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Abstract – Recent work in networked systems has shown that
using aerial imagery for farm monitoring can enable precision
agriculture by lowering the cost and reducing the overhead of
large scale sensor deployment. However, acquiring aerial imagery
requires a drone, which has high capital and operational costs,
often beyond the reach of farmers in the developing world. In this
paper, we present TYE (Tethered eYE), an inexpensive platform
for aerial imagery. It consists of a tethered helium balloon with a
custom mount that can hold a smartphone (or a camera) with a
battery pack. The balloon can be carried using a tether by a person
or a vehicle. We incorporate various techniques to increase the
operational time of the system, and to provide actionable insights
even with unstable imagery. We develop path-planning algorithms
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and use that to develop an interactive mobile phone application
that provides the user instant feedback to guide users to efficiently
traverse large areas of land. We use computer vision algorithms to
stitch orthomosaics by effectively countering wind-induced motion
of the camera. We have used TYE for aerial imaging of agricultural
land for over a year, and envision it as a low-cost aerial imaging
platform for similar applications.

1 INTRODUCTION
Unmanned Aerial Vehilces (UAVs) and drones have gained tremen-
dous traction as a tool for enabling digital agriculture [13, 25, 31, 32].
In contrast to satellites, which typically captures only about 10
clean images from seeding to harvest [3], a drone can be flown
on-demand, and can get very high resolution

Figure 1: Mobile TYE: A user
images a farm usingMobile TYE

imagery. They can also be
mounted with multi-spectral or
hyper-spectral cameras to ob-
tain detailed imagery of the
farms [14]. A recent research in
networked systems [32] takes
the aerial imagery a step fur-
ther, by combining aerial im-
agery with ground sensor data,
to create detailed precisionmaps
for a farm, such as for soil tem-
perature, pH, and soil moisture,
which are then used to enable
low-cost precision agriculture.
While such systems work well
in the developed countries, the
startup cost of buying a commer-
cial quadrotor (around $ 1000)
is prohibitive for farmers in de-
veloping countries. Additionally,
the lack of technical knowledge
among the farmers in develop-
ing countries means that they of-
ten need specialized technicians
to operate them. This implies
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that for large parts of the world, digital agriculture techniques
remain out of bounds.

In this paper, we address this problem by designing an alternative
aerial imagery platform, that has low capital investment, low oper-
ational costs and high resolution. We present our system, TYE (for
Tethered eYE). TYE uses lighter-than-air gas (such as helium) filled
balloons to provide lift to an existing imaging infrastructure (such
as a smartphone). The balloon is held using a tether at heights from
50 ft to 150 ft depending on the required resolution. The design of
TYE has been motivated by the strong penetration of smartphones
in the developing world [23], combined with enhanced imaging
capabilities of such smartphones.

TYE operates in two modes. First, it has a mobile mode, wherein
it operates like a UAV and the tether is held by a person who walks
around the field. In this mode, the imagery can be used to generate
precision maps. As our aerial imagery platform design does not
require power to stay afloat, it enables an additional static mode,
where the balloon is tethered to a stationary point. In this mode, the
balloon can provide the farmer with long term surveillance imagery
of the farm. While the design of TYE is simple, the challenge lies
in delivering high-fidelity, interpretable aerial imagery. To enable
long-duration, low cost, large-area aerial imagery, we must address
three fundamental aspects:
(i) Wind Induced Variability: Unlike UAVs, low winds cause sig-
nificant changes in the position (lateral motion and rotation) of
the camera that is capturing aerial images using balloons. These
unpredictable changes in camera viewpoint due to wind makes
imagery difficult to view and analyze. Our solution to this problem
is two-fold: (a) we design a custom mount for the payload that can
reduce wind-induced variability, and (b) we leverage gyroscopes
(present in most smartphones) to eliminate frames with extreme
motion while ensuring sufficient coverage. We then use techniques
from computer vision to correct for the remaining camera motion
in software; thus producing consistent views for the user as if the
camera was stable, despite arbitrary camera motions.
(ii) Spatio-temporal Coverage: Spatial mapping of a farm re-
quires TYE to be maneuverable like drones. Thus, mobile-TYE
requires a person to move the balloon. In our experiments, we
observe that users fail to ensure complete coverage of an area if
they rely purely on their intuition. This is due to the mismatch
between a person’s 2D trajectory and the balloon’s 3D trajectory.
Furthermore, some areas might be inaccessible to the user due to
obstructions. For example, in farms, plots are interspersed with
trees, bunds, ponds, and electrical poles etc. To address these con-
cerns, we build a smartphone application that runs on a smartphone
carried by the user (this is separate from the smartphone mounted
on the balloon which is used to image the areas of interest). The
application interactively displays the area that has been covered
so far and the path to be followed. The application incorporates
a novel path-planning algorithm that ensures area coverage, with
minimum human motion, in spite of wind-induced balloon motion.
(iii) PowerManagement: For long term imagery (static-TYE), cap-
turing frequent images and sending them to any ground device,
such as a PC over LTE, drains power very quickly and limits the
uptime to a few hours [26]. One obvious way to extend the battery
life is to identify frames where certain pixels have different values

than past frames, and transmit only those frames which might cor-
respond to some form of event or motion. However, this doesn’t
work for TYE, since wind-induced motion causes most frames to
be different from past frames. An alternative is to use complex
object detection and motion tracking vision techniques to identify
frames in which moving objects were observed. However, these
techniques require high compute power, and are either not feasible
on a smartphone or take too much time to offset the power savings.
In contrast to these approaches, we leverage an important insight
to design a low complexity frame selection technique. As the bal-
loon drifts, all pixels in the frame captured by the camera drift in a
direction opposite to the balloon. However, if something changes
in the environment, the pixels corresponding to the change must
have a different drift than the majority of the pixels corresponding
to static objects. By identifying these outliers, i.e. pixels that have
a drift different from the average drift of the frame, we can iden-
tify frames that have an interesting event and only transmit them,
thereby reducing the power required for data transmission.

