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1 Summary 
Memory safety attacks continue to be prevalent on computer systems in use today, as large amounts of 

unsafe C/C++ code continues to provide attackers with a large supply of buffer overrun, use after free 

and type confusion bugs. This paper proposes a fundamental instruction set architecture change to 

combat memory safety problems. The ISA change is mostly transparent to application code and typically 

only requires a recompilation of the application to gain the security benefits. The change involves having 

the CPU hold two extra tag bits to the side of each piece of 64-bit data to denote whether the data holds 

a code/data pointer or not. By doing this, we can prevent attackers from using ‘data’ to corrupt 

‘pointers’ and cause undesired damage. We believe the proposed architecture change enables stronger 

control flow protection than shadow stack (Intel CET) plus Control Flow Guard (CFG) with less 

performance overhead. Thus, this ISA change not only enhances security, but does so while improving 

performance. 

2 Overview 
The fact that memory unsafe languages like C and C++ are used by all of the popular operating systems 

(e.g. Windows/Linux) as well as a significant portion of applications (e.g. Office) continues to cause 

critical security issues on a regular basis. While we have made some progress on this issue by restricting 

the control flow of the CPU through features such as CFG and CET, there is strong evidence emerging 

that attackers can still cause enormous damage just by modifying data pointers. A recent Data Oriented 

Programming (DOP) paper [1] shows that it is possible within some processes to build a Turing complete 

machine by just corrupting data pointers without subverting the natural control flow of the original 

program. In anticipation of attacks like this happening, we need to come up with more innovative ideas 

to prevent future memory safety attacks. 

Of the many proposals on how to solve the memory safety problem, The CHERI proposal from the 

University of Cambridge appears to be one of the most promising solutions proposed in the literature. 

CHERI uses 128-bit fat pointers / capabilities to limit the range of memory that each pointer is allowed 

to access (and in what way), while also using an extra tag bit to protect the capability pointer from being 

accidentally or maliciously modified. The fat pointers give the system the extra information needed to 

perform bounds checks to avoid buffer overflows, but also incurs a performance penalty due to the 

increased size of pointers, as well as making the adoption of CHERI more complicated due to its ABI 

breaking nature. This paper proposes a solution that uses tag bits to “tag” and protect pointers but uses 

regular 64-bit pointers. This results in a solution that is not as secure as CHERI, but much easier for the 

software ecosystem to adopt due to it not being an ABI breaking change and only requiring C/C++ 
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applications to be recompiled without source code changes in the common case. It should also result in 

less performance overhead compared to CHERI because the size of pointers does not change. Pointer 

tagging does incur a small overhead due to the need to maintain extra tag bits but the performance loss 

is expected to be less than other forms of anti-ROP and anti-JOP memory safety countermeasures that 

are deployed (or planned to be deployed) such as shadow stack (Intel CET) and Control Flow Guard 

(CFG). Thus, compared to a traditional system where shadow stack and CFG is used to prevent ROP and 

JOP, pointer tagging not only provides the same (or better) level of anti-ROP and anti-JOP protection, 

but also frustrates DOP attacks, and it does all of this while enhancing the performance of the system. 

Typical control-flow-hijacking memory-safety attacks follow the pattern of attacking in 3 stages: 

1. Find initial buffer overrun, use after free, type confusion or other memory safety bug that 

enables arbitrarily memory read/write on a small region of memory (crude memory corruption). 

2. Find a way to use the results of stage 1 to enable arbitrary read/write on all memory in the 

address space (precise memory corruption). 

3. Leverage the result of stage 2 to strategically overwrite memory in many locations to perform a 

return-oriented (ROP), jump-oriented (JOP), or data-oriented (DOP) attack on the system to 

achieve the actual goal of the attack. 

 
All 3 of the above stages are critical to the attacker. As such, a mechanism to increase the work factor 

for each stage of the attack, or prevent any one of the stages, will make a significant dent in the 

attackers ability to carry out memory safety attacks. 

One of the observations about the three stages above is that all three stages rely heavily on corrupting 

pointers sitting in memory to point to a new location of the attacker’s choosing. If we take away the 

attacker’s ability to corrupt pointers, then the end to end attack becomes much harder even if the 

attacker can still find memory safety bugs. Based on this observation, the spirit of this proposal is to 

make corruption of pointers as hard as possible. We achieve this by storing (non-addressable) tag bits on 

the side of each 64-bit word in the computer to denote whether the data is merely regular data or it 

actually contains a pointer and, if so, what kind of pointer (code or data). Note that these tag bits would 

need to be present throughout the entire system including DRAM memory, the L1/L2/L3 cache and 

alongside of each general-purpose register. How to efficiently store and access the tag bits will be 

discussed in section 5.4, but there are ways to do this with very little or even zero performance loss.  

The general spirit of this pointer tagging proposal is to make the HW aware of whether each 64-bit in 

the system is regular ‘data’, or whether it is a ‘data pointer’ or a ‘code pointer’. This coarse-grained type 

information is implicitly available to the programmer and the C/C++ compiler, but was never explicitly 

maintained by the HW and enforced by the HW. The fact that HW does not maintain this information 

and does not enforce any rules based on it has enabled attackers to mix and match data and pointers in 

various ways to cause harm to the system. 

To take advantage of this hardware feature, software will need to be recompiled by a compiler aware of 

this feature. We believe that little or no source code changes are needed by the developer. There will be 



code changes needed in the OS (discussed in Section 5.5) but our primary goal is to require minimal 

source code change for applications. 

The paper is organized as follows: We start by describing the proposal in more detail in section 3. Then, 

in section 4, we will do some security analysis about this proposal, and what the attacker needs to do to 

break this, and what counter actions we can take. After that, we will discuss some practical 

implementation and adoption issues in section 5. Finally, we will mention some related work and 

conclude our contribution. 

This entire document is written with examples using the Intel/AMD 64-bit instruction set, but the 

concept could also be adopted for other ISAs such as ARM64 or RISC-V. 

3 Details of Pointer Tagging 
This section will describe the details of the pointer tagging proposal. We will introduce the concepts 

individually before describing how they compose. 

3.1 Possible Tag Values 
We are proposing using 2 extra tags bit on the side of each piece of 64-bits in the system to denote 

whether the 64-bits contain: 

• 00 (data): memory contains regular data (or code) that cannot be used as a pointer. 

• 01 (pointer): memory contains a data pointer that can be used as the address to access other 

pieces of memory. 

• 10 (code pointer): memory contains a code pointer that can be used as a destination for indirect 

calls/jumps or returns. 

• 11 (protected data): memory contains sensitive data that deserves to be tagged such that it 

becomes hard to maliciously modify by data corruption. 

The ‘code pointer’ tag type is further subdivided into five subtypes which will be discussed in more 

detail in Section 3.7. Possible usages of ‘protected data’ will be discussed in Section 3.9. 

