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Abstract
We describe a zero shot approach to intent classification that
allows for the identification of intents that were not present dur-
ing training. Our approach makes use of a Long-short Term
Memory neural network to encode user queries and intents and
uses these encodings to score previously unseen intents based
on their semantic similarity to the queries. We test our model
on intent classification in a personal digital assistant and show
an improvement of 15% over a strong baseline. We also inves-
tigate the effect of adding a few training samples for the pre-
viously unseen intents in a few shot learning setting and show
improvements of up to 16% over the baseline method.
Index Terms: conversational systems, spoken intent detection,
zero shot learning

1. Introduction
Spoken Language Understanding (SLU) is an important com-
ponent of Intelligent Assistant (IA) systems that interact with
users, such as Siri, Cortana, and Google Assistant. One of the
areas in which these assistants have shown the most promise
is in task completion, where they are used to assist a user in
completing a variety of predetermined tasks, such as setting an
alarm or booking a taxi. In order to complete these tasks, IAs
include a SLU component that is used to parse user utterances
into predefined domains, intents and semantic slots [1]. Typi-
cally, each domain is implemented independently according to
a schema that specifies the intents and slots associated with that
domain. For instance, an IA designed to work in the hotel reser-
vation domain may include intents for checking room availabil-
ity and booking a hotel. However, it may not be able to handle
new intents that are not part of the schema, such as booking a
taxi to the hotel. A standard solution to this problem in SLU
is to redesign the schema so that it covers the new intents as
well as their associated slots. However, the downside of this is
that redesigning a schema can be time consuming as it requires
human annotation of new data as well as model retraining.

Zero shot learning is a promising area of research that at-
tempts to address this problem by learning a classifier that is ca-
pable of assigning data points not only to classes that were seen
during training, but also to entirely new classes [2]. Zero shot
learning has successfully been applied in image recognition [2],
neural activity decoding [3], and named entity recognition [4].

In this paper, we use zero shot learning with Long-short
Term Memory Networks (LSTM) to identify intents that do not
appear in the domain schema. The idea is to produce a classifier
that is able to assign utterances to intents that occurred in the
training data as well as intents that did not occur in the training
data. To do this, we train an encoder to produce embeddings of
intents and utterances. The intuition is that the encoder is able
to capture the semantics such that the embeddings of utterances
are near to the embeddings of their associated intents in the

Intent: check_weather

Intent: get_reminders

Intent: send_email

Utterance: send an email to Jon

Figure 1: A 2D semantic space with intents and an utterance.

semantic space. Therefore, when a previously unseen intent is
encountered, the encoder is able to produce an embedding for
that unseen intent that is semantically near to the embeddings
for utterances belonging to that intent. This is shown visually
in Figure 1, which shows a 2D semantic space with 3 intents.
An utterance projected to the same semantic space is positioned
near to its associated send email intent.

Previous work approached this problem using convolu-
tional neural networks and the deep similarity model [5]. We
instead propose to use a LSTM neural network as the encoder
since LSTMs have produced state of the art on many natural
language processing tasks [6]. Our intuition is that the sequen-
tial nature of the LSTM will be able to better capture the generic
semantics of intents and utterances. We perform experiments in
a zero shot setting to demonstrate the model performance. We
also experiment with the model in a few shot setting where we
make a small amount of training data for each class available
at training time. We show how the proposed LSTM Encoder
performs well in both an zero shot and few shot setting.

2. Related Work
Dauphin et al. [7] learn a semantic utterance using a DNN that
is trained on search engine query logs. They train the DNN
to predict the websites that a user clicks on for a given query.
They then use the final layer of the DNN to produce semantic
embeddings for user utterances and intents. Since their model
is trained on query click logs and not semantic utterances, they
also introduce an entropy-based method to make the semantic
features discriminative for semantic utterance classification.

Chen et al. [5] proposed to use the Convolutional Deep
Structured Semantic Model (CDSSM) for zero shot intent clas-
sification. In their model, they use a word hashing layer, fol-
lowed by a convolutional layer, and then max pooling and feed
forward layers to create encodings. They propose two models:
a predictive model where they compute the probability of an
intent given an utterance, and a generative model where they
compute the probability of an utterance given an intent. In their
experiments they find that there are able to achieve 9.07% ac-
curacy on 7 previously unseen intents. As in our work, Palangi
et al. [8] use an LSTM-based encoder for creating a similarity
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Figure 2: An encoder encodes the utterance and each intent.
The similarity is calculated and the utterance is then labeled
with the intent that it is most similar to.

model. However, they apply their model to search engine result
ranking, whereas we apply our model to intent detection. In the
area of natural language processing there has also been some
work on zero shot learning for tasks beyond intent classification.
For instance, Ma et al. [4] use hierarchical and prototypical fea-
tures to learn label embeddings. Ferreira et al. [9] use generic
word embeddings and ontological descriptions of the target do-
main to derive a zero shot semantic parser. Ferreira et al. [10]
extend this work by proposing an online adaptive strategy with
a small amount of supervision. Yazdani and Henderson [11] do
zero shot learning of dialog acts. Their method uses word em-
beddings to map labels and utterances into a vector space where
hyperplanes separate utterances with the same label from those
with different labels.

