bring the database to a consistent

state in constant time and release all locks held by uncommitted

transactions, making the database fully accessible and eliminating

the main disadvantage of ARIES. Using the same versioning

technique, our algorithm also allows instant rollback of individual

transactions and enables aggressively truncating the transaction

log, even in the presence of long running transactions, therefore

allowing large data loads and modifications using only a small,

constant amount of log space.

This paper describes the overall design of “Constant Time

Recovery” (CTR) in the upcoming release of SQL Server (also

publicly known as “Accelerated Database Recovery” [7]) and

demonstrates how it allows us to significantly improve the

availability of Azure SQL Database. Section 2 begins with some

background around the recovery process in the earlier releases of

SQL Server. Section 3 outlines the architecture of CTR and

provides the detailed design of its components. Section 4 presents

our experimental results regarding the performance and resource

usage of our recovery scheme. Finally, Section 5 covers the

results and experience from enabling CTR in production in Azure

SQL Database.

2. BACKGROUND ON SQL SERVER
This section provides a summary of the recovery process and

MVCC implementation in the earlier releases of SQL Server

which is required to better understand the architecture and design

choices for CTR. More detailed information regarding both areas

can be found in the public documentation of SQL Server [3].

2.1 Database Recovery
The database recovery process in SQL Server is based on the

ARIES recovery algorithm. Data and log are stored separately,

using WAL to log all operations to the transaction log before

performing any modifications to the corresponding data pages.

All log records written to the transaction log are uniquely

identified using their Log Sequence Number (LSN) which is an

incremental identifier based on the physical location of the log

record in the log file. Other than details about the operation

performed (e.g. deletion of key X), each log record also contains

information about the page modified (Page Id), the transaction

that performed the operation (Transaction Id), and the LSN of the

previous log record (Previous LSN) for the same transaction.

UPDATE
Page 15, Slot 3

LSN 100 – TranID 250
Previous LSN 60

Data Page Log Records

DELETE
Page 15, Slot 2

LSN 120 – TranID 250
Previous LSN 100

En
d

 o
f

Lo
g

Page 15

Page LSN 120

Content

Figure 1. Representation of a data page and its log records.

Data is stored in pages of 8KB that reside in the data files. The

Page Id that identifies each page is also based on the physical

location of the page in the data file. Other than the data and other

information about the page content, each page also maintains the

LSN of the log record corresponding to the last modification to

this page (Page LSN). Figure 1 provides an example of a data

page and the corresponding log records that have updated it.

For performance reasons, data pages are cached in memory in the

Buffer Pool. Transactions update the data only in-memory and a

background checkpoint process is responsible for periodically

writing all dirty pages to disk, after guaranteeing that the

corresponding log records have also been flushed to disk to

preserve WAL semantics. The checkpoint process additionally

captures a) the state of all active transactions at the time of the

checkpoint and b) the LSN of the oldest dirty page in the system

(Oldest Dirty Page LSN), which will be used for the purposes of

recovery. Following ARIES, the SQL Server recovery process has

three distinct phases. Figure 2 demonstrates these phases and the

portion of the log they process.

Transaction
Log

Phase 1: Analysis

Phase 3: Undo

Oldest Transaction
Begin LSN

Min(Checkpoint Begin LSN,
Oldest Dirty Page LSN)

End of Log

Log Records

Phase 2a:
Redo Lock
Acquisition Phase 2b:

Physical Redo

Figure 2. The phases of the recovery process.

2.1.1 Analysis
Analysis is the first phase of recovery and is responsible for

identifying a) any transactions that must be rolled back because

they had not committed when the failure occurred and b) the LSN

of the oldest dirty page in the system. Since the checkpoint

process captured all active transactions and the oldest dirty page

LSN at the time of the checkpoint, Analysis can scan the log

starting from the minimum of the beginning of the last completed

checkpoint (Checkpoint Begin LSN) and the Oldest Dirty Page

LSN to reconstruct the required information.

2.1.2 Redo
The Redo phase is responsible for bringing the database back to

the state it was at the time of the failure. This is achieved by

processing the transaction log and redoing all operations that

might not have been persisted to disk. Since Analysis has

recomputed the Oldest Dirty Page LSN, Redo should only process

the log from this point as any previous updates have already been

flushed to disk. When processing a log record, Redo compares the

Page LSN with the LSN of the current log record and only applies

the operation if the Page LSN is lower, which indicates that the

current image of the page is older.

Even though redoing this smaller portion of the log suffices to

bring the data pages to the required state, SQL Server’s Redo

processes the log starting from the beginning of the oldest active

transaction. This allows recovery to reacquire all the locks held by

active transactions and make the database available at the end of

Redo for improved availability. However, this causes the Redo

process to be proportional to the size of the longest active

transaction. To improve performance, in the latest releases of SQL

Server, Redo has been parallelized, but still preserves the

invariant that all operations corresponding to a specific page are

applied in LSN order.

2.1.3 Undo
Undo is the last phase of recovery and is responsible for rolling

back any transactions that were active at the time of the failure.

As Redo has reacquired the locks required by these transactions,

the Undo process can be performed while the database is available

and user queries will be blocked only if they attempt to access the

data modified by the transactions pending undo.

For each active transaction, Undo will scan the log backwards,

starting from the last log record generated by this transaction and

undo the operation performed by each log record. This makes the

cost of Undo proportional to the size of uncommitted transactions.

Undoing these operations is also logged using Compensation Log

Records (CLR) to guarantee that the database is recoverable even

after a failure in the middle of the Undo process. The log records

for each transaction can be efficiently traversed using the Previous

LSN stored in each log record. Once a transaction is rolled back,

its locks are released.

2.2 Multi-version Concurrency Control
SQL Server introduced multi-version concurrency control in 2005

to enable Snapshot Isolation (SI). Versioning is performed at the

row level: for every user data update, SQL Server updates the row

in-place in the data page and pushes the old version of the row to

an append-only version store, linking the current row version to

the previous version. Further updates generate newer versions,

thereby creating a chain of versions that might be visible to

different transactions following the SI semantics. Each version is

associated to the transaction that generated it, using the

Transaction Id, which is then associated to the commit timestamp

of the transaction. The versions are linked to each other using

their physical locator (Page Id, Slot id). Figure 3 provides an

example of a row linked to two earlier versions.

Figure 3. Example of MVCC row version chain.

Upon visiting a row, a transaction traverses the chain of versions

and determines the visibility of each version by comparing the

transaction’s snapshot timestamp, established at the beginning of

the transaction, with the commit timestamp of the transaction that

generated the version. Once older snapshot transactions commit,

older versions become permanently invisible and the version store

can get truncated to free up space. Given that these versions are

only used for the purposes of SI, the version store doesn’t need to

be preserved across restarts and is stored in SQL Server’s

“TempDB”, a system database that is recycled every time the

SQL Server process restarts. This allows for efficient version

generation, as these operations are not logged.