We have implemented TYE as a software-hardware system, using
helium balloons and evaluated them in farms across US and India.
The main contributions of this paper are:
• We design two modes of TYE: mobile and static which are useful
for on-demand imaging of large areas and long-duration imaging
for a single area respectively.

• We design new software-hardware mechanisms to reduce wind-
induced variability in captured imagery and present a consistent
view to the farmer in spite of frequent camera motions.

• We build a novel path-planning algorithm that captures the area
being imaged and intelligently mitigates the effects of wind –
effectively reducing the time needed to image a given area.

• We design novel low-complexity anomaly-detection algorithms
and custom hardware to enhance the uptime of the system.

While a detailed evaluations of TYE are in sections 6 and 8, we list
the important results here:
• The hardware modifications reduce the leakage through the sur-
face of the balloon by ≈ 90%.

• The area imaged in mobile mode using TYE’s app and path plan-
ning algorithm is 88.2% of the area of interest as opposed to
78.5%, when the user is not using the app. The users walking
have to walk 25.2% more steps without the app to guide them.

• The intelligent-frame selection algorithm reduces the average
frame transmissions by 94% and the overall battery consumption
by 67-88% depending on the image resolution.

• The vision pipeline successfully reduces rolling shutter effects
and constructs stable imagery. This imagery can then be com-
bined with sparse sensor measurements to create accurate preci-
sion maps such as in [32].

2 MOTIVATION & RELATEDWORK
The world’s food production needs to increase by up to 70% by 2050
to feed the growing population of the world [16] even though the
amount of arable land is limited, and the water levels are receding.
This challenge is even more severe if we consider nourishing the
world, and not just feeding it. One promising approach to address
the above challenge is precision agriculture, which refers to the
ability to do site specific applications of various farm inputs. Instead
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Height Duration Frequency Area Resolution Capital cost
TYE flexible 20ft-200ft flexible several days on-demand flexible high, 1 cm per pixel < $100
UAV flexible 20ft-400ft very limited on-demand limited (by battery) high, 1 cm per pixel > $1000
Satellite fixed years fixed very large low, > 30 cm per pixel very high
Towers fixed years always-on fixed and small varies with height high

Table 1: Comparison of aerial imaging solutions: Unlike existing solutions, TYE delivers long-term, high-resolution aerial imagery at low capital cost.

of uniformly applying water throughout the farm, a farmer can
apply water only where it is needed. Similarly, the farmer can
apply pesticide, fertilizer, etc. only where it is needed on the farm.
Precision agriculture as a technique has been shown to improve
yield, reduce cost, and is also better for the environment.

Precision agriculture requires the creation of a Precision Map,
such as a soil moisture map of the farm 6 inches below the ground,
or a pest-infestation map. However, creating accurate precision
maps is resource intensive. It requires several densely deployed
sensors in the field sending a lot of data to the cloud. This would
cost thousands of dollars in setup fees and hundreds of dollars in
annual subscriptions, per sensor [32]. These make precision agri-
culture challenging as the labor and operating costs are very high.
This has started to change with the advent of personal UAVs. UAVs
can be used to create precision maps of the field either in isola-
tion [14, 25, 31] or in combination with ground sensors [32].This
significantly reduces the cost of deploying precision agriculture
techniques which has led to increasing adoption of UAVs by farmers.
A poll by Farmer’s Journal Pulse [2] showed that around two-third
of the farmers surveyed either owned a drone or planned to get one
within the year. Among the ones who had drones, 63% operated
the drones on their own. However, the high cost of UAVs combined
with the limited education levels in the developing world has kept
farmers in the developing world behind the technology curve.

Our goal with TYE is to build a low-cost aerial imaging system,
that farmers can use to easily obtain an aerial image of the farm
at low cost. This image can then be used for scouting, interesting
event detection, or for building precision maps. One such useful
Precision Map could be for soil moisture, which the farmer can use
to decide how much water to apply when and where in the farm,
thereby saving irrigation costs, and also being more productive by
ensuring that no plant is stressed.

Prior Work: Prior studies [5, 6, 17, 22, 27] have used balloon-
photography and kite-photography for archaeological surveys, geo-
scientific mapping, vegetation analysis, etc. However, these systems
were designed for clicking one-time aerial images and do not sup-
port long-term large area imagery. In contrast, we propose mech-
anisms to enable long-term automated visual imagery collection
using tethered balloons. Other popular techniques used for aerial
imaging are (a) satellites, (b) cameras attached to UAVs, and (c) cam-
era towers. We compare several usability and performance aspects
of these systems in Table 1. As noted in the table, satellite imagery
has poor image resolution (46 cm per pixel at best), is infrequent
(order of days), and requires high capital investments. This makes
the acquisition of continuous, long-term, high resolution imagery
for applications, such as flood monitoring, surveillance, etc. very
expensive for small to medium farmers.

Similarly, UAVs present multiple challenges. First, UAVs consume
a large amount of power to stay afloat, resulting in very short
battery life (tens of minutes for most commercial UAVs) [9, 32]

which makes UAVs infeasible for applications that require long-
term, continuous monitoring such as flood monitoring. Second,
UAVs require high capital investment. Commercial UAVs that can
last for 30 minutes cost over $1000 [10]. Third, UAVs involve high
operational complexity such as the need for certified operators and
stable power infrastructure to recharge batteries which drive up the
cost of deployment. These factors make UAV-based aerial imaging
infeasible for several developing countries. Thus, in contrast to
existing approaches, TYE presents a low-operational complexity,
low-cost alternative for long-term and large area aerial imagery.