3.2 Basic Hardware Changes 
The core  idea behind this proposal is for hardware to not only keep track of the 4 possible tag types for 

each piece of 64-bit data, but to also enforce that the tag types must be accurate when each piece of 64-

bit data is being used as an address to access memory or is being used as the address to load code from. 

If these rules are violated, the system will fault and the process will most likely be terminated. 

Using the Intel/AMD 64-bit instruction set as an example, the instruction set would change as follows: 

• An instruction that accesses memory, such as MOV RAX, [RSI], would fault if the tag bits 

associated with RSI was not set to ‘pointer’. The base for the EA (effective address) that is used 

to fetch data from memory must always have tag bits set to ‘pointer’ or the operation will fault. 



After this operation, the tag bits associated with RAX would be set to whatever the tag bits were 

at the memory location pointed to by RSI. If this is an unaligned load, then the value will be data. 

• The RIP register must be of type ‘code pointer’. This means that instructions such as CALL [RCX] or 

JMP [RCX] (call or jump to the address in RCX) would fault if the tag state associated with RCX is 

not ‘code pointer’. This also means that when the RET instruction pulls the return address from 

the stack, the tag state associated with that return address must be ‘code pointer’. Note that 

this will naturally happen under normal circumstances, because CALL copies the RIP value onto 

the stack for the return address, so the tag bits for the return address on the stack is naturally a 

‘code pointer’. If, however, an attacker overwrote the return address on the stack with ‘data’, 

the RET instruction will fault. 

• Consider the following sequence of code that calls a C++ virtual function: 

1. MOV RCX, {OBJECTS ADDRESS} 

2. MOV RAX, [RCX] // Load vtable pointer into RAX 

3. CALL [RAX+8] // call the second function in the vtable 

The tag bits associated with RCX should be ‘pointer’ after the first instruction. The tag bits 

associated with RAX after the second instruction should also be ‘pointer’. At the memory 

location pointed to by RAX should be the vtable which is an array of 64 bit ‘code pointer’s. The 

final CALL will only succeed if the tag bits at location RAX+8 are ‘code pointer’. 

• The RSP register should typically be of the ‘pointer’ type. While assigning a 64-bit value into RSP 

that is not tagged as a ‘pointer’ will not immediately generate a fault. The system will fault once 

a PUSH/POP/CALL/RET instruction is executed because the value of RSP will be used as a pointer 

during those instructions. Note that since the value of RSP is typically copied into RBP in the 

prologue of functions, RBP will typically also have the tag bits set to ‘pointer’. 

3.3 Casting to a Different Tag Type 
The instruction set is designed to naturally preserve the correct tag data for all pieces of memory. There 

will always be special cases where the rules need to be broken and the compiler wishes to “cast” the tag 

value to something different than it would naturally be. Examples of this include: 

• When setting up a C++ vtable. 

• When the OS loader performs fixups and sets up dispatch tables. 

• When the OS prepares the initial RSP and RIP values for a process. 

In order to support casting, 4 new instructions will need to be added to change the tag bit associated 

with a register to each of the possible tag types. For the purpose of discussion, we will name these 4 

new instructions: 

• CASTTODATA 

• CASTTOPOINTER 

• CASTTOCODEPOINTER 

• CASTTOPROTECTEDDATA 



Each of these instructions takes a register operand and changes the tag bits of that operand to the 

corresponding tag type. Note that if we make these 4 casting instructions occupy opcode space that is 

currently no-op, we can have the compiler generate code that gracefully works both on legacy hardware 

that doesn’t support pointer tagging as well as new pointer tagging capable hardware. 

3.4 Most Operations Default to Data 
Most of the data residing in a system should be tagged simply as ‘data’. This fact is enforced by the 

following rules: 

• Whenever a register is cleared to 0 or an immediate value is assigned to it, the tag bits get set to 

‘data’. 

• All types of pointers must be 64-bit aligned in memory. Any partial writes to memory where less 

than 64 bits are written will result in the tag bit associated with the full 64-bit value getting set 

to ‘data’. 

• Any output from MMX, SSE, AES, SHA or other special data-manipulation instructions should 

have the output tag set to ‘data’. Note that some implementations of memcpy use vector 

instructions and vector scatter/gather uses vectors of pointers and so a subset of vector 

operations (loads and stores) may need to propagate tag values. 

• Any I/O DMA into memory will result in the tags being set to ‘data’. 

• Any data read in through the IN instruction should have type ‘data’. 

3.5 The Pointer Provenance Model 
A lot of C/C++ code casts pointers to integers and vice versa. In many cases, the C/C++ compiler can 

easily lose track of whether a 64-bit value is actually a pointer or merely data, for example when a 

generic data structure uses void* or uintptr_t as the type for data that may be pointers or integer 

values depending on the use of a data structure. The way this is handled on a pointer tagging system is 

to let the tag bit naturally carry the provenance/origin of the type of data and let it freely float through 

the system via the tag bits without casting it to different tag types using CASTTODATA or CASTTOPOINTER 

when the C/C++ code performs a cast. 

Any value that originated from the stack via RBP/RSP or returned from a memory or heap allocation 

function would be correctly tagged as a ‘pointer’ initially. This pointer could then be cast to an integer by 

the C/C++ code, and the integer shifted and masked in various ways. Eventually, when this value is cast 

back into a pointer and used as a pointer, it will work because its origin was a pointer and thus will have 

the right tag type. 

If the 64-bit value did not originate from a pointer and was merely constructed using ‘data’, and then 

was used as a pointer to access memory, the system would naturally fault since this typically represents 

a bug. There are some rare case where ‘data’ values truly need to be used to construct legitimate 

pointers (e.g. OS assigns the initial stack location into RSP, internal implementation of memory 

allocators). In such cases, the CASTTOPOINTER instruction can be used, but these cases should be rare, and 

should be done in a manner that makes it hard for attackers to leverage this code to fabricate pointers. 



The pointer provenance model makes it such that CASTTODATA or CASTTOPOINTER is not typically used when 

the C/C++ code casts values between integer and pointers. This not only has the benefit of not bloating 

the code size with this casting instructions, but also makes it much harder for attackers to find code 

gadgets that cast from ‘data’ to ‘pointer’ to fabricate pointers. 

3.6 Performing Arithmetic on Pointers 
Due to the provenance model, arithmetic operations must be allowed on ‘pointer’s because it is very 

common in C/C++ code to cast between integers and pointers and perform arithmetic on either. This 

does not; however, mean that arithmetic needs to be allowed on ‘code pointer’s. Legitimate use cases 

where math is performed on code pointers should be very rare. As such, the default behavior on 

performing arithmetic operations (e.g. add, sub, shift, and, or, xor, multiply, divide, etc…) on a ‘code 

pointer’ should be to clear the tag to ‘data’ (or fault). In the extremely rare case where arithmetic is truly 

needed on a code pointer, the compiler must cast the result back to a code pointer using 

CASTTOCODEPOINTER if needed. Again, this should rarely happen, and the code will need to be authored in a 

manner that makes it extremely hard for attackers to leverage the code to fabricate code pointers. 