3. CONSTANT TIME RECOVERY

3.1 Overview
Azure SQL Database and the upcoming release of SQL Server

introduce Constant Time Recovery (CTR), a novel database

recovery algorithm that depends on ARIES but leverages the row

versions generated for MVCC to support:

• Database recovery in constant time, regardless of the

user workload and transaction sizes.

• Transaction rollback in constant time regardless of the

transaction size.

• Continuous transaction log truncation, even in the

presence of long running transactions.

CTR achieves these by separating transactional operations into

three distinct categories and handling their recovery using the

most appropriate mechanism.

3.1.1 Data Modifications
Data modifications refer to regular DML operations that update

user data. CTR leverages MVCC versions to instantly undo data

updates without having to undo every operation independently

using the transaction log. All data modifications are versioned,

storing the earlier versions of each row in the version store that is

now redesigned to be persistent and recoverable. Each version is

marked with the Transaction Id of the transaction that generated it

which allows us to identify the state of the corresponding

transaction (active, committed or aborted). When a transaction

rolls back, it is simply marked as “aborted”, indicating that any

new transactions should ignore the versions generated by this

transaction and access the earlier committed versions. During

database recovery, Analysis identifies the state of every

transaction and Redo recovers the row and the version store

content as of the time of the failure. Then Undo marks the

uncommitted transactions as aborted making all updates by these

transactions invisible. This allows Undo to complete in constant

time, regardless of the transaction sizes.

3.1.2 System Operations
System operations refer to internal operations the DBMS uses to

maintain its internal data structures, such as space allocation and

deallocation, B-Tree page splits, etc. These operations cannot be

easily versioned because they update system data structures that

have been designed to be highly efficient, using bitmaps and other

compacted data structures that do not allow maintaining the

required versioning information. Additionally, these operations

are usually tied to user data modifications and can be a significant

percentage of the operations performed by a long-running

transaction. For example, a large data load allocates a large

number of pages. In CTR, these operations are always performed

by short-lived, system transactions that update the internal data

structures and immediately commit. Based on that, when a failure

occurs, these operations will not be undone as part of a long-

running user transaction. Instead, the allocated space and other

updated data structures will be lazily reclaimed and fixed up in the

background.

3.1.3 Logical and Other Non-versioned Operations
This last category refers to operations that cannot be versioned

because they are either a) logical, such as lock acquisition

operations that indicate that a certain lock must be acquired during

recovery or cache invalidation operations that are responsible for

invalidating in-memory caches when a transaction rolls back, or

b) they are modifying data structures that need to be accessed

when starting up the database, before recovery has started, and,

therefore, must maintain a very specific format that does not allow

versioning. Even though redoing and undoing these operations

still require the transaction log, CTR leverages an additional log

stream, SLog, that allows tracking only the relevant operations

and not having to process the full transaction log for the

corresponding transactions. Given that such operations are

generally associated with schema changes and not data

manipulation, their volume is several orders of magnitude lower

than the previous categories and can be practically redone/undone

in minimal time.

3.2 Persistent Version Store
Persistent Version Store (PVS) is a new implementation of SQL

Server’s version store that allows persisting and recovering earlier

versions of each row after any type of failure or a full database

restart. PVS versions contain the same data and are chained in the

same way as the ones stored in TempDB. However, since they are

recoverable, they can be used for accessing earlier versions of

each row after a failure. CTR leverages this to allow user

transactions to access the committed version of each row without

having to undo the modifications performed by uncommitted

transactions.

PVS allows row versions to be recoverable by storing them in the

user database and logging them in the transaction log as regular

user data. Hence, at the end of Redo all versions are fully

recovered and can be accessed by user transactions. In CTR,

versions are needed for recovery purposes and have to be

preserved until the committed version of each row has been

brought back to the data page. This process occurs lazily in the

background (described in Section 3.7) and, therefore, causes the

size of PVS to be higher than the TempDB version store which is

only used for SI and can be truncated aggressively. Additionally,

logging the versions introduces a performance overhead for the

user transactions that generate them. To address both the

performance and the storage impact of PVS, we separated it into

two layers.

3.2.1 In-row Version Store
The in-row version store is an optimization that allows the earlier

version of a row to be stored together with the latest version in the

main data page. The row contains the latest version, but also the

required information to reconstruct the earlier version. Since in

most cases the difference between the two versions is small (for

example when only a few columns are updated), we can simply

store the diff between the two versions. Even though computing

and reapplying the diff requires additional CPU cycles, the cost of

generating an off-row version, by accessing another page and

logging the version as a separate operation, is significantly higher.

This makes in-row versioning a great solution for reducing the

storage overhead, but also the cost for logging the generated

version, as a) we effectively log the version together with the data

modification and b) we only increase the log generated by the size

of the diff. At the same time, in-row versioning improves read

access performance, since the earlier version of a row can be

reconstructed without having to access another page that might

not be in the cache.

Figure 4 demonstrates an example of a row that contains the

current version of the row together with the diff and required

information to reconstruct the earlier version. When a row is

deleted, TempDB version store creates a copy of the row in the

version store and replaces the row on the data page with a stub

indicating that the row was deleted. With in-row versioning, we

simply mark the row as deleted, while retaining the original

content to be served as the earlier version. Similarly, updates

modify the row in-place, but also append the byte-diff between

the old and the new versions to allow reconstructing the earlier

version.

Figure 4. Example of a row that contains in-row versioning

information for an earlier version.

Despite its benefits in most common cases, in-row versioning can

negatively impact the performance of the system if it significantly

increases the size of rows in the data pages. This is particularly

problematic for B-Trees as it can lead to page splits, which are

expensive, but also deteriorate the quality of the data structure,

making future accesses more expensive. To mitigate this issue, the

size of in-row versions is capped both in terms of the size of the

diff, as well as the size of the row it can be applied to. When these

exceed certain thresholds, PVS will fall back to generating off-

row versions, on a different page.

3.2.2 Off-row Version Store
Off-row version store is the mechanism for persisting versions

that did not qualify to be stored in-row. It is implemented as an

internal table that has no indexes since all version accesses are

based on the version’s physical locator (Page Id, Slot Id). Each

database has a single off-row PVS table that maintains the

versions for all user tables in the database. Each version of user

data is stored as a separate row in this table, having some columns

for persisting version metadata and a generic binary column that

contains the full version content, regardless of the schema of the

user table this version belongs to. Generating a version is

effectively an insertion into the off-row PVS table, while

accessing a version is a read using the version’s physical locator.

By leveraging regular logging, off-row PVS is recovered using the

traditional recovery mechanisms. When older versions are no

longer needed, the corresponding rows are deleted from the table

and their space is deallocated. Details regarding the off-row PVS

cleanup process are described in Section 3.7.