3 TYE DESIGN: OBJECTIVES & OVERVIEW
TYE aims to achieve the following:
• Aerial Mapping of Large Areas: To enable a human user to
map large areas using the tethered balloon and obtain usable
images, we have to address the following challenges: (i) the plat-
form needs to be simple so that a semi-skilled user can assemble
and do the imaging, (ii) the user should be able to cover the in-
tended area efficiently despite wind-induced balloon movements
as well as obstacles and variability in the terrain, and (iii) the
system should generate the orthomosaic of the terrain despite
an unstable imaging platform. These challenges are addressed
by our design in Section 4.

• Long-term, Continuous Imaging: The goal of the static-mode
is to provide long-term aerial imaging over a fixed area for a
few days. Enabling the system to run for days entails two pri-
mary components. First, how does one make the balloon provide
enough lift (in spite of leakage) to hold the system aloft for long
durations? Second, how does one manage the limited battery that
can be carried as payload to maximize the uptime of the imaging
device (camera/smartphone)? In section 5, we describe how we
solve these challenges using a combination of techniques from
computer vision and mobile systems.

• Output Interpretability: TYE’s output (from mobile and static
modes) should be accessible and interpretable by the farmers.
To this end, we design an end-to-end communication pipeline
(section 5.1), that allows users to access the captured imagery
locally on the edge computer and on the cloud in near real-time.
Our design ensures that the system is available locally even
when outages happen on the edge-cloud link. Furthermore, wind-
induced motions make the captured imagery hard to interpret.
We develop vision algorithms to (a) raise alerts when something
new is observed (Section 5.3), and (b) stabilize the imagery to a
single viewpoint in software (Section 4.3).

4 MOBILE-TYE
In precision agriculture, aerial imagery is needed at different pe-
riods in a plant’s life so that in combination with the ground
sensor data, valuable decision support can be provided to farm-
ers [32]. The average farm size is very small (in the order of a
couple of acres) and these farms are clustered in irregular terrains.
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Given the low individual incomes of farmers and the lack of ac-
cess to capital, such precision agriculture efforts can either be im-
plemented by farmer cooperatives, or by agriculture companies,
or by local government agencies and not by individual farmers.

Figure 2: Simple
system model

Hence, mobile TYE needs to be de-
signed as an efficient, low-cost, on
demand, aerial image capturing sys-
tem that can be operated by a semi-
skilled person with minimal training
and infrastructure requirements. Fur-
thermore, the capital cost and opera-
tional cost of the system should be as
low as possible. We envision this to be
primarily used as an extremely low-cost
alternative for UAVs to construct ortho-
mosaics of areas. We first describe the
design of the platform in section 4.1.
We then describe the key challenges
that we solve to deliver the mobile-TYE
solution: ensuring good coverage (sec-
tion 4.2) and extracting stable imagery
from wind-induced unstable imagery
(section 4.3).

4.1 Mobile-TYE platform design
We use a smartphone on the balloon or imaging and collecting other
sensory data. In addition to that, the user who carries the balloon
to image the desired area walks with another phone called guidance
phone. This dual phone system plays a critical role in overcoming
the efficient area coverage challenge mentioned earlier. The GPS
readings of these two phones along with the known tether length
of the balloon enable accurate determination of the balloon phone’s
vertical height from the ground level. This information is used by
the smartphone application to convey to the user the areas that
have been imaged and then guides the user in an efficient manner
in spite of wind and obstacles on the ground.

4.2 Path Planning Algorithm
During our initial trials, we observed that the trial participants
were not covering the intended area correctly. They were unable
to map the balloon’s position and movement to the areas being
imaged while moving around at the same time. To help a user
effectively cover the area, we develop the path-planning algorithm
and implemented it on an android application called “Guidance
App” that provides guidance and feedback to the walker in real-
time. Note that this is an application that makes suggestions to
the farmer and the farmer is free to choose their path. The path
suggested is in no way binding. However, the real-time feedback
about the amount of area imaged has significant improvement in
coverage as we will demonstrate in later sections.

The path-planning algorithm has two main goals: (a) minimize
the time taken to cover an area, and (b) acquire sufficient data to suc-
cessfully create a panoramic view of the area of interest. Traditional
aerial imaging systems take steps to ensure that the camera is stable
during the flight. However, as wind makes it impossible to fully
control the camera in the case of mobile-TYE, we account for it by

estimating the area being mapped continuously. Instead of a rigid
path that the user follows, our app provides walkers with real-time
updates about the areas being imaged and they can dynamically
navigate their path based on the situation. Additionally, we develop
a novel process that can deliver complete image coverage of the
target area in spite of significant wind-induced camera instability
and the movement of the walker. In this section, we describe the
algorithm and in section 8.1, we describe the user study and its
findings.

The algorithm runs on two devices: the balloon phone and the
guidance phone as shown in Figure 2. The user inputs the area that
is to be imaged on the guidance phone. The user is then presented
with the optimal path which images the entire area (assuming a
stable camera) such that the time taken is minimal. The user then
follows the given path as closely as possible while dynamically
making small adjustments based on the feedback provided from
the app. Again, the path is not binding and the user can make
adjustments based on the real-time feedback as well as current
wind conditions.
Functions of the balloon phone
• Take continuous imagery of the area of interest – either using
burst photo mode or using a low frame rate video.

• Transmit the GPS coordinate of the camera to the guidance phone
whenever there is sufficient stability in the imagery being cap-
tures (based on gyroscope measurements).

Functions of the guidance phone
• Obtain an estimate of the height of the camera at the beginning
of the motion. Obtain the area of interest as well as camera
resolution from the user.

• Use the estimate of the height, camera resolution and the area of
interest to present a path which minimizes the time taken by a
user to cover the area. Figure 3 shows how the camera resolution
and height can be used to calculate the field of view of the camera.
The estimate is further refined to account for camera rotations
(shown by the red area in Fig. 3). This is further explained in
section 4.2.1.