We will also disallow arithmetic operations on ‘protected data’ to prevent such data from being 

maliciously modified. The exact use of ‘protected data’ will be explained in Section 3.9, but if arithmetic 

were allowed on ‘protected data’ then it becomes much easier to maliciously modify ‘protected data’ 

because any piece of code that performs arithmetic on a 64-bit value could be used as a gadget to 

modify ‘protected data’. By not allowing arithmetic on protected data, the tag would get cleared back to 

‘data’ when protected data is accidentally provided to such a sequence. This would enable the owner of 

the ‘protected data’ to detect the tag change and fault. Again, in the rare case where protected data 

really needs to be modified, the CASTTOPROTECTEDDATA instruction is still available. 

3.7 Code Pointers 
Code Pointers are used to carry pointers to callable functions or return addresses. There is a strong 

desire to separate forward code pointers and return code pointers so that one cannot be maliciously 

used for the other. Also, many code pointers are stored in a manner where copying the pointer does not 

really need to be allowed. Example of such cases include the return address on stacks, C++ vtable 

entries, and the global dispatch table (the PLT GOT on ELF platforms). As such, we would also like to be 

able to construct “Unclonable Code Pointers”, where memcpy cannot be used to maliciously copy 

pointers from one location to another. We add special instructions to allow the OS to swap data from 

memory without breaking this guarantee in userspace code. 

The way unclonable code pointers is implemented deserves some discussion. We propose implementing 

unclonable code pointers as “store once” pointers. These pointers will initially be constructed in a 

register from where it is allowed to be stored into memory once. The value stored into memory is 

modified to a different state where the one-time opportunity to store the value to memory has been 

consumed. When this value is read back into a register, the value is still tagged as a unclonable code 

pointer where the value can still be used by an indirect call or jump. If the value is stored back into 

memory again (perhaps by a malicious memcpy call); however, the tag associated with the unclonable 

code pointer gets cleared back to ‘data’.  



Note that it is also possible to apply the “Store Once” idea to data pointers to create unclonable data 

pointers. We do not believe that there is a significant benefit to allowing unclonable data pointers 

because data pointers typically need to be copied around in memory. Note that the “Store Once” model 

could be adapted for systems such as CHERI, as a variation of the linear capabilities model.  

This requires five different types of code pointers: 

• Forward code pointer 

• Forward unclonable code pointer 

• Forward unclonable code pointer before store 

• Reverse unclonable code pointer 

• Reverse unclonable code pointer before store 

The pointers with “before store” in the name represent the state where the code pointer has been 

converted to the ‘store once’ state in a register but has not been stored into memory. The unclonable 

pointers without “before store” in the name represent the state where the one-time opportunity to 

store to memory has already been consumed. 

At this point, the reader must be wondering: How are we going to encode these 5 different states given 

that ‘code pointer’s only occupy one tag type combination? We see 2 possible solutions. One obvious 

solution is to expand to use 3 tag bits instead of 2 to accommodate the extra states. We do not advocate 

this solution because it adds considerably more overhead from tag storage and movement. The other, 

preferred, solution is to leverage the fact that the high order bits of a code pointer are rarely (if ever) 

used in any meaningful fashion. If we take away the most significant 3 bits from the code pointer, we 

still have a 61-bit virtual address space for code which is more than enough for current generation of 

computers. The top 3 bits of the code pointer can be manipulated and managed along with the 2 tag bits 

as code pointers flow through the system and are loaded/stored in memory. We can think of these 3 

bits as extra tag bits that come for free without any storage overhead or performance penalty.  

Note however that taking away high order bits only works for ‘code pointer’, as ‘data’, ‘pointer’, and 

‘protected data’ need to use all 64-bits of the value. In particular, interpreters and dynamic language 

implementations often uses NaN boxing, a technique where either a double-precision floating point 

number or a 48-bit pointer can be stored as a tagged union by using the fact that there are a number of 

invalid Not-a-Number (NaN) representations in the IEEE 754 specification. 

Let’s discuss in more detail how these code pointer states could be used by the AMD64 architecture. We 

can simply modify the behavior of the CALL instruction to put the ‘reverse unclonable code pointer’ tag 

type on the return address as it is being placed on the stack and the have the RET instruction insist that 

the return address pulled from the stack must have a ‘reverse unclonable code pointer’ tag type or else 

the operation will fault. For the cases where we are setting up forward unclonable code pointers such as 

C++ vtables or global dispatch tables, we will need to cast a register into the “Forward unclonable code 

pointer before store” state, which gets converted to the “forward unclonable code pointer” state when 

the register is actually saved out into memory as the vtable or dispatch table. As such, we will need to 

add the instruction CASTTOUNCLONABLECODEPOINTER to enable the creation of registers in the “Forward 



unclonable code pointer before store” state. Indirect call and jump instructions (e.g. CALL [RAX+8]) will 

fault if the tag type is not some kind of forward code pointer. Code that should only perform an indirect 

branch/call through an unclonable code pointer should add an extra instruction 

FAULTIFNOTUNCLONABLECODEPOINTER before the indirect branch/call to guarantee that the branch target is 

indeed stored as an unclonable code pointer. Both new instructions should also occupy the no-op 

opcode space on legacy systems to make the code function correctly on both new and legacy systems. 

For symmetry and practical use, we should also add the following instructions in the no-op space: 

• FAULTIFNOTCODEPOINTER (any type of code pointer) 

• FAULTIFNOTPOINTER 

• FAULTIFNOTDATA 

• FAULTIFNOTPROTECTEDDATA 

Note that in normal usage the AMD64 architecture does not need the “Reverse unclonable code pointer 

before Store” state because the CALL instruction directly places the return address on the stack in the 

“reverse unclonable code pointer” state. Because of this, we only need to steal 2 extra high order bits 

from the top of the code pointer. However, in other architectures where a link register is present, such a 

state is needed. For example, during an ARM64 branch-and-link instruction, the return address would be 

placed in the link register in the “reverse unclonable code pointer before store” state. When the link 

register is spilled, it would be converted to the “reverse unclonable code pointer” state. Note that for 

architectures that do not have a dedicated return instruction, we would need an explicit assertion to 

check the state. 

There are still some unusual scenarios where an unclonable code pointer in memory legitimately needs 

to be copied elsewhere. The most common such case is when an interrupt occurs when a register is 

holding an unclonable code pointer that hasn’t been stored to memory yet. The interrupt forces the 

system to save the registers to memory, but at the end of the interrupt, when the memory contents is 

restored back to the register, the one-time memory store was already consumed by the interrupt 

register spill so the code behaves incorrectly later on. There are many ways to address this problem, but 

the simplest way is to set all the registers containing unclonable code pointers to the “before store” 

state whenever it is restored from an interrupt. This might unnecessarily set some unclonable code 

pointers to the “before store” register state when in fact it should be the “after memory store” register 

state, but we do not believe that this is useful for an attacker because they would have to precisely time 

the delivery of an interrupt. This may be possible if an attacker can schedule high-precision timers. 