The off-row PVS leverages the table infrastructure to simplify

storing and accessing versions but is highly optimized for

concurrent inserts. The accessors required to read or write to this

table are cached and partitioned per core, while inserts are logged

in a non-transactional manner (logged as redo-only operations) to

avoid instantiating additional transactions. Threads running in

parallel can insert rows into different sets of pages to eliminate

contention. Finally, space is pre-allocated to avoid having to

perform allocations as part of generating a version.

3.3 Logical Revert

3.3.1 Overview
CTR leverages the persistent row versions in PVS to instantly roll

back data modifications (inserts, updates, deletes) without having

to undo individual row operations from the transaction log. Every

data modification in CTR is versioned, updating the row in-place

and pushing the previous version into the version store. Also,

similar to MVCC (Figure 3), each version of the row is marked

with the Transaction Id of the transaction that generated it.

When a query accesses a row, it first checks the state (active,

committed or aborted) of the transaction that generated the latest

version, based on the Transaction Id, and decides whether this

version is visible. If the transaction is active or has been

committed, visibility depends on the query isolation level, but if

the transaction is aborted, this version is definitely not visible and

the query traverses the version chain to identify the version that

belongs to a committed transaction and is visible.

This algorithm allows queries to access transactionally consistent

data in the presence of aborted transactions; however, this state is

not ideal in terms of performance since queries traverse multiple

versions to access the committed data. Additionally, if a new

transaction updates a row with an aborted version, it must first

revert the effects of the aborted transaction before proceeding

with the update. To address these and limit the time that aborted

transactions are tracked in the system, CTR implements two

different mechanisms for reverting the updates performed by

aborted transactions:

• Logical Revert is the process of bringing the committed

version of a row back to the main row in the data page,

so that all queries can access it directly and versions in

the version store are no longer required. This process

compares the state of the aborted and committed

versions and performs the required compensating

operation (insert, update or delete) to get the row to the

committed state. The operations performed by Logical

Revert are not versioned and are executed in system

transactions that are undone normally using the

transaction log. Since these transactions only revert a

row at a time, they are guaranteed to be short-lived and

don’t affect recovery time. Figure 5 provides an

example of a Logical Revert operation. Logical Revert

is used by a background cleanup process, described in

detail in Section 3.7, to eliminate all updates performed

by aborted transactions and eventually remove the

aborted transactions from the system.

• When a new transaction updates a row that has an

aborted version, instead of using Logical Revert on

demand, which would be expensive, it can leverage an

optimization to overwrite the aborted version with the

new version it is generating, while linking this new

version to the previously committed version. Figure 6

presents an example of this optimization. This process

minimizes the overhead for these operations and allows

them to be almost as fast as if there was no aborted

version.

Using these mechanisms, both reads and writes can access or

update any row immediately after a transaction that updated it

rolls back. The same process applies during recovery, eliminating

the costly Undo process that undoes each operation performed by

uncommitted transactions. Instead, in CTR, the database is fully

available, releasing all locks, while row versions are lazily

cleaned up in the background.

It is also important to note that although CTR depends on MVCC

for recovery purposes, it still preserves the locking semantics of

SQL Server, for both reads and writes, and supports all isolation

levels without any changes in their semantics.

3.3.2 Transaction State Management
As described in the previous section, each query decides whether

a version is visible by checking the transaction state based on the

Transaction Id stored in the version. For SI, visibility depends on

the commit timestamp of the transaction that generated the

version. Since SQL Server does not allow snapshot transactions to

span server restarts, the commit timestamps can be stored in

memory and need not be recovered. CTR, however, requires

tracking the state of aborted transactions until all their versions

have been logically reverted and are no longer accessible. This

depends on the background cleanup process (Section 3.7) that

performs Logical Revert for all aborted versions in the database

and can be interrupted by unexpected failures. Because of that, the

state of aborted transactions must be recovered after any type of

failure or server restarts.

CTR stores the aborted transaction information in the “Aborted

Transaction Map” (ATM), a hash table that allows fast access

based on the Transaction Id. When a transaction aborts, before

releasing any locks, it will add its Transaction Id to the ATM and

generate an “ABORT” log record indicating that it was aborted.

When a checkpoint occurs, the full content of the ATM is

serialized into the transaction log as part of the checkpoint

information. Since Analysis starts processing the log from the

Checkpoint Begin LSN of the last successful checkpoint, or

earlier, it will process this information regarding the aborted

transactions and reconstruct the ATM. Any transactions that

aborted after the last checkpoint will not be included in the

checkpoint, but Analysis will process their ABORT log records

and add them to the map. Following this process, Analysis can

reconstruct the ATM as of the time of the failure, so that it is

available when the database becomes available at the end of Redo.

As part of the Undo phase, any uncommitted transactions will also

be marked as aborted, generating the corresponding ABORT log

records, and added to the ATM.

Once all versions generated by an aborted transaction have been

reverted, the transaction is no longer interesting for recovery and

can be removed from the ATM. Removing a transaction is also a

logged operation, using a “FORGET” log record, to guarantee that

the content of the ATM is recovered correctly.

Version Store

Committed
Version

Data Page

Page 15

Aborted
Version

Version Store

Unreferenced
Version

Data Page

Page 15

Commited
Version

Logical
Revert

Figure 5. Example of a row before and after Logical Revert.

Version Store

Committed
Version

Data Page

Page 15

Aborted
Version

Data Page

Page 15

New
Version

New
Transaction

Version Store

Committed
Version

Figure 6. Optimization to overwrite an aborted version.

3.3.3 Short Transaction Optimization
Despite the benefits of Logical Revert, maintaining the Aborted

Transaction Map and forcing queries to visit additional versions

incur a performance penalty. This overhead is well justified for

long running transactions that are generally rare, but significantly

impact recovery time. However, it can be problematic for high-

volume, short OLTP transactions as they would significantly

increase the size of the ATM, leading to high memory footprint

and inefficient checkpoints serializing the ATM into the

transaction log. At the same time, undoing such short-running

transactions using the transaction log would only take a few

milliseconds, while allowing the system to remove aborted

versions and avoid performance impact to future queries.

To optimize for both scenarios, CTR dynamically decides, based

on the transaction size, whether a transaction should be marked as

aborted, using the CTR mechanisms, or undone using the

transaction log. When a transaction attempts to roll back, we

evaluate the number of operations it performed and the amount of

log it generated and qualify it as “short” if these don’t exceed

certain thresholds. Short transactions will not go through the CTR

rollback process, but use traditional undo, so that they are

immediately removed from the system.

3.4 Non-versioned Operations
Although Logical Revert allows us to eliminate undo for any data

modifications that are versioned, SQL Server has a wide variety

of operations that cannot be versioned because they are:

• Logical, such as acquiring coarse-grained locks at the

table or index level, invalidating various caches when a

transaction rolls back or accumulating row and page

statistics for Bulk operations.