• Use the GPS coordinates transmitted by the balloon phone to
estimate the area covered and display it on the Guidance App.

Figure 3: Lower-bound of area im-
aged by a single image

4.2.1 Area captured by
an image. Consider a cam-
era with a vertical field-of-
view (FOV) of θ and hori-
zontal FOV of ϕ which are
along b and l respectively.
Let the balloon be teth-
ered to a stationary point
and flying at a height h
as shown in figure 3. The
horizontal length covered l
and the vertical length cov-
ered b is then given by

l = д(h) = 2 ∗ h ∗ tan
(
θ

2

)
, b = f (h) = 2 ∗ h ∗ tan

(
ϕ

2

)
. (1)

The platform for mounting the camera is designed in such a way
that the camera faces the ground with high probability. However,
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there is rotatory motion about the axis normal to the ground (in the
plane parallel to the ground) due to which, it is difficult to estimate
what area is getting imaged. Therefore, we lower bound the area
imaged in the following way. We rotate the rectangle pivoted at
the centroid to account for the various orientations that the camera
could possibly be in. If we take the intersection of all these rotated
rectangles, we get the inner circle of the rectangle (as shown in
figure 3) with radius

r =
1
2

min (b, l) = 1
2

min (f (h),д(h)). (2)

Figure 4: Area imaged varies
with height of the balloon as
shown by circles of varying
width

As the radius of the circle is
a function of the height of the
balloon and the FOV of the cam-
era, the area imaged by the cam-
era can be lower-bounded by the
circle of the appropriate radius.
As the height of the balloon,
varies, the radius varies as well
(as shown in figure 4). As the
person moves, the area imaged
is shown to the user and they
can leverage the visualization to
make appropriate decisions. The
challenge arising from varying
balloon height and rotatory motion is taken care of in the post-
processing which we discuss in detail in section 4.3.

4.2.2 OptimalGuided Algorithm. The algorithm OptimalGuided
outputs the optimal path to image an area assuming that there are
no random effects associated with wind. OptimalGuided algorithm
ignores the effect of wind on the balloon path and outputs a de-
terministic path to be followed which minimizes the time taken to
image an area. The algorithm can be described as follows:
(1) Calculate the convex hull of the area to be imaged.
(2) Calculate a path in the direction of the shortest ‘width’ of the

convex hull taking into account the height of the balloon.
We do not provide a detailed proof of optimality for this algorithm
– only give a sketch. Let us assume that if we walk a straight line of
length l , then the area imaged is of size l ×w wherew is the width
of each image. Then, the problem of walking the least distance can
be formulated as follows:
Problem: Cover the convex polygon with ribbons of widthw such
that weminimize the length of the ribbon plus the number of ribbon
stripes used to cover the area.
Solution: Laying ribbons out in any direction can potentially incur
some wastage on the edges. If we ignore those, the area covered by
any assembly is the same. Thus, the length of ribbon used which
is equal to area divided byw is also the same. The different ways
to cover the area then only differs by the number of stripes. The
number of stripes is minimized if we lay them down along the
smallest ‘width’ of the polygon. The smallest ‘width’ of the polygon
is defined as the smallest edge of all the rectangles which cover
the given polygon. One may be able to do another pass, imaging
only the most important areas or the areas not initially imaged.
The optimal path can be computed through solving a Traveling
Salesman Problem. However, in our trials we found that one pass

combined with the user’s dynamical adjustments based on feedback
from the Guidance app was sufficient to cover an area.
4.3 Gyroscope-based Frame Selection
As mentioned earlier, the balloon’s height varies during the walk.
To make sense of the imagery obtained, processing is required. A
naive solution to this problem is to use the GPS coordinates of the
camera to re-align the images. For example, if the GPS detects that
the camera has moved down by 3m, the image should be moved
accordingly to accommodate for this translation. However, this
strategy has two pitfalls. First, GPS does not determine the camera’s
rotation and the images are still prone to rotational transformations.
Second, GPS accuracy is limited to a few meters at best, which can
lead to more errors in image alignment.

While working with video imagery, an area is captured by sev-
eral contiguous frames. Thus using all the frames are redundant
and to avoid that, vision algorithms skip frames – say use every
20th or 30th frame for post-processing. However, as mentioned
earlier, rotatory motion causes distortions. Specifically, when the
cameras have a rolling shutter (like several mobile phone cameras),
rotatory motion causes warping which makes the later stages of
processing hard. Several works have looked at correcting the rolling
shutter artifact [15, 19]. However, an important sensor that can help
automated vision algorithms select good frames are gyroscopes.
We equip our cameras with gyroscopes (or use smartphones with
inertial measurement unit) which capture the amount of rotation
experienced by the camera. We use the sensor reading to filter out
the bad frames. However, putting a hard threshold on the gyroscope
value is ineffective in selecting good frames. If the threshold is too
low, then enough frames are not selected and it might prevent
enough overlap amongst frames that is crucial for orthomosaic
construction. To combat that, we propose the following algorithm.
Frame Selection: Each video frame has a cost associated with
it which is a function f (·) of the gyroscope reading during the
frame дi (say the maximum of the absolute value of the three axis
gyroscope reading, or the sum of squares of the reading, etc.). Let
the ideal number of frames to skip be k and the allowable range to
ensure good enough overlap be (k, k̄). We construct a graph where
the nodes are the frames associated with the video and the directed
edge from node i to j exist only if k ≤ j − i ≤ k̄ . The edges have a
weight associated with them given by:

e(i → j) =
{
(j − i − k)2 + λ f (дi ) if k ≤ j − i ≤ k̄

∞ otherwise
(3)

where λ is the weight associated with the node cost. To find the best
frames, we use Dijkstra’s algorithm to pick a set of frames which has
minimal distortion from rotational motion and enough temporal
coverage to ensure good overlap (also explored in [11, 20]). These
frames can then be fed into the image misalignment correction
pipeline which is described in section 5.4. Once the images have
been aligned, they can be stitched together into an orthomosaic.