Another possible alternative would be to add dedicated instructions similar to XSAVE and XRESTORE 

that save and restore the register state faithfully without exhibiting the state modification behavior 

associated with the one-time memory store. When doing this, we again need to be careful that this does 

not become copy gadget for unclonable code pointers. 

3.8 Tag preservation and Memcpy 
On a system with pointer tagging enabled, the attacker can no longer directly use corrupted ‘data’ as a 

pointer (of any type). The attacker will need to resort to finding naturally callable gadgets that can 



create pointers based on attacker supplied ‘data’. While this may be possible, it may not be enough. The 

attacker will also need to find memcpy gadgets that copy the minted pointers to the target location. 

Thus, decreasing the number of attacker-callable memcpy gadgets is desirable. 

The default behavior of memcpy should be to copy and preserve the tag for everything except 

unclonable code pointers. The generic version of memcpy would carry this behavior. However, we can 

also create another version of memcpy that can only be used to copy 100% pure ‘data’. 

In cases where the compiler can guarantee that the data being copied is only of the ‘data’ type and does 

not contain any pointers, the compiler can choose to use the data-only memcpy to perform the memory 

copying. The generic version of memcpy will need to be used in other cases. This should shrink the 

gadget space of code that contains calls to the generic version of memcpy, and maximize usage of the 

data-only memcpy such that attackers are less likely to find callable gadgets that can copy pointers. This 

effort may not be worthwhile if enough tag-preserving memcpy gadgets exist for an attack to succeed. 

More study is needed in this area to determine to what extent this could limit the gadget space. 

Separately, we have the problem that there is no single standard memcpy implementation and some of 

them might not necessarily preserve tag bits. Different programs use integer, SSE, or AVX loads and 

stores, or REP MOVSB sequences. Unfortunately, a lot of programs also contain inline versions of memcpy 

that are either written by hand or (more commonly) inserted by the compiler. This is particularly 

common for small known-size copy operations, which may be replaced by a single load / store 

instruction pair. 

Copies that use 64-bit aligned general-purpose registers will automatically preserve tags. If tags are not 

preserved through vector registers then some optimized memcpy implementations will not be possible 

in recompiled code, which may present a significant performance penalty (for example, a 256-bit 

structure copy cannot be copied by the compiler as a single AVX load and store). The REP MOVSB 

sequence is also problematic as specified because any single-byte load or store must reset tags to the 

data state and this instruction is a repeated load and store of a single byte. To make this work, we would 

require that this instruction copies all 64-bit sized and aligned chunks atomically while preserving tags. 

3.9 Protected Data Tag for High Value Data 
In this section, we discuss possible use cases for the extra ‘Protected Data’ tag type. The spirit of this tag 

type is to use it to protect data residing in memory that is high value that we wish to prevent attackers 

from easily modifying (without generating a fault) via corruption.  

One of the most obvious use cases for ‘Protected Data’ is to protect high value kernel data structures. 

The page tables stand out as a prime example. In such a use case, the hardware page table walker can 

enforce that the tag bits for any page table data must be set as ‘Protected Data’ and fault if any page 

table data is tagged incorrectly. The memory manager that populates the page table will need to use the 

CASTTOPROTECTEDDATA instruction whenever storing any page table entries. With this change, it becomes 

much harder for a supervisor mode attacker to corrupt the page table as he/she would need to find a 

callable gadget that can fabricate arbitrary protected data values. A similar construct could be used for 

other important in memory data structures that are read and interpreted by hardware. 



Another possible use case for ‘Protected Data’ is to protect critical ‘data’ fields in C/C++ 

structures/classes. A classic example is the ByteArray class illustrated below: 

class ByteArray { 
 _ProtectInMemory int64 arrayLength 
 BYTE* byteArrayPointer 
 … 
} 

If an attacker corrupts the arrayLength field to a large number as it resides in memory, then bounds-

checked accesses to this array are now able to access most of memory.  

To combat this problem, we could add support in the compiler to SAL-annotate such critical fields to 

denote the desire to prevent the field from being modified while residing in memory. In the above 

example, the annotation ‘_ProtectInMemory’ denotes this. A field that is declared this way instructs the 

compile to handle the storage and retrieval of arrayLength from memory in the following way: 

1. The value should be CASTTOPROTECTEDDATA before it is stored in memory 

2. When we read the value back from memory, we should FAULTIFNOTPROTECTEDDATA 

3. If arithmetic needs to be performed on the value afterwards, the compiler must explicitly cast 

the value to data and back around the arithmetic operations. 

This change requires annotation in the source code, which we have been trying to avoid since it adds 

work for the developer. It nevertheless gives us a powerful tool to counter attackers once attackers start 

finding new ways to subvert a system with pointer tagging turned on. Note that this compiler feature 

does not necessarily need to be deployed immediately. Defenses based on this tag can be deployed in 

response to new attack patterns. 

It is also worth noting that large numbers of protected data use cases may introduce gadgets that an 

attacker can use for manipulating protected data. As such, each use should be carefully considered. 

4 Security Analysis of Pointer Tagging 
In this section, we present some analysis of the security of pointer tagging and why we believe it will be 

effective at frustrating the memory safety attacker. Over time, as we improve compilers and remove 

gadgets that attackers find, we believe pointer tagging will enable us to completely prevent memory 

safety attacks in many cases. The security analysis of pointer tagging is an area where we believe more 

research is needed, and the authors of this paper would greatly appreciate any feedback on the security 

effectiveness/weakness of pointer tagging, and whether any part of our analysis below is incorrect or 

missing something important. 

The fundamental value pointer tagging brings, is the ability to prevent (or at least make much harder) 

the malicious modification of a pointer in memory to an attacker desired value. Without pointer tagging, 

corruption of pointers can be easily achieved by any memory write primitive. With pointer tagging, the 

attacker must also find a way to have that memory location also get updated with the correct 



corresponding pointer tag type. While we can still see some ways the attacker might be able to do this 

using existing gadgets in the code base, there is no question that the process is now much more 

complicated than before, and if we can over time remove the gadgets that the attackers need, we will 

have a means to prevent the attacker from modifying pointers all together. 

Note that pointer tagging is only useful in preventing the malicious modification of pointers. Malicious 

modification of pure data is still possible even with pointer tagging. This means that pure ‘data’ 

corruption attacks will still be possible with pointer tagging. However, the amount of damage that the 

attacker can pull off with a data only attack will be much less compared to the ability to execute Turing-

complete code through ROP/JOP/DOP which all require the corruption of pointers. 

4.1 How Pointer Tagging Affects the Three Stages of Attack 
To analyze the security properties of pointer tagging, let us revisit the three stages required for most 

memory safety attacks. The three stages are: 

1. Find an initial buffer overrun, use after free, type confusion or other memory safety bug that 

enables arbitrarily memory read/write on a small region of memory (crude memory corruption). 