• Updating system metadata in data structures that are

highly compacted, such as information about which

pages are allocated.

• Updating critical system metadata required for starting

up the database, before recovery can reconstruct

versioning information, such as updates to the “boot

page”, a special page that contains the core information

required for initialization.

To handle these operations while guaranteeing recovery in

constant time, we are leveraging two different mechanisms:

3.4.1 SLog: A Secondary Log Stream
SLog is a secondary log stream designed to only track non-

versioned operations that must be redone or undone using

information from the corresponding log records. This allows us to

efficiently process relevant log records without having to scan the

full transaction log. Given that such operations are generally

associated with schema changes and other rare database

operations, such as changing various database options, the volume

of log records written to the SLog is several orders of magnitude

lower than the total volume of the transaction log, allowing us to

process these operations in minimal time. For example, when

altering the data type of a column in a large table, the transaction

will have to update millions of rows, but SLog will only contain a

handful log records, for acquiring the exclusive lock and

invalidating metadata caches.

SLog is used during Undo to roll back any outstanding non-

versioned operations, but it is also used by the Redo phase to redo

logical operations, such as reacquiring coarse-grained locks,

without having to process the transaction log from the beginning

of the oldest uncommitted transaction, as described in Section 2.1.

Because of this, SLog must be stored in a data structure that can

be recovered before Redo starts. This cannot be easily achieved

using traditional database data structures (Heaps, B-Trees, etc.) as

these depend on WAL and recovery. Instead, SLog is

implemented as an in-memory log stream that is persisted to disk

by being serialized into the traditional transaction log. In memory,

SLog is stored as a linked list of log records, ordered based on

their LSNs to allow efficient traversal from the oldest to the

newest LSN during Redo. Additionally, to allow efficient

processing during Undo, SLog records are also linked backwards

pointing to the previous log record generated by the same

transaction. Figure 7 provides an example of SLog with 5 log

records corresponding to two transactions.

LSN
100

Tran Id
5

LSN
130

Tran Id
8

LSN
200

Tran Id
5

LSN
260

Tran Id
5

LSN
320

Tran Id
8

End of
SLog

Figure 7. In-memory SLog structure.

As SQL Server generates the log records corresponding to non-

versioned operations, they get written to the transaction log, as

usual, but they also get appended to the in-memory SLog. When a

checkpoint occurs, all in-memory records with LSN ≤ the

Checkpoint Begin LSN get serialized and written into the

transaction log. During recovery, the Analysis phase will process

the transaction log starting from at least the Checkpoint Begin

LSN of the last completed checkpoint, and can now additionally

reconstruct the portion of the SLog that was serialized to the

transaction log as part of the checkpoint. Furthermore, any log

records with higher LSNs will also be visited by Analysis and will

be appended to the in-memory SLog.

With this algorithm, at the end of Analysis, we have reconstructed

the SLog as of the time of the failure and can use it for the Redo

and Undo phases. The Redo process is split into two phases:

a) For the portion of the log between the Begin LSN of the

oldest uncommitted transaction and the min(Oldest

Dirty Page LSN, Checkpoint Begin LSN), Redo

processes the log using the SLog since it only has to

redo logical operations as all physical page operations

had been flushed to disk. The number of log records in

the SLog should be minimal and, therefore, redone

almost instantly, regardless of the size of the oldest

uncommitted transaction.

b) For the portion of the log after the min(Oldest Dirty

Page LSN, Checkpoint Begin LSN) and until the end of

the log, Redo will follow the regular process of redoing

all operations from the transaction log. Since the

database engine takes checkpoints frequently, regardless

of the user workload, we can guarantee that this portion

of the log will always be bounded and redone in

constant time.

During Undo, since regular DML operations are recovered using

Logical Revert, we only undo non-versioned operations using the

SLog. Since the SLog only collects a small subset of operations,

undoing them should be almost instant, regardless of the size of

the uncommitted transactions that are being rolled back. If the

undo process performs any compensating non-versioned

operations, the corresponding Compensating Log Records (CLRs)

will also be appended to the SLog with their backlinks pointing to

the next log record to be undone. This guarantees that Undo will

never reprocess the same log records twice and can make forward

progress even after repeated failures. As Undo completes for each

uncommitted transaction, the transaction is added to the ATM and

its locks are released.

Figure 8 demonstrates the recovery process in CTR which

leverages the SLog to complete each phase of recovery in constant

time. If a transaction rolls back during normal transaction

processing, while the database is online, CTR will also use the

SLog to roll back the corresponding non-versioned operations,

therefore completing the rollback almost instantly.

Similar to the transaction log, SLog is only needed for recovery

purposes and can be truncated as transactions commit or abort and

are no longer interesting for recovery. When a checkpoint occurs,

SQL Server calculates the Begin LSN of the oldest active

transaction in the system and this is the low watermark used to

truncate any SLog records with lower LSNs. Additionally, since

SLog is maintained in memory and it is critical to reduce its

footprint, we have introduced an aggressive cleanup process that

will scan the full content of SLog and remove any records

generated by transactions that are no longer active, regardless of

their LSNs. Both truncation and cleanup have been designed to

run in parallel with the workload that might be appending new

records to the SLog and, therefore, do not impact user activity.

Transaction
Log

Phase 1: Analysis

Phase 3: SLog Undo

Oldest
Transaction
Begin LSN

Min(Checkpoint Begin LSN,
Oldest Dirty Page LSN)

End of Log

Phase 2a:
SLog Redo

SLog

Phase 2b:
Physical Redo

(Tran Log)

SLog Records
Checkpointed
SLog Records

Log Records

 Figure 8. Recovery process in CTR.

3.4.2 Leveraging System Transactions
Even though SLog allows us to easily handle the recovery of any

non-versioned operation, we want to minimize the amount of log

records that are appended there because:

• Both Redo and Undo process the corresponding SLog

records and, therefore, recovery time depends on the

size of SLog.

• SLog is kept in expensive main memory.

Space allocations and deallocations are the most common non-

versioned operations in the database, as they are tied to the user

transaction sizes: the number of pages to be allocated or

deallocated depends on the amount of data the user transaction

inserts or deletes. In SQL Server, the information regarding

whether a page is allocated and what object it belongs to is

captured in special metadata pages that maintain a bitmap with the

status of a range of pages in the file. Since the information is

tightly packed, it is impractical to be versioned, making it

impossible to handle their recovery using versioning and Logical

Revert. To avoid using SLog, CTR performs all allocation and

deallocations in system transactions that can commit immediately

after performing the operation. These transactions don’t depend

on versioning and are normally redone and undone using the

transaction log. Due to their very small size, these transactions can

be recovered in minimal time and do not affect the overall

recovery time.