3. Zero Shot Model for Intent Classification
In this section we describe the model that we use for zero shot
intent classification. The end-to-end model is shown visually in
Figure 2, and follows the same approach as previous similarity-
based models [5, 8, 12, 13]. At its core, the zero shot model
computes a similarity score between a user utterance and a set
of intents and the utterance is labeled with the intent that it is
most similar to. The similarity score is based on embeddings of
the utterance and intents as produced by an encoder.

Formally, given a user utterance U and a set of intents I ,
the encoder produces a semantic representation of the utter-
ance yU and each intent yIj , j = 1, 2, ..., |I|. We use cosine
similarity to measure the semantic similarity between an utter-
ance U and an intent Ij , where the cosine similarity is given

by: CosSim (yU , yIj ) =

∑n
i=1 yUi

yIji√∑n
i=1 y2

Ui

√∑n
i=1 y2

Iji

. The proba-

bility of an intent given an utterance is based on the softmax

function:P (Ij |U) =
expCosSim(yU ,yIj )∑

yIk,k!=j
CosSim(yU ,yIk

)

For training we minimize the negative likelihood of the cor-
rect intent for each associate training utterance. The focus of
this work is in how the encodings y are produced. In this work,
we propose to use a LSTM neural network as the encoder. We
describe the encoding procedure in more detail next.

3.1. Long-short Term Memory Encoder

We propose to use a LSTM neural network as our encoder. The
intuition for using an LSTM-based encoder is that it is well

suited to sequential data, such as intents and user utterances,
as they contain sequences of words and those words contain
sequences of characters. The LSTM-based encoder is shown
visually in Figure 3 and described in detail here.

We induce an encoding of utterances and intents based on
the characters and words that appear in the utterances and in-
tent labels (usually 2-3 words). We closely follow the approach
of previous studies [14, 15, 16] and induce both character and
word embeddings using bidirectional LSTMs. As in [14], for a
given sequence of words W = w1, w2, ..., wn where word wi

has character wi(j) at position j. We define the following:

• Character embedding: ec for each c ∈ C
• Character LSTM: φC

f , φ
C
b

• Word embedding: ew for each w ∈W
• Word LSTM: φW

f , φW
b ,

where φC
f , φ

C
b , φ

W
f , φW

b refer to the forward and backward
character and word LSTMs. A character sensitive word repre-
sentation vi is computed as as:

fC
j = φC

f (ewi(j), f
C
j−1), ∀j = 1...|wi| (1)

bCj = φC
b (ewi(j), b

C
j+1),∀j = |wi|...1 (2)

vi = fC
|wi| ⊕ b

C
1 ⊕ ewi , (3)

where⊕ represents the vector concatenation operation whereby
the final states of the forward and backward LSTMs are con-
catenated with the word embedding. Next the model computes:

fW
i = φW

f (vi, f
W
i−1), ∀i = 1...n (4)

bWi = φW
b (vi, b

W
i+1), ∀i = n...1 (5)

In other words, the forward and backward word LSTMs are
used to induce character and context sensitive word represen-
tations. The states of the forward and backward LSTMs are
concatenated for the n-th word to induce the final encoding for
the utterances and intents:

r = fW
n ⊕ bWn . (6)

Finally, we build a semantic representation of the utterance or
the intent:

y = tanh(W · r + b) (7)

These y are the encodings for utterances and intents that we
use for computing utterance and intent similarity.

4. Experiments
In this section we present experiments evaluating our proposed
model for zero shot and few shot learning. We describe the
dataset we used, our baselines, and our methodology.