5 STATIC-TYE
The static mode is suitable for applicationswhere the area of interest
is constant and the changes are to be tracked frequently for a
long period of time such as flood monitoring and tracking various
health indicators of the farm. In this mode, human intervention is
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Figure 5: Static TYE: Platform pipeline in the stationarymode of operation

minimal. In this section, we first describe the design of the pipeline
(section 5.1), then we describe the payload capacity of the system
and how that dictates its lifetime (section 5.2) and finally describe
the novel low-power event detection algorithm that runs locally to
detect interesting events in real-time (section 5.3).

5.1 Static-TYE pipeline
The system comprises of the following (refer to Fig. 5): (a) helium
filled balloon with a suspended smartphone, and (b) a gateway
node (computer) which processes the data. The balloon system is
tethered to a single stationary point on the ground for an extended
period of time (days to weeks).
Balloon System: A single latex or mylar balloon filled with helium
that is inflated to the required size to mount the payload, and sealed
to prevent leakage. The payload consists of a custom lightweight
mount, a smartphone to capture images, and a LoRA based device
to be an interface between the phone and the gateway.
Gateway: The gateway node serves two important purposes. First,
it serves as a node with intense computational capabilities for pro-
cessing the captured images. Second, the gateway uploads data to
the cloud where applications use this data to provide new insights.
We do local processing to conserve bandwidth as well as to be
robust to any outages on the edge-cloud link. This is akin to the
design of Farmbeats [32].

5.2 Payload Capacity and Uptime
Static-TYE is intended for long-term imaging. We study and model
how the payload capacity of balloons change over time. We then
use this model to make design choices and to choose the size of the
balloon depending on the application. The payload capacity of a
balloon is dependent on several factors including: pressure inside
the balloon, temperature of the gas inside as well as outside and the
volume of the balloon. The payload capacity is derived as a combi-
nation of basic physics principles of ideal gas law and Archimedes’
principle. We calculate the number of moles of any gas inside a
balloon of volumeV at temperateT and standard atmospheric pres-
sure (101325 pascals), which is a reasonable pressure for the gas
inside the balloon as the balloon surface dynamics requires it to
be around the same as atmospheric pressure. Thus, from ideal gas
law (PV = nRT ) we get, that the number of moles in a balloon with
volume V and temperature T (in kelvin) is

n =
V

T
× 101325

8.3144598
= 12186.6

V

T
moles (4)

We know from Archimedes’ principle that the buoyant force ex-
perienced by a body immersed in a denser substance is equal to
the weight displaced. Thus we get that the weight displaced by a

‘weightless’ balloon is
weight displaced = n × (M(air ) −M(He)) kg

= n × (28.97 − 4.00) g = 24.97n g
(5)

as the average molar mass of air, M(air) is 28.97g/mole and the
molar mass of helium, M(He) is 4g/mole. Putting Eqs. (4) and (5)
together we get,

Payload = 304.3
V

T
kg. (6)

However, the actual capacity of a balloon is reduced due to the
weight of the balloon. Considering the weight of the balloon,mb kg,
the actual payload capacity is,

Payload = 304.3
V

T
−mb kg. (7)

From our experiments described in section 7.1 we conclude that
our modified helium balloon system lose about half their payload
capacity in four days. Thus, to have an uptime of a week, one
would need a balloon whose initial payload capacity is 4x the actual
payload.

5.3 Detection of changes in the environment
Capturing frequent aerial images and sending them to a device
on the ground, say a PC over LTE, drains a lot of power which
limits the uptime of the system. We can extend the battery life
(and consequently the uptime) by sending only those frames where
any changes have been detected. However, detecting changes is
non-trivial. On the one hand, trivially sending frames that are
significantly different from previous frames does not work as wind-
induced motion causes nearby frames to be significantly different.
On the other hand, complex object detection will drain a lot of
power which goes against our main goal of power saving. To ad-
dress these challenges: saving power by sending only the frames
that are relevant to the actual changes in the environment and
being able to detect these frames despite wind-induced variation,
we employ an efficient and low-complexity image processing algo-
rithm. We leverage a key insight to build the algorithm: when the
balloon drifts in one direction, all stationary points drift in
the opposite direction. However, the mobile points drift in
directions different from the stationary points’ drift or the
opposite direction.

Our algorithm is based on the idea of homography from com-
puter vision, which identifies and matches a set of keypoints (points
of interest) between consecutive images for image registration and
computation of camera motion between two images [30]. In static-
TYE, the scene in the image is classified as constant when the
keypoints match across images (inliers) or dynamic when there are
keypoints that do not match across images (outliers). Depending
on the number of outliers, we identify an image to have undergone
changes as these outliers are mainly due to the introduction of a
new object or movement in the frames. This technique is generic
and can be applied to identify changes in the environment in any
scenario as the motion of objects of interest will be different from
rest of the image content. The algorithm is described as follows:
• Identify the keypoints in consecutive frames using speeded up
robust features (SURF) [7]

• Match SURF keypoints between any two consecutive frames



Low-Cost Aerial Imaging for Small Holder Farmers COMPASS ’19, July 3–5, 2019, Accra, Ghana

Figure 6: Detecting Motion: The figure on the left shows all detected key-
points and the figure on the right shows that all keypoints on moving car are
detected as outliers.

• Use random sample consensus (RANSAC) [12] to identify the
outliers as they correspond to the objects of interest

• Keep track of the outliers across frames to observe the complete
trajectory of the objects of interest such as the motion of a car

Fig. 6 shows the sequence of images in a farm along with inliers
and outliers keypoints. We see that when a new object enters the
number of outliers increases significantly indicating a change in
the image. Upon identification of a change in the environment, the
image is subsequently transferred to the gateway node for further
processing. This pipeline enables us to save on bandwidth, compu-
tation power, and energy on the payload device. In Section. 8.3 we
evaluate this algorithm on aerial imagery collected by static TYE.