More specifically, in CTR, all operations will allocate new pages

in a system transaction that is committed immediately, but will

also mark the page as “potentially containing unused space” so

that they can be reclaimed if the user transaction rolls back. A

background cleanup thread will periodically scan the database for

such pages, evaluate whether they contain any data and deallocate

them if they are empty. On the other hand, deallocations cannot be

committed before the user transaction commits, since in case of

rollback all deallocated pages contain valid data that should be

accessible. CTR addresses this by deferring all deallocations until

after the user transaction that deallocated the space is committed.

The user transaction will only mark a large set of pages as

“deferred deallocated”, using an operation logged in SLog, while

the actual deallocation will be performed by a background thread

only after the user transaction has committed. The background

thread deallocates the deferred pages in batches using short-lived

system transactions that are recovered using the transaction log

and do not depend on versioning or SLog. If the user transaction

rolls back, as part of undoing the SLog, it will unmark the

corresponding pages as “deferred deallocated” and, therefore, they

will remain allocated as expected.

3.5 Redo Locking Optimization
As described in Section 2.1, in order to reacquire all the locks held

by uncommitted transactions, the Redo phase normally processes

the transaction log from the beginning of the oldest uncommitted

transaction. This allows making the database available before the

Undo phase and is important in ARIES recovery because Undo

can take significant time. Since Undo in CTR is extremely

efficient, we could technically defer making the database

available until Undo has completed and let Redo not acquire any

locks. However, there are special cases of recovery that require

allowing user access without performing Undo and rolling back

uncommitted transactions:

• Readable secondaries using physical replication [8]

replay the transaction log generated by the primary and

allow users to execute read queries. If a secondary

crashes, it has to go through recovery to bring the

database to a consistent state, but it will stop after the

Redo phase since the transactions are still active on the

primary. To allow queries after recovery, Redo

reacquires any locks held by currently active

transactions.

• Unresolved distributed transactions are transactions

where the database engine failed to contact the

distributed transaction coordinator to retrieve their

outcome and, therefore, cannot yet be declared as

committed or aborted. To make the database available

during this time, which is generally unbounded, Redo

reacquires the locks held by these transactions.

To address these scenarios, SLog is used to track and reacquire

low-volume, coarse-grained locks, such as table or metadata

object locks, during Redo, while a new locking mechanism is

introduced at the transaction level to handle granular locking, at

the page and row level, where the volume can be extremely high.

More specifically, at the end of Redo, each uncommitted

transaction will acquire an exclusive “Transaction” lock on its

Transaction Id. As described in Section 2.2, each row version is

marked with the Transaction Id of the transaction that generated

it. When a new transaction attempts to access a row version, it

will request a shared lock on the Transaction Id of this version and

block if this transaction is still in recovery. Once the uncommitted

transaction is committed or aborted, it will release its Transaction

lock and allow any conflicting transactions to access the

corresponding rows. This mechanism allows us to achieve row

and page level locking during recovery without having to track

and reacquire the locks for individual rows and pages. When all

transactions that were in recovery have been committed or

aborted, the database state is updated and any new row accesses

will no longer request a Transaction lock, eliminating the

performance overhead.

3.6 Aggressive Log Truncation
Despite the significant differences compared to ARIES recovery,

CTR still depends on WAL and uses the transaction log for

recovering the database. ARIES recovery uses the log to Undo

uncommitted transactions, therefore, requiring it to be preserved

from the Begin LSN of the oldest active transaction in the system

and making the log size proportional to the transaction size. This

is problematic because it requires users to carefully provision the

log space based on their workloads and is particularly complex in

the Cloud where the system automatically allocates the

appropriate space without having visibility into the user workload.

By leveraging Logical Revert and the SLog, CTR only uses the

portion of the log after the beginning of the last successful

checkpoint to redo any updates; hence CTR no longer needs to

Redo or Undo the log from the beginning of the oldest

uncommitted user transaction. The log must still be preserved for

undoing system transactions without versioning, but it can now be

aggressively truncated up to the minimum of a) the Checkpoint

Begin LSN of the last successful checkpoint, b) the Oldest Dirty

Page LSN and c) the Begin LSN of the oldest active system

transaction. Since system transactions are guaranteed to be short-

lived and checkpointing is managed by the DBMS and can occur

at consistent intervals, the transaction log can be truncated

continuously regardless of the size of the user transactions. This

enables performing large data loads or modifications in a single

transaction using only a small, constant amount of log space.

Finally, to enable the “short transaction optimization” described in

Section 3.3.3, if there are any active user transactions, CTR will

allow the log to be preserved for at least 200 MBs, so that it can

be used to roll back any “short” transactions that qualify for the

optimization. When a transaction attempts to roll back, together

with the criteria described earlier, we evaluate whether the

required log is still available. If it is, we will follow the

traditional, log-based rollback process, otherwise the transaction

is marked as “aborted” and will be cleaned up lazily using Logical

Revert.

3.7 Background Cleanup
In CTR, all data modification operations generate row versions

which must be eventually cleaned up to free up space, but also

eliminate the performance overhead for queries that traverse

multiple versions to access the committed version of each row. In

the case of committed transactions, earlier versions are not

interesting for recovery purposes and can be immediately

removed once they are no longer needed for SI. On the other

hand, for aborted transactions, the committed data resides in the

earlier versions, requiring Logical Revert to be performed before

the older versions can be safely removed. Even though new user

transactions participate in the cleanup process when an aborted

version is updated, we need a mechanism to continuously remove

unnecessary versions. CTR introduces a background cleanup task

that is responsible for:

• Logically reverting updates performed by aborted

transactions.

• Removing aborted transaction from the ATM once all

their updates have been logically reverted.

• Cleaning up in-row and off-row versions from PVS

once they are no longer needed for recovery or SI.

The process of performing Logical Revert and removing in-row

PVS versions is different from the one that cleans up off-row PVS

versions and, therefore, are described separately.

3.7.1 Logical Revert and In-row Version Cleanup
Both Logical Revert and in-row version cleanup are performed by

accessing all data pages in the database that contain versions to

logically revert the rows corresponding to aborted transactions

and remove any unnecessary in-row versions. Once all versions

generated by aborted transactions have been reverted, the

corresponding aborted transactions can be safely removed from

the ATM.

To efficiently identify data pages requiring cleanup and avoid

scanning the entire database, CTR introduces additional metadata

for each data page indicating whether it contains versions that

might be eligible for cleanup. This metadata is stored in special

system pages that SQL Server maintains and are known as Page

Free Space (PFS) pages since they are mainly used for tracking

whether each page has space available. In CTR, before any data

modification occurs on a data page, a bit indicating that this page

contains versions is set in PFS. It is important for this to happen

before the actual operation on the data page occurs, since, in case

of failure, we must guarantee that the cleanup process is aware

that this page might contain uncommitted data and must be

cleaned up. To avoid repeatedly accessing the PFS pages to

modify the version bit, the same state is also maintained on the

data page itself, so that we only access the PFS page if the state

for this page is changing.