4.1. Data

We use a dataset of utterances and intent pairs from a commer-
cial Intelligent Assistant (IA). The utterances were captured as
speech and automatically transcribed using a production text-
to-speech system and the intents were then labeled by trained
annotators. In total, our dataset consists of almost 200,000 utter-
ances belonging to 119 unique intents. The intents are usually
made up of 1-3 words, such as set alarm and check reminders.
The intents belong to common task completion domains in IAs,
such as weather, reminders, calendar, email, restaurants, etc.
We follow a similar approach to previous work on zero shot in-
tent classification [5] and mimic the scenario where an initial set
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Figure 3: LSTM Encoder for producing semantic representations of utterance and intents.

of intents is used to train the IA and then new intents are added
to the schema later. Thus we randomly partition the utterances
into train, validation, and test sets based on the intents. Parti-
tioning the data by intent type ensures that there are no overlap-
ping intents in the train, validation, and test sets. For the train
set, there are 154,072 utterances from 89 intents. For the val-
idation set there are 20,915 utterances belonging to 10 intents.
The test set has 20,000 utterances belonging to 19 intents.

4.2. Baselines

LSTM with Softmax: This is a baseline bidirectional LSTM
model defined by Equations 1-7. We take the softmax of the
the output of Equation 10 to produce the probabilities of each
intent and we train the model by minimizing the cross entropy
loss. This model follows a standard supervised classification ap-
proach and therefore cannot classify previously unseen intents.
However, we use it as a baseline to compare model performance
for previously seen intents and for few shot learning.

Deep Semantic Similarity Model: We implemented the
Deep Semantic Similarity Model [13] as an encoder as in Fig-
ure 2. The key difference between DSSM and our method is
that DSSM uses word hashing and a series of feed forward lay-
ers to produce an encoding for an utterance or an intent. By
contrast, our method uses an LSTM to produce this encoding.
Excluding the encoder, everything else remains the same as
described in Section 3. We also evaluated the Convolutional
DSSM (CDSSM) [12], but found that it did not perform as well
as the standard DSSM for this task.

4.3. Methodology

For all experiments we randomly initialize all model parame-
ters and shuffle the training data. To account for randomization,
we repeat each experiment 10 times and report the mean accu-
racy. For each experiment, we allow for up to 100 epochs of
training and employ early stopping when there is no improve-
ment in validation loss for 5 epochs. We make use of stochas-
tic gradient descent and the Adam optimization algorithm [17]
to train the network end-to-end to predict the correct intent for
each utterance, thus allowing the network to learn the encoder
for utterances and intents automatically.

For the baseline LSTM model and for our encoder we set

the size of the character and word embeddings to 25 and 100,
respectively. The character and word LSTMs have 25 and 100
units, respectively. For the DSSM model, we use the same net-
work size as in [13] and make use of word hashing, with 2 non-
linear projection layers with dimension 300, and one semantic
layer with dimension 128. To conduct experiments we train the
DSSM and our LSTM Encoder and then evaluate them on pre-
viously seen intents, unseen intents, and in a few shot setting.
We use the training and validation sets that do not have over-
lapping intents as described above to train the model and for
early stopping. When training the LSTM Softmax model, we
use validation sets that contain the same intents as the training
set since the validation cannot be performed on the previously
unseen intents.

4.4. Performance on Previously Seen Intents

Out first experiment tests the ability of the models to classify
previously seen intents. To do this, we collect another 19,260
utterances with the same 89 intents as the training set to serve
as a testing set. For the LSTM Softmax classifier we also col-
lect 19,260 utterances to serve as a validation set, while the
similarity-based models use the original validation set of 10 in-
tents that do not occur in the training data as described in Sec-
tion 4.1. The results of this experiment are shown in Table 2

As the table shows, the LSTM Softmax model, which rep-
resents a standard classifier, greatly outperforms the similarity-
based approaches with an accuracy of 81.87%. The DSSM and
LSTM Encoder models were able to learn to classify utterances
into the 89 intents that occurred in the test set, even though they
performed early stopping on a validation set with a completely
different set of intents. These results show that a standard classi-
fier is still the most appropriate in a setting where large amounts
of training data are available and when the the intents used for
testing match the intents used for training. However, they also
suggest that the similarity-based methods are still able to learn
to create meaningful semantic representations, even when a val-
idation set with different intents is used.

4.5. Zero Shot Intent Classification

The previous experiment showed how a standard classifier is
most appropriate if the training and test labels are the same.



Table 1: Model accuracy for few shot learning where the model is initialized with the model trained for zero shot learning.