2. Find a way to use the results of stage one to enable arbitrarily read/write on all memory in the 

address space (precise memory corruption). 

3. Leverage the result of stage two to strategically overwrite memory in many locations to perform 

a return-oriented, jump-oriented, or data-oriented attack on the system to achieve the actual 

goal of the attack. 

How Pointer Tagging Affects Stage One 

Pointer tagging prevents some buffer overrun, type confusion and use after free bugs from being 

exploitable even at this very first stage. Any bug where a ‘data’ value that gets written by one object 

that is mistakenly used as a ‘pointer’ by another object will naturally be defeated by pointer tagging due 

to the fault generated when the data is eventually used as a pointer. More research is needed to 

determine how effective this is against stopping stage one of a memory safety attack, but it should be 

clear that it is able to at least block some stage one attacks. 

How Pointer Tagging Affects Stage Two 

In stage two, the attacker tries to find a way to use the bug found in stage one to enable arbitrary 

read/write on all memory in the address space. This is typically accomplished by either corrupting the 

base, displacement or extent of a subsequent memory access 

The base of memory access is typically a pointer itself. By corrupting this base pointer to an attacker-

controlled value, the attacker gains the ability to read/write ‘data’ anywhere in memory. Pointer tagging 

either prevents this attack or significantly increases the work needed for this attack because a simple 

data overwrite of the pointer is not possible, the attacker must find a sequence of naturally callable 

gadgets to materialize a desired pointer value at the desired location. 

Alternatively, it is also possible for an attacker to gain arbitrary memory access through modifying the 

displacement or extent of a memory access. An example of an extent modification is the ByteArray 



class illustrated in section 3.9. By corrupting the arrayLength field in the ByteArray class, the 

attacker can gain read/write access of ‘data’ to most of memory. We hope that features such as 

_ProtectInMemory can be used to block modification of the displacement and extent of data 

structures like ByteArray. This; however, is not a transparent mitigation and depends on code auditing 

and modification which involves more work. However, such fixes should be possible without API 

changes and pointer tagging at least makes it possible to fix problems like this without modifying any API 

interfaces. 

How Pointer Tagging Affects Stage 3 of Attack 

Assuming the attacker achieves arbitrary read of all memory and arbitrary write of ‘data’ on all memory, 

the attacker now wants to perform the final stage to perform a return-oriented, jump-oriented, or data-

oriented attack on the system to achieve the actual goal of executing their payload. Current known 

variants of these attacks generally involve the attacker being able to corrupt pointers. Pointer tagging 

adds significant work for the attacker as they need to search for gadgets that enable them to corrupt the 

various type of pointers that they need to corrupt. In some cases where the naturally callable gadget 

space is limited, it might not be possible to find all the needed gadgets which in effect blocks the attack 

all together. 

Also note that as a consequence of pointer tagging, once a zero day attack is discovered, we not only 

can fix the original stage-one code defect, but we can also remove the gadgets used in stage two and 

three as part of the fix. This puts the attacker in the awkward position where each new exploit will 

require time spent to discover new defects and new gadgets needed for all three stages. In the current 

world without pointer tagging, the attacker merely needs to find another stage one code defect, there 

was never any good way to prevent stage two or stage three of the attack from happening. But now, 

pointer tagging enables this, which makes the attackers life significantly harder. 

4.2 Possible Ways to Modify Pointers with Pointer Tagging 
As discussed in the previous subsection, pointer tagging can still be defeated if the attacker can find the 

appropriate gadgets to maliciously modify pointers. In this subsection we attempt to enumerate some 

possible ways maliciously pointer modification can still be achieved. We start with the following 

assumptions on what the attacker can do to begin with: 

• Read all of memory regardless of tag type. 

• Write attacker chosen ‘data’ values anywhere in memory. 

Note that these assumptions assume the attacker has already achieved the first 2 stages of a memory 

safety attack, even though pointer tagging should make it harder for attackers to get to this stage. But 

for the sake of this discussion, let’s just assume the attacker already achieved stage 2 of the attack and 

see how far the attacker can get in terms of pointer modification. 

With the above assumptions, let’s discuss some ways that an attacker could maliciously modify 

‘pointer’s, ‘code pointer’s and ‘protected data’. Note that this list is by no means complete and attackers 

will come up with new exploit techniques, but note that the attacker typically needs to achieve the goal 

of modifying the pointer at a specific memory location to a specific value. Merely modifying a specific 



pointer to some different value or modifying some pointer to a specific value is usually not good 

enough. The attacker wants to control both the exact location of the pointer as well as the exact pointer 

value to corrupt to. 

We have identified several possible ways in which an attacker may be able to bypass pointer tagging, for 

example: 

1. If an attacker finds a naturally callable gadgets that directly places an attacker-chosen pointer 

value at attacker chosen memory location. The following code sequence would be an example 

of such a gadget: 

Ptr = Ptr + Offset1; 

Ptr2 = Ptr2 + Offset2; 

Ptr->Field = Ptr2; 

An attacker that is able to corrupt data values Offset1 and Offset2 in above code would be 

able to write an arbitrary ‘pointer’ value at an arbitrary location. Note that this type of gadget 

can only be used to modify pointers if Ptr2 was a pointer. 

2. If an attacker finds a naturally callable gadget that has the code sequence: 

*(Ptr + Data1) += Data2 

Then by corrupting Data1 and Data2, the attacker can modify any pointer in memory to any 

value. This is due to the unfortunate fact that pointers can still be manipulated by code that was 

intended to manipulate data, because arithmetic is allowed on pointers. Note; however, that 

this type of gadget cannot be used to modify code pointers or protected data as arithmetic is 

not allowed on these tag types. Also note that this attack is also possible even if Data2 is a small 

constant (say 1). Even though in such a case, the attacker will need to repeatedly call the gadget 

many times to modify the pointer to the desired value. 

3. If an attacker finds an object with a code defect (e.g. use after free), as well as a pointer 

fabrication gadget, then with such a defect combination the attacker can place a victim object in 

the freed memory location, and write an attacker chosen pointer value into an attacker-

controlled location within the victim object. Note however that this type of attack can only be 

applied to objects on the heap and does not work for the stack, unless another memcpy gadget 

is found to copy the pointer from the heap to the stack. 

4. The attacker can also break up the problem into 2 separate tasks: 

a. Find a naturally callable gadget that fabricates a pointer, code pointer, or protected 

data. 

b. Find a naturally callable gadget that lets the attacker perform a tag preserving memcpy 

from an attacker chosen source to an attacker chosen destination. Note that both the 

source and destination location would need to be controlled by ‘data’ in memory in 

order for the memcpy to be useful. An example for such a gadget could be: 

*(PtrDest + DestOffset) = *(PtrSrc + SrcOffset) 



The assumption is that DestOffset and SrcOffset are attacker corruptible ‘data’ values. 