The cleanup process wakes up periodically, every few minutes,

and proceeds as follows:

• Takes a snapshot of the Transaction Ids for all the

aborted transactions in the ATM.

• Scans the PFS pages of the database and processes all

data pages that are marked as containing versions. For

every such page, a) performs Logical revert for any

rows that have a version corresponding to an aborted

transaction and b) removes any in-row versions that

belong to earlier committed transactions and are no

longer needed for SI. If all versions were successfully

removed from the page, the bit indicating that this page

contains versions is unset. The cleanup process operates

at a low level, cleaning up pages incrementally, and

does not conflict with concurrent user activity.

• After successfully processing all the pages containing

versions, the aborted transactions snapshotted at the

beginning are removed from the ATM. The snapshot

established at the beginning is necessary to make sure

that we remove only the aborted transactions for which

we have already logically reverted all their versions and

not any new transactions that might have rolled back

while the cleanup was active.

Although the cleanup process can take a significant amount of

time when a large portion of the database has been updated, it is

important that it can remove all snapshotted aborted transactions

in one pass. This allows us to execute the cleanup lazily in the

background, providing it with only a limited amount of resources

(CPU and IO/sec), to avoid impacting concurrent user workload.

3.7.2 Off-row Version Cleanup
In contrast to the Logical Revert cleanup which is necessary to

remove aborted transactions from the system and eliminate the

overhead of traversing additional versions, the off-row cleanup is

only responsible for deleting earlier versions and freeing up space

in the database. As described in Section 3.2, the off-row PVS

stores all generated versions as rows in an internal table. Versions

generated by any transaction and for all user tables in the database

get inserted there. This simplifies the cleanup process because the

pages containing off-row versions are effectively the pages that

belong to this table. Additionally, since this table is optimized for

inserts, it is designed to be append-only, allocating new pages to

store newer versions. Hence the cleanup process can track the

status of the generated versions at the page level, as each page

gets filled with versions, and deallocate complete pages.

To achieve that, CTR uses a hash map that tracks the status of

each page containing off-row versions based on their Page Id.

When a new page is allocated, a corresponding entry is added to

the hash map. Since the versions are generated by different

transactions, their lifetime is also different and requires us to

maintain information about all transactions that inserted versions

in each page. To minimize the information stored per page, we

leverage the fact that SQL Server generates monotonically

increasing Transaction Ids and only store the highest Transaction

Id, which is indicating the newest transaction that inserted a

version in this page. This is used to evaluate whether a page

contains versions that might be still required for SI or recovery (if

they still contain committed data for rows that were updated by

aborted transactions). CTR globally maintains the lowest

Transaction Id that is still accessible by ongoing snapshot

transactions in the database and the lowest Transaction Id across

all aborted transactions in the ATM. If a page’s aggregated

Transaction Id is lower than both of these, the page can be

deallocated.

As the page gets filled with versions from various transactions,

the hash map entry is updated to maintain the highest Transaction

Id. When the page is full, the hash map entry indicates that the

page is now eligible for cleanup. The cleanup process periodically

visits all entries in the hash map and deallocates all pages that are

eligible for cleanup and their Transaction Id indicates that they are

no longer needed.

Since the hash map is stored only in memory, in case of a failure,

recovery is responsible for reconstructing its content. The off-row

PVS pages are easily discoverable by identifying all pages that

belong to the PVS internal table, an operation SQL Server

supports natively [3]. Then, instead of attempting to recompute

the exact Transaction Id for each page, recovery simply uses the

highest Transaction Id that Analysis identified in the system. Even

though this is too conservative, as the database starts accepting

new transactions and Logical Revert cleanup removes earlier

aborted transactions, all these pages will quickly become eligible

to be deallocated. In this way, the off-row cleanup process can

free up space in the database even in the presence of failures or

restarts.

4. EXPERIMENTAL RESULTS
This section presents experimental results regarding the

performance of the system when CTR is enabled. All our

experiments are executed on a workstation with 4 sockets, 40

cores (Intel® Xeon® Processor E7-4850, 2.00GHz) and 512GB

of RAM. External storage consists of two 1.5TB SSDs for data

and log respectively.

4.1 Recovery and Transaction Rollback
Our first set of experiments evaluates the performance of recovery

and transaction rollback for transactions of different types and

sizes. We simulate a long running transaction that inserts, updates

or deletes a large number of rows in a table with a clustered index

when a failure occurs. Figure 9 presents the recovery and rollback

times for CTR and traditional recovery. As we expected, in

traditional recovery, both recovery and rollback times are

proportional to the size of the transaction for all types of

operations. Analysis is performed in constant time in all cases

since it only processes the transaction log from the beginning of

the last successful checkpoint. On the other hand, Redo, Undo and

transaction rollback scale linearly to the size of the transaction as

they need to process all operations it performed. When CTR is

enabled, recovery completes in constant time for all cases.

Analysis and Redo only process the log from the beginning of the

last successful checkpoint and, therefore, complete in a small,

constant amount of time. The small variance noticed among the

experiments only depends on the exact time a background

checkpoint occurs before the crash and is not related to the size or

type of the transaction. Undo and transaction rollback are

practically instant as all DML operations leverage Logical Revert

and have no log records to be undone (SLog remains empty as

there are no logical operations or updates to system metadata).

During these experiments, we also measure the disk space usage

for the transaction log and the version store. We measure the size

of the version store as the combined overhead of in-row and off-

row versions in the database. Table 1 demonstrates the space

usage after inserting, updating or deleting 10 and 50 million rows.

The rows are 200 bytes wide and the update modifies an integer

column of 4 bytes. Without CTR, the transaction log size grows

linearly to the size of the transaction for all operations, consuming

significant space. With CTR, however, once it reaches the limit of

200MBs required by the short transaction optimization (Section

3.6), it starts getting truncated, as checkpoints occur, and remains

Table 1. The transaction log and the version store sizes with

and without CTR.

Operation Log size w/

CTR (MB)

Log size w/o

CTR (MB)

PVS size w/

CTR (MB)

10M Inserts 99 5101 0

50M Inserts 185 25873 0

10M Updates 162 3110 173

50M Updates 78 15680 908

10M Deletes 341 7771 0

50M Deletes 147 38255 0

Figure 9. Recovery and rollback times with and without CTR for different operations and number of rows.

stable regardless of the transaction size. The version store is

empty for inserts as they do not generate additional versions. The

same applies for deletes since, by leveraging in-row versioning,

the information that a row is deleted and the Transaction Id of the

transaction that deleted it are encoded as part of the existing

versioning information and do not consume additional space. In-

row versioning also reduces the space overhead in the case of

updates. The space is proportional to the number of rows updated,

but by storing only the diff between the old and the new version,

the version store size remains low. In fact, the aggregate space

used for the transaction log and the version store is significantly

lower than the log space required for traditional recovery in all

cases.