Accuracy 0 1 2 3 4 5 6 7 8 9 10

LSTM Softmax 0.00 21.58 31.02 39.94 50.41 50.91 57.50 58.20 60.96 59.23 56.79
DSSM 28.60 33.61 40.38 45.34 49.22 47.35 53.69 56.86 57.57 60.12 54.58
LSTM Encoder (Ours) 43.83 45.64 47.43 50.54 58.84 57.32 62.04 62.29 66.49 62.89 66.20

Table 2: Accuracy of models on previously seen intents

Model Accuracy

LSTM Softmax 81.87%
DSSM 57.20%
LSTM Encoder (Ours) 49.78%

Table 3: Accuracy of models for zero shot intent classification

Model Accuracy

LSTM Softmax 0%
DSSM 28.60%
LSTM Encoder (Ours) 43.83%

However, we are concerned with the case where the training and
test labels differ. We evaluate the models in zero shot setting
where no samples of the testing intents were available during
training. The results of this evaluation are shown in Table 3.
For this experiment, we train the models with the same training
set as before, which contains 89 intents. We then evaluate it on
19 previously unseen intents.

As would be expected, the baseline LSTM Softmax model
is not capable of identifying any of the unseen intents since
they were not in the training set. The proposed LSTM Encoder
model outperforms the baseline DSSM model significantly with
an accuracy of 43.83% for the proposed model compared to
28.60% for the DSSM model. This result indicates that the
model is capable of detecting the correct intent of utterances
43% of the time, even though those intents were not in the train-
ing data. This experiment shows that the LSTM-based encoder
is able to meaningfully encode utterance and intents and con-
firms our intuition that the sequential nature of the LSTM model
is more appropriate than the deep feed forward architecture of
the DSSM model for zero shot intent classification. This is sim-
ilar to the finding in [8], where an LSTM-based encoder was
shown to outperform DSSM for search engine result ranking.

4.6. Few Shot Learning

Another scenario that commonly occurs is when a few train-
ing samples are available for new intents. This scenario could
occur when a designer for a new domain has some idea of the
type of utterances that may occur for the intents. We evaluate
the models under this scenario by labeling a few random utter-
ances belonging to each of the 19 previously unseen intents for
use in training. We experiment with n = 1, 2, .., 10 labeled ut-
terances per intent. For each n, we use the models that were
trained on the original 89 intents as initializers, and then con-
tinue training with the few new training samples. Our intuition
is that the models trained on the 89 intents have already learned
to produce meaningful features that can be used for computing
semantic similarity and we are simply adapting that model to

the new intents. We test the model on the same test set contain-
ing 19 intents as used in Section 4.5. We use a validation set
containing 2,805 utterances with the same intents as the test set
for all models. For the LSTM Softmax model we do not adapt
a pre-existing model, but rather train the model from scratch to
show how it performs under few shot learning conditions. The
results of this experiment are shown in Table 1.

There are a few trends to notice from Table 1. The first
is that the accuracy of the models increases as the number of
few shot training examples increases. For instance, our pro-
posed LSTM Encoder model goes from an accuracy of 43.83%
in a zero shot setting to 45.64% when one training example is
available and 47.43% when two examples are available. The
accuracy of the LSTM Encoder model continues to increase un-
til it reaches an accuracy of 66.20% when 10 training examples
are available for each class. We observe a similar trend with the
DSSM model where the zero shot accuracy is 28.60%, which
increases to 33.61% and 40.38% for one and two training ex-
amples, respectively. When there are 9 training examples the
accuracy reaches 60.12%. A similar trend can be observed for
the LSTM Softmax model, though with lower accuracy. Over-
all, our proposed LSTM Encoder model achieves the highest
accuracy for every number of samples in the few shot setting.
It should be noted that the reason that accuracy results for this
experiment are higher than the experiment with seen intents in
Section 4.4 is because in this experiment the task is to differenti-
ate among the 19 previously unseen intents, whereas in Section
4.4 the model needed to differentiate among 89 intents.

5. Discussion & Conclusions

In this paper we have explored zero and few shot learning for
intent classification. The paper focuses on the common sce-
nario that occurs where an SLU system needs to be expanded
to support additional intents. Our experiments showed that the
proposed LSTM-based encoder is a good candidate for both
zero shot learning and few shot learning. In the zero shot
learning setting it achieved an accuracy of of 48.83% com-
pared to 28.60% for the DSSM model. For the few shot set-
ting we showed how adding a few training examples of each
testing intent leads to improvements in performance accuracy
for all models with the proposed LSTM Encoder model per-
forming best with each number of training samples. Further-
more, even though the LSTM Softmax model outperformed the
similarity-based models in the experiment on previously seen
intents when large amounts of training data were available, it
performed worse than the similarity-based models in the few
shot setting. Thus, these results suggest that the similarity mod-
els, and especially the LSTM Encoder, are a good choice in
settings where there are only small amounts of training data
available for new domains. The results are important as they
provide a step in the direction of training zero shot models for
SLU systems.
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