PtrDest and PtrSrc are 8 byte aligned pointers to 8 bytes to make it such that the tag bits 

are also copied in the assignment. 

Note that in all the above cases, the following still holds: 

• An attack on one tag type (e.g. ‘pointer’) will not necessarily work on another tag type. As such, 

if the attacker needs to modify both a pointer and a code pointer to achieve their goal, the 

amount of work needed to find all the needed gadgets increases. 

• Unclonable code pointers should be considered as another tag type where it is even harder to 

find fabrication gadgets, and almost impossible to find memcpy gadgets. 

• When the term “naturally callable gadget” is used in the above descriptions, it means that the 

attacker must be able to make the CPU execute the gadget purely based on ‘data’ only  

corruption. Remember, the attacker hasn’t found a way to modify code pointers yet, so they 

cannot make the system execute into unnatural ROP or JOP gadgets yet. 

While we believe that many of the defects/gadgets described above exists in common code bases, we 

nevertheless increase the work factor for attackers by making them search for these gadgets. The open 

question we would appreciate research in is finding out how much of an increase this work is and 

whether the increase in work is durable. We also have the ability to modify compilers/tools to detect 

such gadget sequences in emitted code and either warn developers about them, or possibly generating 

code that does not have such gadgets. When such gadgets are discovered by attackers or by our own 

compiler, we can either change the code to use tagged pointer values to mitigate ‘data’ corruption, or 

we can leverage the _ProtectInMemory compiler feature to harden the existing code and remove the 

gadget, without the need to break any API contracts. The hope is that over time, we can remove the 

presence of these gadgets such that it becomes practically infeasible to modify pointers on a machine 

with pointer tagging active. 

Whether there are other possible gadgets that can be used to fabricate or clone pointers is a area where 

we would appreciate any feedback or insight. Also, how prevalent these gadgets are in the existing code 

base is something that is interesting to analyze, and any information would be appreciated. 

4.3 Security Properties of Pointer Tagging We Hope to Achieve 
This section lists the most critical security properties of pointer tagging that we hope to achieve that 

would justify the value of pointer tagging. The authors of this paper would appreciate any feedback on 

whether these security properties can really be upheld or not: 

1. Attacker cannot fabricate 'code pointers': Code pointers should come into existence at code 

module load time as well as when PC relative addressing is used during “address taken” 

operations of code functions. We are assuming that in all these cases, either the 

CASTTOCODEPOINTER instruction is not used at all, or even when it is used, it is done in a manner 

and point in time where is it is impossible for an attacker to use it to fabricate ‘code pointers’ of 

attacker chosen value via a naturally callable gadget. Note that some operating systems support 



loading new code and setting up new code pointers purely in with user mode code without 

strong verification in supervisor mode of the newly loaded code and pointers. On operating 

systems like this, it will be possible to construct fabricate code pointers if the attacker already 

achieved stage 2 of an attack when the new code is loading. We view this as a shortcoming in 

the operating system that needs to be addressed to block off this attack venue. 

2. Attacker cannot fabricate or clone 'unclonable code pointers': Since ‘unclonable code pointers’ 

cannot be copied using memcpy gadgets, the only known way to fabricate or clone an 

'unclonable code pointer' is to find a naturally callable gadget that contains the 

CASTTOUNCLONABLECODEPOINTER instruction. However, the CASTTOUNCLONABLECODEPOINTER instruction 

should only be used at code module load time when C++ vtables or global dispatch tables are 

being setup and during exception handling. The hope is that we can structure all the code 

containing CASTTOUNCLONABLECODEPOINTER instructions to never be naturally callable by an attacker 

to fabricate or copy unclonable code pointers. 

3. It should be non-trivial for an attacker to fabricate 'pointers': It should not be trivial to find 

naturally callable gadgets to fabricate 'pointers' or modify ‘pointers’ to attacker desired value. 

The boundary between what is trivial versus non-trivial is hard to define, but we are simply 

defining it to mean that it should take a good hacker some genuine effort (e.g. at least a day) to 

find such gadgets in the address space it wishes to attack. 

4. It should be non-trivial for attacker to memcpy 'pointers': It should not be trivial to find naturally 

callable gadgets to copy 'pointers' with attacker-controlled source and destination location. It 

should take a good hacker some genuine effort (e.g. at least a day) to find such gadgets in the 

address space it wishes to attack. 

5. We have the ability to use compilers and tool chain improvements to detect pointer fabrication 

and memcpy gadgets over time and increase the amount of effort needed by an attacker to find 

pointer fabrication and memcpy gadgets. 

4.4 Comparison of Pointer Tagging with Existing Anti-ROP Anti-JOP Tech 
One of the arguments for pointer tagging is that it can be used to replace existing already deployed anti-

ROP and anti-JOP mitigations with less performance overhead and possible even better security 

properties. As such, in this subsection, we will discuss how pointer tagging compares with Shadow Stack 

(Intel CET), ARM’s authenticated pointers, and Control Flow Guard (CFG). 

Comparison with Shadow Stack (CET) 

Intel’s CET prevents ROP attacks using a shadow stack where the return address is redundantly stored. 

Pointer tagging achieves similar protection without the need to maintain a separate stack and the extra 

memory cycles and cache space needed to access disjoint memory locations to redundantly store and 

load the return address. This is of course under the assumption that attackers cannot fabricate or clone 

return addresses which is stored as an ‘unclonable code pointer’. This is one of the basic security 

properties we want to uphold with pointer tagging. 



Pointer tagging is superior to CET in that it is also effective in protecting against RCE attacks in supervisor 

mode and hypervisor mode if you also use ‘protected data’ to mark and protect page tables. Preventing 

ROP like attacks in supervisor mode and hypervisor mode has historically been uninteresting because if 

the attacker is able to overwrite the stack in these modes, the attacker can just as easily modify page 

tables to add new code pages with attacker-controlled code. Pointer tagging gives us a low-cost way to 

protect page tables using ‘protected data’ that prevents malicious modification of page tables. With this, 

the attacker must resort to ROP attacks again, but the ‘unclonable code pointers’ used for return 

addresses prevents ROP attacks from working. 

CET on the other hand is ineffective in supervisor mode and hypervisor mode not only because it 

provides no means to protect page tables, but even on systems where some other mechanism is used to 

prevent arbitrary code pages from being added (e.g. hypervisor enforced code integrity), CET is still 

ineffective from preventing ROP since the attacker can still modify the page table entries of shadow 

stack pages to temporarily enable writes to modify the shadow stack. Such a weakness does not exist for 

pointer tagging. 

Comparison with Authenticated Pointers 

Comparing pointer tagging to ARM64’s authenticated pointers: Pointer tagging should be superior due 

to the fact that return addresses on the stack cannot be copied around and re-used as is possible with 

authenticated pointers. While authenticated pointers does tie the authenticated return address with the 

value of the stack pointer, it is still possible for the attacker to use alloca to force ROP gadgets into the 

right location on the stack to be copied out and re-used. This shortcoming is not present with pointer 

tagging since ‘unclonable code pointers’ can neither be fabricated nor cloned. Also, authenticated 

pointers only “probabilistically” prevent ROP attacks, whereas pointer tagging’s ROP prevention is 100% 

deterministic.  