4.2 User Workload Performance
Having analyzed the benefits of CTR around recovery, we also

evaluate how it affects the performance of the system during

online transaction processing. CTR clearly introduces some

overhead by logging the generated versions to make them

recoverable, checking for aborted transactions in the Aborted

Transaction Map to determine row visibility and having

background cleanup processes that consume resources. At the

same time, we have performed various optimizations, such as in-

row versioning and the ability for future transactions to overwrite

aborted versions. To validate these optimizations, we measure the

throughput and the latency for the user workload when CTR is

enabled.

4.2.1 Throughput
Since most of the overhead introduced by CTR is around

generating versions and accessing rows that were recently updated

by transactions that might have aborted, we evaluate the

throughput of the system using update intensive OLTP workloads.

Table 2 presents the throughput degradation introduced by CTR

for a TPCC-like workload that is extremely update intensive and

should be a worst-case scenario for CTR, and a TPCE-like

workload that represents a more common ratio between reads and

writes. These numbers are relative to the throughput of the system

when using traditional versioning in TempDB. In these workloads

we explicitly rollback 1% of transactions to simulate a realistic

case where users abort and exercise the rollback and cleaner code

paths. We also measure the throughput of the system when in-row

versioning is disabled to evaluate its impact.

These results show that the throughput degradation will be

negligible for the vast majority of applications, which are

generally not as update intensive as TPCC. As we anticipated, the

overhead introduced by CTR is greater for more update intensive

workloads that generate versions at a higher rate. According to the

profile data we collected, CTR is spending more CPU cycles

compared to versioning in TempDB when generating the diff for

in-row versions, as well as inserting and logging off-row versions

in the PVS table. The cleanup processes also consume additional

resources (2-3% CPU) and contribute to this difference, however,

their impact is relatively small since they are single-threaded and

run lazily in the background. In-row versioning significantly

improved the throughput for both workloads by allowing versions

to be generated as part of the row modification, without having to

perform additional inserts to the off-row version store. We are

currently analyzing the profile data further to optimize all relevant

code paths and reduce the overhead introduced by CTR.

Table 2. Throughput degradation for TPCC and TPCE with

and without in-row versioning.

Workload With in-row Without in-row

TPCC 13.8% 28%

TPCE 2.4% 3.4%

4.2.2 DML Latency
In this section, we evaluate the impact of aborted transactions on

future DML operations that update rows with aborted versions.

This scenario is particularly interesting because it is common for

an application to retry the same operation after a failure. Even

though CTR allows the database to be available in constant time,

we must guarantee that the performance of the system is similar to

its original performance when there were no aborted versions for

the updated rows. Table 3 demonstrates the latency of insert,

update and delete operations targeting rows in a clustered index

when the same operation rolled back earlier and is being retried.

We compare this to the latency of the initial operation when there

were no aborted versions for these rows. We measure only the

cost of performing the operation after having located the row to be

updated and exclude the cost of committing the user transaction

that would be dominant and add approximately 0.35ms.

Table 3. Latency of retrying an index row modification.

Operation Initial

Latency

Retry Latency Difference

Insert 6.1 μs / row 5.8 μs / row -5%

Update 4.9 μs / row 6.0 μs / row 22%

Delete 3.7 μs / row 4.3 μs / row 16%

Bulk Insert 4.2 μs / row 6.3 μs / row 50%

In all cases, the latency of the retried operations is not

significantly higher than the initial latency. This validates that the

optimization which enables new operations to overwrite the

aborted versions without performing Logical Revert (Section 3.3)

allowed us to minimize the overhead for cleaning up the aborted

versions. Insert becomes, in fact, slightly faster, as the initial

operation already allocated the space for the row, allowing the

retried operation to simply use this space without similar

overhead. Bulk Insert, on the other hand, is 50% slower due to the

fact that the initial operation could just allocate and fill up

completely new pages, without having to locate the page in the

index corresponding to each row. Since the pages have already

been added to the index, the retried operation has to first locate

each page before performing the insert. Despite that, this overhead

should still be acceptable given the availability benefits of CTR

that allow the table to be immediately accessible compared to

going through a long running recovery where the table is

exclusively locked by the bulk operation that is rolling back.

4.3 Background Cleanup Performance
As described in Section 3.7, it is important for the background

cleanup processes to complete regularly to guarantee that the

version store size remains stable and the number of aborted

transactions in the system is bounded. Figure 10 presents the time

required by the cleanup processes to logically revert all rows

corresponding to a long running transaction and cleanup all

unnecessary versions for different operations and number of

updated rows.

Figure 10. Background cleanup duration.

As we expected, the time required for the cleanup is proportional

to the number of rows to be processed. Inserts and deletes can be

reverted very efficiently because they only need to mark/unmark

the row as deleted to compensate for the aborted operation.

Updates, on the other hand, must perform a full update of the row

to bring the content of the committed version back on the page,

hence more expensive. We ran these experiments for a total

database size of 200GB, but the overall database size does not

affect the duration of the cleanup. Using the mechanisms

described in Section 3.7, the pages that contain versions can be

efficiently identified without having to scan the whole database.

5. RESULTS AND EXPERIENCE FROM

PRODUCTION
As of May 2019, we have enabled CTR worldwide for over three

million databases in Azure SQL Database. The results have been

very promising, clearly indicating a significant improvement in

recovery times and database availability.

Table 4 demonstrates the difference in recovery times with and

without CTR. In the common case, where there are no long

running transactions at the time of the failure, the difference is

negligible. However, CTR brings significant benefits for the cases

where long running transactions would have normally caused

recovery to take many minutes or even hours. Although the

percentage of impacted databases might seem small, the absolute

numbers are quite high given the millions of databases hosted in

Azure. This causes major unavailability for the affected users,

without any mitigation possible. The other advantage that is

visible in our telemetry is that the log space usage has decreased

dramatically for all databases that use CTR, as it no longer

depends on the user workload. This has made it easier for our

service to provision and manage the required space, but also

improves the customer experience by eliminating out of log errors

for long running transactions.

Table 4. Recovery times with and without CTR.

Configuration 99.9

percentile

99.99

percentile

99.999

percentile

With CTR 60 seconds 1.3 minutes 3 minutes

Without CTR 68 seconds > 10 minutes > 1 hour

Despite its benefits, CTR has presented a new set of challenges

that must be addressed to guarantee the best possible experience

for all user workloads. The main issues we have faced so far are

around cases where the cleanup processes get blocked by user

transactions, allowing the PVS size to grow and eventually run

out of disk space. Since these processes are designed to be online

and run in parallel with the user activity, it is natural to compete

for system resources (CPU, I/O), as well as locks and latches for

the objects that are being cleaned up. While keeping the cleanup

processes minimally invasive, we must also ensure that they can

successfully complete regularly, deallocate PVS space and

remove aborted transactions. To achieve that, we have been fine

tuning the resources allocated to the cleanup threads, while

making additional optimizations to allow the cleanup processes to

retry for any objects they failed to obtain the required locks for.