5.4 Image Misalignment Challenge
Tethered balloons are susceptible to translations and rotations in the
air due to the impact of wind. To quantify this impact, we tethered
a balloon carrying a GPS equipped camera to a 40m long tether and
measured the lateral motion for 10 minutes. The balloon motion
covered 20m laterally in maximum point to point distance.

The motion caused by wind makes the imagery collected by TYE
hard to interpret. To make sense of the images, the user is forced
to constantly re-calibrate their mental mapping between the image
plane and the physical world. This makes the user-interface highly
cumbersome and non-intuitive. Furthermore, it is difficult to use this
data in machine learning algorithms as is for automated processing
of data. To construct stable, interpretable images using the data
collected, we built a vision pipeline. Specifically, the pipeline follows
these steps to re-align images across time:

• Feature Extraction: extract the visual features from each image
using the DAISY [28, 29] feature extractor

• Feature Matching: match the features extracted from one im-
age with the features from another image and reject the features
that don’t match across images

• Homography Computation: compute a homography (3 × 3
matrix) that maps features in one image to features in another

• Homography Application: apply the computed homography
computed to the current image and ensure that this image is
aligned to the previous image.

The images constructed using this pipeline can then be fed into
further processing to extract insights described in Farmbeats [32].

6 IMPLEMENTATION
In this section, we describe the details of the implementation includ-
ing custom hardware, balloon modification, and static and mobile-
TYE operation.

6.1 Mounting Hardware
Figure 7a shows the hardware used to mount the smartphone onto
the balloon. The mount is designed to have the following features:
(a) low weight, (b) low cost, (c) simple fabrication using locally
available material, (d) provide enough cushion to phone in case of
a balloon burst, and (e) provide ventilation to the phone to prevent
it from heating.

6.2 Balloon Material and Permeability
In section 5.2 we derived the payload capacity of a balloon of vol-
ume V at temperature T . However, we assumed that the balloon
membrane was impermeable – i.e., no molecule can go into the
balloon or come out of it. In practice, all materials have gaps – the
size of the gaps depend on how closely the atoms are packed which
means that some molecules can pass through the balloon.

Helium is the smallest molecule so it can leak through surfaces
more rapidly than other gases. The leakage leads to reduction in
the amount of helium in the balloon – ultimately the balloon loses
the extra buoyancy. To make the system last long, it is essential
to choose the balloon material intelligently. While latex balloons
are easily available, a simple latex balloon has high leakage as its
polymer structure facilitates movement of gas molecules [18, 21].
The rate of leakage depends on several factors which we discuss in
Section 8. To use easily available latex balloons and still enable long
term imagery, we chemically treat the latex balloon with Hi-Float.
Hi-Float coating is easy to obtain and apply. It significantly reduces
leakage from simple latex balloons. We evaluate the longevity of
Hi-Float coated latex balloons in Section 8.

6.3 Operation
The balloon is inflated to the required diameter and the camera
is mounted onto it. This process takes around 15 minutes. In the
static mode, the balloon is tied to a stationary point on the ground.
In the mobile mode, the guidance phone and the balloon phone
are connected through a local Wi-Fi network with the guidance
phone being the client and the balloon phone being the server. The
guidance phone controls the imaging parameters and functions as
a dashboard for the user to track the health of the balloon phone
(battery, storage, temperature etc.). The area to be mapped is set
using the map-overlay shown in the app and the balloon tether
is unreeled to the desired height. The guidance app then shows
the path to be followed on the phone along with green circles to
indicate the area imaged as the user moves as shown in Fig 7a. The
user can walk with the phone and the balloon in one hand using a
simple device as shown in Figure 1.

7 MICROBENCHMARKS
We present microbenchmarks for evaluation of TYE below.
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(a) Implementation: (a) Smartphone Mount, (b) Guidance
App used in mobile mode

(b)Air Leakage Prevention: UsingHi-Float coating in-
creases mean uptime of the system by about 90%. (c) Freebody analysis

7.1 Air Leakage
The goal of this experiment was to measure the effect of Hi-Float
treatment on the air leakage through the surface of the balloon.
We measure the effect by comparing the rate of change of payload
capacity of balloons treated with Hi-Float with balloons without
Hi-Float over a four day period. Since human operators manu-
ally tie the balloons, there can be significant variation between
different operators. To capture this variation, we conducted sev-
eral experiments. These experiments were conducted in controlled
environments with small balloons.

Figure 7b plots the payload capacity of the Helium balloons over
a 4 day period. As shown in the figure, Hi-float coated balloons
last much longer and have a lower degradation of payload capacity
over time, i.e., hi-float coating reduces air leakage. Hi-Float based
treatment of balloons reduces the leakage through the surface of
the balloon by ≈ 90%. This observation holds across balloons of dif-
ferent initial payload capacities. This validates the design decision
to use Hi-Float coating to treat latex balloons.

This experiment also shows that the capacity of a Hi-Float bal-
loon typically decreases to about half over a period of 4 days. This
means, for a balloon to last one week, we must over-provision the
payload capacity by 4 times. This observation led us to use balloons
which are 6 ft in diameter and have a capacity of over 3 kg (> 4
times our payload size).