Note that there are several ways in which pointer tagging can be used in conjunction with authenticated 

pointers. For example, we can have sensitive pointers be signed with their in-memory location (which 

would protect them against simple memcpy attacks) and also use the signature to protect the tag bits in 

a store-once pointer. 

Comparison with Control Flow Guard (CFG) 

Control Flow Guard (CFG) is a Microsoft compiler option to emit code that looks up an in-memory 

bitmap to determine if an indirect call/jump destination is valid or not before taking the call/jump. It is 

used to prevent JOP attacks by restricting indirect call/jump destinations to the beginning of valid 

functions instead of anywhere in the code space.  

Pointer tagging should be superior than CFG in terms of performance (no lookup table needed) and 

comparable to CFG in terms of security value. Under the assumption that code pointers cannot be 

fabricated, pointer tagging is comparable to CFG since there is no way for an attacker to fabricate a code 

pointer to jump to anything but the beginning of a valid function. CFG can be programmed to block 

indirect calls to only the subset of functions that need to be indirectly called to, but pointer tagging can 

also enforce the destination code pointer to be an unclonable code pointer if the 



FAULTIFNOTUNCLONABLECODEPOINTER instruction is used to limit the set of usable code pointers to only be 

unclonable code pointers. 

However, putting aside the scope of what code pointers you can swap in to make the indirect call/jump 

go to a different location than originally intended, pointer tagging forces the attacker to do work (to find 

a memcpy gadget) to copy a cloneable code pointer, whereas in CFG, no extra work was needed to 

corrupt a code pointer to a different value. 

5 Implementation Details and Options 
In this section, we discuss some practical implementation details, adoption strategies, and some 

possible variations of tag bit usage. 

5.1 Phased Deployment 
To ease the adoption of pointer tagging, we need to be able to phase in the pointer tagging feature in a 

world where legacy hardware that does not support pointer tagging is still widely used, as well as 

supporting a world where applications/libraries/drivers that do not support pointer tagging 

simultaneously run on systems with applications/libraries/drivers that do support pointer tagging. 

The first problem can be solved by making all the new user mode instructions added for Pointer Tagging 

occupy the no-op op code space on legacy hardware. This enables new code generated for HW that 

supports pointer tagging to gracefully work on legacy hardware. The effect of these new user mode 

instructions should be limited to manipulating the tag bits in different ways and possibly generating a 

fault based on the tag type. 

The problem of enabling a system to support both apps and drivers that support and do not support 

pointer tagging is more tricky, but can also be solved. We assume that the application/library/driver 

binary contains a header indicating whether the code is pointer tagging aware or not. Furthermore, we 

assume that hardware supports enabling and disabling pointer tagging on a per hardware thread basis. 

When a thread is started for an application that supports pointer tagging the pointer tagging feature is 

enabled, and when a thread is started for an application that does not support pointer tagging, the 

feature is disabled. However, that alone is not enough. A DLL that does not support pointer tagging 

could get loaded into a new application or the application could call into a driver that does not support 

pointer tagging. Thus, we would also need to disable pointer tagging on any thread/process that 

transitions through any code that does not support pointer tagging. 

By building systems like this, we enable seamless adoption of pointer tagging by gracefully supporting 

legacy applications/DLLs/drivers to be used without pointer tagging being enabled. But as more and 

more of the software ecosystem gets compiled by a “pointer tagging aware” compiler, a higher 

percentage of the threads on the system start running with pointer tagging enabled to gain the extra 

security benefits. 

Note that the observed behavior of the system when pointer tagging is disabled is to simply not fault 

when a pointer tagging fault is detected. As for how the tag bits are handled when pointer tagging is 



disabled is up to the hardware vendor to decide but it seems like it would be easier to let the tag bits 

propagate through the system normally as if pointer tagging was enabled, and simply suppress the faults 

if pointer tagging is disabled. This should simplify the micro architecture design as it makes the 

propagation of tag bits follow the same path regardless of whether pointer tagging is enabled or 

disabled. 

5.2 Only Using 1 Tag Bit 
In this paper, we proposed using 2 tag bits so that we can protect both code pointers and data pointers. 

It is possible to simplify the proposal and just use 1 tag bit to only protect code pointers and leave data 

pointers unprotected. This “1 tag bit” proposal will give the system strong control flow properties that 

can prevent ROP and JOP, but the system would still be suspectable to DOP attacks. 

Given the value of protecting data pointers as well as supervisor page tables, we believe that the extra 

tag bit is worth the tradeoff. If we build a system that only prevents ROP and JOP with 1 tag bit, only to 

find that attackers all shift to DOP based attacks, it will be much harder to retrofit an additional tag bit 

into the system later to protect data pointers. 

5.3 Using 2 Tag Bits Without Upper Code Pointer Bits 
If taking away the 3 most significant bits from every code pointer presents a problem, we can still 

achieve most of the security properties proposed in this paper without using those bits or growing to 3 

tag bits. But we can only do this if we are willing to not have separate states for forward and reverse 

code pointers, and not have ‘protected data’. In this configuration, the 2 tag bits would be used to 

represent the following 4 tag types: 

• Data 

• Pointer 

• Code Pointer 

• Unclonable Code Pointer 

Note that we technically still need to represent one more state which is the “Unclonable Code Pointer 

before Store” state. However, this particular state only exists in registers, and is never needed in the 

L1/L2/L3 cache or the memory subsystem. As such, it should be cost effective to support this extra tag 

bit state by having 3 tag bits on all registers, but only 2 tag bits everywhere else. 

5.4 Implementation of Tag Bits 
There are several possible ways to implement the additional tag bits. One possible solution is to use 

DDR5 memory’s ability to store extra ECC bits on the side of each 64-bit piece of memory. Using ECC 

memory would enable this feature to incur almost no additional DRAM access and thus no performance 

loss, although the cost of building the system would increase.  

An alternative efficient hardware mechanism for storing tags is described in [2]. This design describes a 

hierarchical tag cache, where tags are stored in physical memory and atomicity is managed by the 

memory controller.  This design works with commodity DRAM at the expense of incurring a second 

DRAM read whenever there is a miss in the tag cache (for 0-5% of DRAM accesses, depending on the 



workload). The advantage of the hierarchical tag design is that it allows large ranges of tags to be 

cleared very cheaply, significantly more cheaply than zeroing the memory. This would allow reverting a 

page of intermixed data and pointers to the data state without any DRAM traffic.  

The same hierarchical tag cache mechanism can also be used to implement fast zeroing of memory 

itself, using a separate bit per cache line in the tag state to indicate that the line contains only zeroes. 