Furthermore, we are introducing a new flavor of off-row version

cleanup that aggressively removes versions which are not

associated to aborted transactions and are, therefore, not needed

for recovery purposes. This allows us to decouple the off-row

cleanup from the Logical Revert cleanup and reclaim PVS space

more aggressively.

Based on our experiments, these improvements significantly

reduce the cases where the cleanup processes cannot keep up,

minimizing the risk of running out of disk space. However, we are

continuously monitoring the service to identify potential issues

and address them accordingly.

6. RELATED WORK
Database recovery has been an area of research for over three

decades. While latest research has focused on redesigning

recovery to leverage modern hardware, such as non-volatile

memory (e.g. [1], [2], [4], [12], [15]), most commercial DBMSs

still depend on the ARIES recovery algorithm developed by

Mohan et al. [9] in the early 1990s. This is mainly because the

latest proposals depend on specialized hardware and require

making fundamental changes to the storage engine and transaction

management components of the DBMS that are already complex

and highly optimized.

IBM DB2 [5] and MySQL [10] strictly follow the ARIES

algorithm, going through the Analysis, Redo and Undo phases.

The database becomes available at the end of Redo to improve

availability, but locks are held until the end of Undo to prevent

concurrent access to the uncommitted data. Amazon Aurora [14]

eliminates the need for Redo by continuously redoing all

operations at its distributed storage layer which remains available

even in the presence of failures for the user database. However,

Undo remain unchanged and, therefore, proportional to the user

transaction sizes. Oracle [11] introduces an optimization where, if

a new transaction attempts to access an uncommitted row while

the corresponding transaction is rolling back, the new transaction

will undo the operations on this page, on demand, to allow the

row to be accessed without having to wait for the overall

transaction to roll back. This optimization achieves similar results

with CTR but introduces an overhead to new transactions that

must first undo earlier changes. As described in Section 3.3, CTR

allows new transactions to simply ignore and overwrite aborted

versions without having to undo their changes, achieving

performance similar to when there are no aborted versions.

POSTGRES [13] has been designed from the beginning to

leverage versioning and not generate Undo log. All database

operations are versioned and new transactions can access earlier

versions of each page/row to retrieve the committed data, after a

transaction rolls back. Based on that, recovery no longer requires

an Undo phase and the database is fully available after Redo. This

achieves recovery in constant time, however leveraging this

technique for an existing database engine that depends on Undo

for a large number of logical and non-versioned operations would

be extremely challenging. CTR combines traditional ARIES with

MVCC versioning to improve recovery time without having to

fundamentally redesign the storage engine. In-row versioning

allows versions to be efficiently stored within the data pages,

reducing the performance and storage overhead, similar to the

version compression scheme applied in Immortal DB [6]. Finally,

CTR introduces a novel mechanism for tracking and reverting

aborted row versions in the background, without blocking the

concurrent user workload or affecting its performance.

7. ACKNOWLEDGEMENTS
We would like to thank all members of the CTR team for their

contributions to the project. Without their commitment and hard

work, the technology described in this paper would not have been

possible. Additionally, we would like to thank our leadership team

for sponsoring the project and continuing to invest in our work in

this area.

8. REFERENCES
[1] Arulraj, J., Pavlo, A., and Dulloor, S. R. Let's talk about

storage & recovery methods for non-volatile memory

database systems. SIGMOD, 2015, Pages 707-722.

[2] Coburn, J., Bunker, T., Schwarz, M., Gupta, R., and

Swanson, S. From ARIES to MARS: Transaction support for

next-generation, solid-state drives. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP, 2013, Pages 197–212.

[3] Delaney, K., Randal, P. S., Tripp, K. L., Cunningham, C.,

Machanic, A. Microsoft SQL Server 2008 Internals.

Microsoft Press, Redmond, WA, USA, 2009.

[4] Gao, S., Xu, J., He, B., Choi, B., Hu, H. PCMLogging:

Reducing transaction logging overhead with pcm. CIKM,

2011, Pages 2401–2404.

[5] IBM, IBM DB2, Crash recovery.

https://www.ibm.com/support/knowledgecenter/en/SSEPGG

_11.1.0/com.ibm.db2.luw.admin.ha.doc/doc/c0005962.html

[6] Lomet, D., Hong, M., Nehme, R., Zhang, R. Transaction

time indexing with version compression. PVLDB, 1(1):870-

881, 2008.

[7] Microsoft, Accelerated Database Recovery.

https://docs.microsoft.com/en-us/azure/sql-database/sql-

database-accelerated-database-recovery

[8] Microsoft, Offload read-only workload to secondary replica

of an Always On availability group.

https://docs.microsoft.com/en-us/sql/database-

engine/availability-groups/windows/active-secondaries-

readable-secondary-replicas-always-on-availability-

groups?view=sql-server-2017

[9] Mohan, C., Haderle, D. J., Lindsay, B. G., Pirahesh, H.,

Schwarz, P. M. ARIES: A Transaction Recovery Method

Supporting Fine-Granularity Locking and Partial Rollbacks

Using Write-Ahead Logging. ACM TODS, 17(1):94–162,

1992.

[10] MySQL, InnoDB Recovery.

https://dev.mysql.com/doc/refman/8.0/en/innodb-

recovery.html

[11] Oracle, Using Fast-Start On-Demand Rollback

https://docs.oracle.com/cd/B10500_01/server.920/a96533/ins

treco.htm#429546

[12] Oukid, I., Booss, D., Lehner, W., Bumbulis, P., Willhalm ,T.

SOFORT: A hybrid SCM-DRAM storage engine for fast

data recovery. DaMoN, 2014.

[13] Stonebraker, M., Rowe, L. A. The design of POSTGRES.

SIGMOD, 1986.

[14] Verbitski, A., Gupta, A., Saha, D., Corey, J., Gupta, K.,

Brahmadesam, M., Mittal, R., Krishnamurthy, S., Maurice,

S., Kharatishvilli, T., Bao, X. Amazon Aurora: On Avoiding

Distributed Consensus for I/Os, Commits, and Membership

Changes. SIGMOD, 2018, Pages 789-796.

[15] Wang, T., Johnson, R. Scalable logging through emerging

non-volatile memory. PVLDB, 7(10):865-876, 2014.

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.ha.doc/doc/c0005962.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.ha.doc/doc/c0005962.html
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-accelerated-database-recovery
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-accelerated-database-recovery
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/active-secondaries-readable-secondary-replicas-always-on-availability-groups?view=sql-server-2017
https://dev.mysql.com/doc/refman/8.0/en/innodb-recovery.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-recovery.html
https://docs.oracle.com/cd/B10500_01/server.920/a96533/instreco.htm#429546
https://docs.oracle.com/cd/B10500_01/server.920/a96533/instreco.htm#429546