7.2 Path Planning Simulation
To evaluate the efficacy of TYE’s path planning algorithm, we per-
form two different sets of experiments: a real-world user study
(detailed in section 8.1) that evaluates TYE’s path planning applica-
tion empirically and a simulation to study the variation in coverage
achieved by TYE’s algorithm in varying wind conditions. The goal
of the simulation is to check if the algorithm can ensure coverage
across a broad spectrum of wind conditions. For the simulation,
we assumed that the user followed the path suggested by TYE’s
guidance app (without dynamic adjustments).
Setup: Consider the frame of reference centered at the person –
the X-Y plane is the ground and the Z-axis is perpendicular to
the ground. The origin also serves as the tether point. Let the
instantaneous speed of the wind be v and the angle it makes with
the X-axis be ϕ (we restrict the wind to be parallel to the X-Y plane).

Consider a balloon of radius r . Then the forces acting on the balloon
are shown in Figure 7c where Fw is the force due to the wind, B
is the net lift (buoyancy) acting on the balloon,mbд is the weight
of the balloon (including any payload), and T is the tension in the
string. The balloon makes an angle θ with the Z-axis to counter the
wind force. The wind force Fw is given by

Fw = P · A ·Cd =
1
2
ρv2 · A ·Cd (substituting P = 1

2
ρv2)

= 0.613 · ACdv2 (substituting ρ = 1.216)
= 0.905r2v2 (substituting Cd = 0.47,A = πr2)

(8)

where Cd is the drag coefficient[1] of the wind on a sphere.
Balancing the forces on the balloon along the horizontal and

vertical directions, we get:

T cos (θ ) = B −mbд, T sin (θ ) = Fw (9)

θ = tan−1
(

Fw
B −mbд

)
(10)

If the length of the tether be l , the position of the center of the
balloon is given by,

(x ,y, z) = (l sin (θ ) cos (ϕ), l sin (θ ) sin (ϕ), l cos (θ )).
The above equations show how the speed of the wind as well as the
buoyancy effects the displacement of the balloon from its intended
position: stronger winds cause large displacements.
Simulation Results:We varied the wind speed and estimated the
amount of area imaged by TYE under those wind conditions. The
results are tabulated in Table 2. The wind speeds considered corre-
spond to a variety of conditions ranging from mild wind (Beaufort
number 1) to wind causing dust to rise (Beaufort number 4) [4]. We
see that for mild-to-moderate wind conditions (< 5 m/s), the path
planning algorithm ensures almost 100% coverage.

8 IN-THE-WILD EVALUATION
We conducted field trials for the TYE platform for agricultural mon-
itoring in two farms in the US and India. We performed trials using
latex balloons with diameter varying from 2ft (corresponding to
payload capacity of 120g) to 6ft (corresponding to payload capacity
of 3.2kg). We over-provision the balloon capacity to account for
leakage. All balloons were lined with Hi-Float, a liquid solution that
forms a coating inside balloons to increase float time. We filled the
balloons with industrial grade helium. In all our experiments, we
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Speed in m/s (mi/h) Min Coverage Max Coverage Coverage ≤ 95% Coverage ≤ 99%
1 (2.24) 100% 100% 0% 0%
2 (4.47) 99.5% 100% 0% 0%
3 (6.71) 98.5% 100% 0% 0.1%
4 (8.95) 96.16% 100% 0% 11%
5 (11.18) 92.10% 100% 10% 60%
6 (13.42) 84.70% 99.85% 49% 98%

Table 2: Simulation Results: TYE’s path planning algorithm ensures high coverage across diverse wind conditions

used locally available smartphones or a GoPro camera with a single
board computer like Raspberry Pi. We add a 10000mAh battery
back to provide additional power. Our payloads weigh from 300g
to 500g across our experiments. Our trials lasted for about 4 days
on average and collected imagery data for farms about 5 acre in
size. Our findings are summarized below1:
• The area imaged by using the guidance app is around 88.2% of
the area of interest (as opposed to 78.55% without the app) as
demonstrated by the user study.

• The hardware modifications reduce the leakage through the sur-
face of the balloon by ≈ 90%, thus increasing the system uptime.

• The intelligent-frame selection algorithm reduces the frame trans-
missions by 94% and the overall battery consumption by 67-88%,
depending on the image resolution.

• Our vision pipelinemitigates the rolling shutter effects to produce
a stable image.

The rest of the section will describe the experimental evaluation.

8.1 Path Planning Algorithm
We developed the path planning algorithm anticipating that vari-
ations due to wind as well as the error in human judgment about
the area being mapped would result in a bad coverage. To validate
our hypothesis and demonstrate the benefits of TYE’s design, we
conducted a user study with 5 different users. We asked the users
to image an area without TYE’s Guidance App. We described the
area to be covered and specified the height at which they can fly
their mobile-TYE system. Most of the users were unable to image
the area completely and were unable to correct for the variations
due to wind. We also used the recorded videos to try to make an
orthomosaic but we were unsuccessful as there were holes in the
area being imaged2.

The users were then presented with the samemobile-TYE system
along with the Guidance App and asked to image the same area.
This time most of the users were able to image almost 90% of the
area and the footage quality was good enough for orthomosaic
reconstruction. Averaged across 5 independent runs, the users took
1741 steps to cover 78.55 % area without the guidance App and with
the help of guidance App were able to cover 88.20 % of area while
taking only 1390 steps.

A sample of the area imaged by a user with and without the
Guidance App is shown in Figure 8c and 8b respectively. When
asked to cover the area in the blue rectangle, most users strayed
off the marked area, while leaving gaps in the intended coverage
area. All the users reported difficulties in managing the two tasks

1You can find some of the imagery that we collected for evaluating the platform here:
http://bit.ly/2nIMc26
2Orthomosaic re-construction algorithms rely on overlap between images to stitch
them together.

simultaneously: keeping track of the balloon position (the user has
to crane their neck to spot the balloon), while keeping their eyes on
the ground to walk around obstacles and to ensure that they were
not trampling on plants. Conversely, the use of the app allowed
them to keep their gaze on the ground while glancing at the app
to follow the path and be able to make minor path adjustments to
ensure coverage.