Cache lines full of zeros can then set the zero bit in the tag cache and avoid DRAM writes while zeroing 

large regions of DRAM (even avoiding a DRAM read when reloading them) by setting this bit at a higher 

level in a hierarchical tag cache. This would likely result in at least a 5% decrease in DRAM traffic with 

current workloads (more in .NET and similar environments) and would compose well with the general 

security desire to zero-initialize all heap allocations. 

5.5 Operating Systems Changes 
Any pointer tagging scheme requires some interactions from the operating system. These are a subset 

of the requirements from [3]. In particular, the OS must: 

• Initialize all tags correctly on process start 

• Preserve all in-register tag state on context switch. 

• Preserve all in-register tag state on signal entry and return (specific to POSIX systems). 

• Preserve all in-memory tags when swapping memory to disk. 

• Strip all tags in data sent via IPC mechanisms and on any non-pointer values transferred 

between the kernel and userspace. 

• Control tags in shared memory. 

The first three requirements should be handled transparently for most tags, as long as appropriate new 

instructions are added to enable the kernel to faithfully preserve tag state. The initial values in the 

register state (for example the RIP and RSP values and pointers to kernel-initialized data structures) 

must have the correct tags set. 

Stripping tags across the kernel boundary is relatively easy on a system with explicit copy operations for 

memory movement across the kernel boundary but will require some more invasive changes on 

Windows, where device drivers often interact with userspace memory unmediated. 

The kernel must preserve tags when paging out memory. In the CHERI case in [3], the tags are stored in 

the structure that associates metadata with a swapped-out page. CHERI requires 32 bytes of tags per 

page, so this does not add a considerable amount of overhead. This scheme adds 128 bytes of tags per 

page and so the OS may also wish to swap out the tags. 

The swapping problem is more complex with memory-mapped files (as opposed to anonymous 

memory) that contains pointers. Memory-mapped files may contain interior pointers. If they do, then it 

is a good idea to store the address at which the file must be mapped, as well as the tags, in the file 

somehow. Extended attributes can be used to store this information on POSIX file systems, alternate 

data streams can be used on NTFS.  Transmitting files that contain pointers between computers is 

probably a bad idea. 



The OS may also wish to prevent tags from being stored in shared memory, to prevent one process from 

accidentally storing valid pointers that can be referenced by other processes. This would require a 

hardware page permission that would strip tags (implicitly setting the value to ‘data’) on every store. 

In addition, to support legacy processes that do not enable this functionality, the operating system must 

perform several other duties: 

• The OS needs to tell the difference between legacy apps where pointer tagging cannot be 

turned on and newer apps where it can be turned on and enable/disable pointer tagging 

appropriately. 

• The OS interface layer will also need to manually set the pointer tag on input pointer 

parameters when a legacy app calls into an OS interface with a pointer that does not have the 

tag set correctly. This is only needed if we wish to enable pointer tagging within the OS. 

If we decide to tag page tables or other supervisor data structures as ‘protected data’, code that writes 

these data structures will need to do the appropriate tag casting. 

Finally, the operating system will need to support tag introspection via any cross-process debugging 

interfaces that it exposes. 

5.6 Performance of Pointer Tagging 
The performance penalty associated with pointer tagging should be minimal as the hardware should be 

able to access the tag bits with zero added latency (if ECC memory is used) or very low added latency (if 

a hierarchical tag cache is used). The only other reason performance would suffer is due to the extra 

casting instructions that need to be inserted in special cases, but those instruction occurrences should 

be minimal and negligible. On the positive side, the performance loss associated with pointer tagging 

should be much less than the combined performance loss of CFG and shadow stack. This means that the 

net result of this feature ends up being a performance gain in addition to the extra security. 

5.7 Reliability Improvement 
This feature could end up not only being a security feature, but also a reliability feature as it could catch 

many type confusion bugs and pointer smashing bugs that have caused reliability and stability issues in 

the past. 

6 Related work 
Tagged architectures have a long history dating back to Burroughs’ B5000 [4] and including some 

commercial systems such as the AS/400 series [5] from IBM. In recent years, they have been used to 

guarantee strong provenance properties in capability systems such as the M-Machine [6], Aries [7], Low-

fat pointers [8], and CHERI [9]. These schemes provide very strong security guarantees at the expense of 

binary compatibility (and, often, with some restrictions on source compatibility). The scheme proposed 

in this paper provides weaker security guarantees in exchange for better performance and ease of 

deployment. 



The Secure Bit [10] scheme aims to protect addresses by using a 1-bit information flow policy, 

implemented as a tag, to prevent any data injected from an external source from being used as an 

address. More recently, the lowRISC project has proposed a set of general-purpose tagged memory 

extensions [11]. These describe a variety of potential use cases including some that are similar to this 

proposal but leave the enforcement of any given policy entirely to software. 

Software tagging schemes, such as Address Sanitizer [12], use a larger tag space (“shadow memory”) to 

provide information about memory layout that can be used for bounds checking. These techniques 

provide different guarantees (some temporal and spatial memory safety, but no data-pointer type 

safety) at a considerably higher overhead. Intel MPX [13] provided a similar set of guarantees in 

hardware, with a higher overhead and a considerably larger tag space (256 bits of metadata for every 64 

bits of pointer, though no tags for quarter pages that did not contain any tags). 

The guarantees provided here are close to those intended by Code Pointer Integrity (CPI) [14], though 

with some additional protection on data pointers. The CPI scheme has been shown [15] to be vulnerable 

to side channels that leak secret data. Our scheme does not depend on secrets and so is not vulnerable 

to the same kind of attacks. 

7 Conclusion 
This paper proposes a novel new idea on how to strengthen computer systems against memory safety 

attacks. The proposal involves having the CPU hold two extra tag bits to the side of each piece of 64-bit 

data to denote whether the 64-bits holds regular ‘data’, a data ‘pointer’, or a ‘code pointer’. This coarse 

grain type information stored in the tag bits is implicitly available to the programmer and the C/C++ 

compiler, but was never explicitly maintained by the HW and enforced by the HW. The fact that HW 

does not maintain this coarse grain type information and does not enforce any rules based on this 

coarse grain type information has enabled attackers to mix and match data and pointers in various ways 

to cause harm to computer systems. By adding these extra tag bits, we can prevent attackers from using 

‘data’ to corrupt various pointers to prevent ROP, JOP and DOP attacks. We believe the proposed 

architecture change could be a game changer in terms of making memory safety attacks much harder to 

pull off. If over time, we can eliminate all the bad gadgets that would enable attackers to fabricate and 

copy pointers, then we can completely protect pointers from attacker modification which would 

significantly change the security landscape. This will take time, but we believe it is achievable given that 

compilers can be modified to warn developers about the generation of these dangerous gadgets. Even if 

we fail to completely prevent attackers from modifying pointers with this feature, we will have still 

improved the system significantly with a better performing ROP/JOP prevention system while also 

making the attackers life more miserable by complicating the steps needed to pull off DOP attacks.  
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