User
Without App With App

# Steps % Area # Steps % Area

A1 1898 88.59 1607 94.99
A2 1792 68.53 1171 88.72

Mean 1741 78.55 1390 88.2
Table 3: Mobile TYE User Study: Presents results from a user study with 5
users. Using TYE’s guidance app, users cover more area with fewer steps

We list results for two representative users in Table 3. User A1
was a conscientious user trying his best to maximize coverage. Yet,
A1 could cover just 88.6% of the area without the guidance app.
User A2, on the other hand, was less attentive and could not keep
track of what area has been covered mentally. In both these cases,
the guidance app allowed users to improve area coverage while
traveling less number of steps.

8.2 Vision Challenges
As mentioned in Sec. 4.3, gyroscope based frame selection is impor-
tant when dealing with a lot of rotatory motion. Figure 9a depicts
how the gyroscope based rejection picks frame with minimal gyro-
scope value when the weight λ associated with the gyroscope cost
is varied. The higher the value of λ, the higher it prefers to pick
very low gyroscope valued frames. The stems represent the frames
that are picked, the parameters used are k = 30, k = 20, k̄ = 40.

Figure. 9b shows the resulting stitches with and without the
gyroscope based rejection of the same area using the same footage.
As shown in the figure, the orthomosaic without gyro based frame
selection is incomplete, skewed and lacks a stable frame of refer-
ence. With gyroscope based frame selection, a stable, correct and
complete stitch is generated.

8.3 Detection of changes in the environment
In section 5.3 we described our algorithm to detect changes in the
environment in static-TYE.We implemented the homography based
event detection on an Android smartphone. The homography based
event detection was written in C++ using OpenCV [8]. This native
code is interfaced with the Android app using Android NDK [24].
The application captures an image and computes the number of
outlier keypoints with respect to the previous image. When the
ratio of number of outliers to number of inliers crosses a threshold,
the image is classified as having gone through sufficient changes

http://bit.ly/2nIMc26
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(a) Farm (b) Without Guidance App (c) With Guidance App
Figure 8: Mobile TYE User Study: (a) A representative snapshot of the farm with different types of crops varying in heights and plant state, (b,c) As the user
walks without the guidance app, he tends to get lost and walk extra distance without completely covering the intended area (blue rectangle). The guidance app
extends the coverage and reduces the distance.

(a) (b)

Figure 9: ResolvingUnstable Imagery: (a) Effect ofweighing gyroscope cost function in picking of the frames, (b,)Without TYE’s gyroscope based frame selection,
the generated orthomosaic (left) is incomplete, skewed and hard to interpret. When TYE’s frame selection is used, the orthomosaic covers the designated area and
produces a consistent view (right).

and transferred to the gateway node. We compared the proposed
change detection algorithmwith the naive approach – that transfers
all images to the gateway node for processing.

Figure 10a shows the percentage of frames that need to be trans-
mitted to the gateway for different values of the threshold parameter
(ratio of number of outliers to number of inliers) . As the threshold
increases, less frames are classified as having undergone siginificant
changes and thus, less frames are transmitted to the gateway.

To benchmark the energy consumption of our approach, we
use a Monsoon power monitor to measure the energy consumed
by the smartphone in (a) computing if the frame has undergone
significant changes, and (b) transmitting a frame using LTE. We use
these measurements to compare the energy consumption of TYE’s
event detection algorithm (which transmits selected frames) with
the naive baseline to transmit all frames. We plot the ratio of the
power consumed by TYE’s algorithm to the power consumed by the
naive baseline in figure 10b. As seen in the figure, as the threshold
increases, TYE’s algorithm transmits fewer frames and consumes
less energy. We empirically observe that a threshold of 0.75 is
conservative enough to select all frames with any motion. Even
with this conservative threshold, for high resolution images, TYE’s
algorithm can save 67% power compared to the baseline. For lower
resolution imagery, this number goes up to 88%. Of course, when
the system is power-limited, the power savings can be increased by
increasing the value of the threshold and just selecting the images
with significant changes.

9 CONCLUDING REMARKS
We present TYE, a platform aimed at small holder farmers to enable
them to reap the benefits of precision agriculture by acquiring
high resolution aerial imaging and insights over very large areas
or over extended periods of time while keeping costs as low as
possible. TYE consists of an instrumented aerial camera mounted
on a tethered helium balloon. We have developed novel hardware-
software innovations to increase uptime and algorithms to ensure
coverage of areas in spite of rapid wind-induced motion. We have
also built algorithms to alleviate the distortions in imagery caused
by the wind-induced motion.

The overarching design goal has been to minimize both the cap-
ital costs and the operational costs of the system: the design of the
balloon mount and techniques to keep the balloon afloat longer;
the use of commodity smartphones keeps maintenance and replace-
ment cost of the imaging platform low; the algorithms to extract
stable orthomosaic from a very unstable video feed has kept the
mounting simple and lightweight (instead of using powered gyro
stabilizers) reducing the capital cost of the mount and the opera-
tional cost low since a smaller balloon with lesser helium can keep
the payload up; the efficient event detection on the phone reduces
the battery use otherwise needed for video transfer keeping the
balloon up longer; the simplicity of the balloon platform allows
for a semi-skilled person to operate the system reducing the opera-
tional cost. The guidance app further reduces the operator time by
minimizing the time needed to map a given area.

Our initial deployments in India and US for agricultural applica-
tions have shown promising results. We believe TYE will prove to
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Figure 10: Static TYE Evaluation: (a) As the threshold for change detection increases, we select less frames to transmit, (b) We plot the ratio of power consumed
by Static TYE phone in event-detection mode to the power consumed if all frames are transmitted over LTE. Even when high-res images are transmitted, our
approach saves more than two-third the power at low thresholds of 0.75.

be the aerial imagery platform of choice for the developing world
for applications in precision farming, crowd monitoring, forest and
environment monitoring and others.
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